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Elemental tellurium as a chiral p-type thermoelectric material
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The thermoelectric transport properties of elemental tellurium are investigated by density functional theory
combined with the Boltzmann transport equation in the rigid band approximation. We find that the thermoelectric
transport properties parallel and perpendicular to the helical chains are highly asymmetric (almost symmetric) for
p- (n-) type doped tellurium due to the anisotropic (isotropic) hole (electron) pockets of the Fermi surface. The
electronic band structure shows that the lone-pair derived uppermost heavy-hole and extremely light-hole lower
valence bands offer the opportunity to obtain both a high Seebeck coefficient and electrical conductivity along
the chains through Sb or Bi doping. Furthermore, the stairlike density of states yields a large asymmetry for the
transport distribution function relative to the Fermi energy which leads to large thermopower. The calculations
reveal that tellurium has the potential to be a good p-type thermoelectric material with an optimum figure of
merit zT of 0.31 (0.56) at room temperature (500 K) at a hole concentration around 1 × 1019 cm−3. Exploiting
the rich chemistry of lone pairs in chiral solids may have important implications for the discovery of high-zT
polychalcogenide-based thermoelectric materials.
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I. INTRODUCTION

Thermoelectric materials can be used to directly convert
heat to electricity and vice versa. The performance of a
thermoelectric is measured by the figure of merit zT , zT =
S2σT/κ , where S is the Seebeck coefficient, σ is the electrical
conductivity, κ = κe + κL the thermal conductivity which
includes both the electronic and lattice contributions, and T the
absolute temperature. The product PF = S2σ is often referred
to as the power factor. S, σ , and κe are mainly related to the
electronic structure of the material while κL primarily depends
on the lattice. During the past several years intense research
effort has focused on improving the zT for high-energy
conversion efficiency in existing complex bulk thermoelectric
materials [1–3] (binary and ternary semiconductor alloys) and
on identifying promising novel materials.

Achieving higher thermoelectric performance requires high
S and σ values and low thermal conductivity. However, the
Seebeck coefficient and electrical conductivity are generally
inversely related. Thus, optimizing the thermoelectric per-
formance involves balancing these conflicting parameters. It
was suggested that a low-dimensional density of states could
potentially improve S without reducing σ . Band engineering
including high band degeneracy, resonant states, etc., though
doping and composition have often been applied to manip-
ulate the thermoelectric performance [4–7]. For example,
one effective strategy involves converging many valence (or
conduction) bands to achieve a high number of degenerate
carrier pockets Nv and hence a high effective mass m∗,
resulting in an enhancement of zT in PbTe1−xSex alloys to
about 1.8 at 800 K [6]. Recently, Pei et al. have shown [7] that
the light band mass leads to higher performance and should be
used as an important strategy for discovering and improving
thermoelectric materials.
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The heavier group-VI element tellurium, which is the
main component in many high-performance thermoelectric
materials, such as PbTe [5,8,9], Bi2Te3 [10], and AgPbTe2 [11],
exhibits a wide variety of interesting properties under pressure
and temperature. At ambient pressure, the twofold coordinated
tellurium has a trigonal crystal structure (Te-I structure) with
the P 3121-D4

3 or P 3221-D6
3 space group, depending on the

sense of rotation of the helical chains (right- or left-handed
screw) [12,13]. This structure, shown in Fig. 1, consists of
helical chains, arranged in a hexagonal array, which spiral
around axes parallel to the crystalline c axis, with three atoms
in the unit cell at the positions (u,0,0), (0,u, 1

3 ), and (ū,ū, 2
3 ).

The atomic-position parameter u is related by u = q

a
to the

radius q of the helices and the lattice constant a [13]. Each atom
forms strong covalentlike intrachain bonds with its two nearest
neighbors (NNs) and weak van der Waals-like interchain bonds
with its four next NNs, thus giving rise to weakly interacting
rigid one-dimensional units. This unique feature is in fact
reflected in liquid-state studies of Te and Se at atmospheric
pressure, indicating that the chain structure is retained above
the melting temperature [14].

The twofold coordinated tellurium atoms have unshared
electron pairs (lone pairs) which control the interplay of
the intra- and interchain interactions and their sensitivity on
pressure and temperature. The valence band (VB) sextuplet of
Te arises from unhybridized |p〉 states, i.e., lone pairs, while the
doubly degenerate conduction band, protected by the threefold
screw symmetry of the helices, is primarily derived from anti-
bonding σ ∗-hybridized |p〉-like states, resulting in a band gap
of 0.33 eV [15,16]. More recently we predicted [16] that trigo-
nal tellurium undergoes a trivial insulator to strong topological
insulator (metal) transition under shear (hydrostatic or uniax-
ial) strain. The underlying mechanism is the depopulation of
the lone-pair orbitals associated with the VB, which leads to
band inversion and the concomitant change of the topological
invariant.
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FIG. 1. Trigonal structure of Te-I with the P 3121-D4
3 space group

consisting of helical chains arranged in a hexagonal array which spiral
around axes parallel to the c axis.

This unique electronic structure of trigonal tellurium invites
the intriguing question of the effect of lone pairs in chiral
solids on their thermoelectric properties. Furthermore, the
addition of 0.2% antimony or bismuth in tellurium increases
the conductivity of tellurium by about two orders of magnitude
[17]. Thus, if the Sb or Bi doping reduces the lattice
contribution to the thermal conductivity, one would expect
a high value of zT for elemental bulk tellurium. The objective
of this paper is to present a theoretical study of the electronic
structure and thermoelectric transport properties of trigonal
Te based on ab initio density functional calculations and the
Boltzmann transport theory.

In Sec. II, we present a brief introduction of the computa-
tional methods and various parameters used in the calculations.
In Sec. III, we discuss the electronic structures, chemical bond-
ing, and transport properties. We find that the effective mass
of the lower valence band along the c axis is low (0.048m0,
where m0 is the electron mass). This in turn contributes to a
relatively high room-temperature zT value along the c axis of
about 0.31 in hole-doped tellurium with ∼0.001 holes/formula
unit. Finally, conclusions are summarized in Sec. IV.

II. COMPUTATIONAL METHOD

To determine the ground-state relaxed atomic structure
we have carried out first-principles electronic structure cal-
culations within the framework of the plane-wave projector
augmented wave formalism [18], as implemented in the
Vienna ab initio simulation package (VASP) code without the
spin-orbit coupling (SOC) [19,20]. The generalized gradient
approximation (GGA) approximation [21] has been employed
to treat the exchange-correlation interaction. The plane-wave
cutoff energy was 500 eV and the Monkhorst-Pack k mesh
was 15 × 15 × 15. Ionic and electronic degrees of freedom
are relaxed simultaneously until the forces acting on the ions
become smaller than 3 × 10−4 eV/Å. We find that the unit
cell parameters a and c and the internal atomic position

parameter u are 4.51 Å, 5.96 Å, and u = 0.269, in good
agreement with the corresponding experimental values of
4.45 Å, 5.93 Å, and 0.263, respectively. However, density
functional theory (DFT) studies based on local or semilocal
exchange correlation functionals, such as the GGA functional,
underestimate the band gap and can lead to an incorrect
ordering of the frontier bands at the high symmetry points
in the Brillouin zone [22]. Furthermore, they can also give
rise to wrong band topologies and effective masses which are
crucial in determining accurately the thermoelectric properties
[22]. An accurate description of the electronic structure is
a prerequisite in the search and discovery efforts for the
next-generation thermoelectrics.

Thus, after determining the equilibrium structure, we
have carried out electronic structure calculations employing
the full-potential WIEN2K code [23] with the SOC included
and the modified Becke-Johnson local-density approximation
(MBJLDA) functional [24]. The MBJLDA functional has been
shown [22] to yield accurate band gaps, effective masses, and
frontier-band ordering that are in very good agreement with
the computationally more intense GW and hybrid-functional
approaches [22]. We used RMT × Kmax = 8.0, a muffin-tin
radius of 2.1 a.u., and a 19 × 19 × 12 k-point Monkhorst-Pack
mesh.

The transport properties were calculated using the Boltz-
mann transport theory and the rigid band approach as imple-
mented in the BoltzTraP software [25]. We have employed
the eigenenergies on a very dense nonshifted 80 000 k-point
mesh in the full Brillouin zone (BZ), from the self-consistent
converged electronic structure calculations. The electrical
conductivity, Seebeck coefficient, and electronic contribution
to the thermal conductivity tensors are calculated from [25]

σ = e2
∫

�(ε)

(
− ∂f0

∂ε

)
dε, (1)

S = e

σT

∫
�(ε)(ε − μ)

(
− ∂f0

∂ε

)
dε, (2)

κe = 1

T

∫
�(ε)(ε − μ)2

(
− ∂f0

∂ε

)
dε. (3)

Here, �α,β(ε) = ∑
k τkδ(ε − εk)vα

k v
β

k are the matrix elements
of the transport distribution function �, vα

k is the αth
component of the group velocity of the carriers with wave
vector k, and τ is the carrier relaxation time. We have carried
out calculations of the transport properties as a function
of temperature and chemical potential employing the so-
called constant relaxation time approximation (CRTA), which
neglects the weak energy dependence of τ but retains some
temperature and doping dependence [26,27].

III. RESULTS AND DISCUSSION

The calculated MBJLDA band structure of tellurium with
SOC included is shown in Fig. 2(a). The semicore bands
(∼−13 to −8 eV) arise primarily from 5|s〉 states, the bonding
bands (∼−5 to −2.5 eV) arise from σ hybridization of
5|p〉-like states, and the valence band sextuplet (∼−3 to 0 eV)
arises from lone pairs, i.e., unhybridized 5|p〉 states [15,28].
The conduction band sextuplet (∼0 to ∼3 eV) is primarily
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FIG. 2. (Color online) (a) MBJLDA band structure of Te-I with
SOC included along the symmetry directions of the Brillouin zone
and the corresponding partial (5s- and 5p-derived) density of states
(PDOS). The Brillouin zone of Te-I and the high symmetry k points,
�(0,0,0), A(0,0,1/2), H (1/3,1/3,1/2), K(1/3,1/3,0), M(0,1/2,0),
and L(1/2,0,1/2). (c) Band structure near the Fermi energy.
(d) Valence band in the vicinity of H exhibiting the camelback shape
along the H -K (kz) direction.

derived from antibonding σ ∗-hybridized |p〉-like states. The
total density of states is shown in Fig. 2(a). In the absence
of SOC the valence band at H ( 1

3 , 1
3 , 1

2 ) is fourfold degenerate
(H2). As shown in Fig. 2(c), the SOC splits this band into
two nondegenerate H4 and H5 valence bands separated by
110 meV and a twofold degenerate lower-energy H6 band.
The calculated H4-H5 energy splitting is in agreement with
the experimental value of about 112 meV reported in infrared
absorption measurements using light polarized parallel to the
c axis [29]. It is important to emphasize that the lower H5

valence band close in energy to the upper H4 valence band
gives rise to the S-shape density of states at about 0.1 eV
below the valence band maximum (VBM) in Fig. 3(a) and
plays an important role in the transport properties. The H4

upper valence band, shown in Fig. 2(d), exhibits a camelback
shape along the H -K (kz) direction where the valence band
maximum in the vicinity of H (hereafter denoted by H̃4) lies
∼1.7 meV higher relative to the value at H . This value is in
excellent agreement with the value of 1.1 meV reported in
infrared absorption measurements [30]. Measurements of the
Shubnikov–de Haas effect have also revealed that the Fermi
surface of holes in tellurium is of dumbbell shape [31].

The origin of the camelback shape is the SOC which,
however, is not large enough to cause inversion between
the frontier bands. On the other hand, shear strain leads to
depopulation of the lone-pair orbitals of the upper lone-pair
derived valence band (H4), rendering the system a strong
topological insulator [16]. The importance of the camelback-
shape top valence band is that it increases the number of the

FIG. 3. (Color online) (a) Total density of states and (b) the
transport distribution function parallel and perpendicular to the c

axis near the Fermi energy. The inset shows the S-shaped DOS at
∼−0.1 eV below the VBM.

degenerate hole pockets, which in turn increases the density
of states effective mass. The twofold degenerate conduction
band at H is of H6 symmetry. The calculated MBJLDA indirect
band gap of 0.25 eV in the vicinity of the H point is in good
agreement with the experimental value of 0.33 eV [32]. Note
that the band gap of Te fulfills the optimum band gap criterion
for a high-performance thermoelectric at 300 K [33].

The effective mass m∗ = N
3/2
v m∗

b [34] near the Fermi
energy is an important parameter for the thermoelectric
transport. Here, Nv is the degeneracy of the band, and m∗

b

is the effective mass of a single valley. A higher effective
mass is beneficial for a high Seebeck coefficient. On the
other hand, since the carrier mobility is inversely proportional
to the effective mass, μ ∝ (m∗

b)−3/2(m∗
c )−1/2 (m∗

c is the
effective mass along the conducting direction), the overall
electronic transport performance S2σ ∝ Nv(m∗

c )−1 is inversely
proportional to m∗

c . Consequently, a small effective mass and
a large band degeneracy are the most important factors to
achieve high thermoelectric performance [2,7]. We find that
the band structure of trigonal tellurium satisfies these criteria.
Table I lists the calculated hole effective masses parallel and
perpendicular to the c axis at the maximum of the uppermost

TABLE I. The calculated MBJLDA band effective masses (in
units of the free-electron mass m0) parallel, (m∗

b)‖, and perpendicular,
(m∗

b)⊥, to the c axis for the valence band maximum in the vicinity of
H4 (H̃4), the lower valence band maximum (H5), and the conduction
band (H6) at H , respectively. For comparison, we also list the
corresponding experimental values.

H̃4 H5 H6

Calc. Expt.a Calc. Expt.a Calc. Expt.b

(m∗
b)‖ 0.251 0.220 0.048 0.039 0.073 0.070

(m∗
b)⊥ 0.098 0.108 0.223 0.256 0.108 0.104

aReference [35].
bReference [36].
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and lower valence bands, and the electron effective masses
at the conduction band minimum (CBM). For comparison
we also list the corresponding experimental values [35,36].
The bands near the Fermi level in Fig. 2(c) show significant
anisotropic behavior. The uppermost valence band along the
H -A symmetry direction (k⊥) is more dispersive than that
along the H -K symmetry direction (k‖), yielding an effective
mass perpendicular to the c axis, (m∗

b)⊥ = 0.098m0, smaller
than that of VBM parallel to the c axis, (m∗

b)‖ = 0.251m0.
The upper (H4) and lower (H5) lone-pair derived valence

bands, which are the primary bands for hole transport, also
differ greatly in their dispersion relation. We find that for the
lower valence band, (m∗

b)⊥ = 0.223m0 and (m∗
b)‖ = 0.048m0,

respectively. Interestingly, the effective mass of the H5 valence
band along the chain direction is smaller than that of the
H4 band. Overall, the small effective masses contribute to
a higher hole mobility and hence large electrical conductivity.
Furthermore, the number of degenerate hole pockets along the
H -K direction in the vicinity of the valence band maximum
is Nv = 4. This in turn increases the density of states effective
mass m∗, which is beneficial for a larger Seebeck coefficient.
Both the upper and lower valence bands contribute to the
transport as the chemical potential shifts to lower energies
through p-type doping (Bi or Sb doping), resulting in a large
Seebeck coefficient. It is important to note that the underlying
mechanism for the high zT in tellurium is the light effective
masses (if one neglects the scattering process), consistent with
the recent proposal of Pei et al. for PbTe [7].

Figures 3(a) and 3(b) show the calculated density of states
(DOS) and the transport distribution function of tellurium,
respectively. Interestingly, we find that the DOS of the three-
dimensional tellurium displays a staircaselike shape (S shape)
characteristic of two-dimensional (2D) materials [1]. This type
of DOS increases the asymmetry of the transport distribution
function � in (2) and hence the Seebeck coefficient. The first
staircase which appears at an energy of ∼0.1 eV below the
VBM is due to the contribution from the lower valence band
(H5), which results in an increase of the DOS effective mass
and the asymmetry of �. Similarly, the DOS of the conduction
band exhibits a staircaselike shape at ∼0.3 eV above the
Fermi energy arising from the flat conduction band along the
�-A symmetry direction, giving rise to a large band effective
mass. This in turn enhances the Seebeck coefficient, albeit
at the expense of the electrical conductivity. The transport
distribution function which contains the contributions from
both the group velocity and the density of states shows that
�‖ > �⊥ and d�‖

dE
> d�⊥

dE
for the valence bands, which is

beneficial to both the electrical conductivity and the Seebeck
coefficient along the chains.

We performed calculations of the transport properties as
a function of carrier concentration and temperature within
the CRTA. The CRTA has been successfully applied to
many thermoelectric materials, including degenerately doped
semiconductors, Zintl-type phases, and oxides [26,27]. Within
the CRTA, τ is exactly canceled in the expression (2) of
the Seebeck coefficient. Thus, within this approximation, the
thermopower can be directly evaluated from the first-principles
band structures. On the other hand, the evaluation of the
electronic conductivity in (1) and the electronic contribution
to the thermal conductivity in (3) requires knowledge of τ ,

FIG. 4. (Color online) Calculated transport coefficients (a), (b)
σ/τ , (c), (d) S, and (e), (f) S2σ/τ parallel and perpendicular to the
c axis vs carrier concentration for p- (left panels) and n-type (right
panels) doped tellurium at 300 K.

which is often taken from experiment. The effect of doping
is simulated using the rigid band model, which assumes that
light doping does not change the shape of the band structure,
but only shifts the Fermi energy.

The left (right) panels in Fig. 4 show the transport coeffi-
cients parallel and perpendicular to the c axis as a function of
the hole (electron) concentration at T = 300 K. As can be seen
in Figs. 4(a) and 4(b), the σ/τ increases with increasing carrier
concentration while the magnitude of S in Figs. 4(c) and 4(d)
decreases with doping. The conductivity (σ/τ ) in Fig. 4(a)
exhibits an anisotropic behavior with (σ/τ )‖ > (σ/τ )⊥ at a
hole concentration higher than 2 × 1018 cm−3. This is due to
the large contribution to the electrical conductivity σ/τ from
the lower valence band H5, which is about 0.11 eV below the
H4 uppermost valence band and has a very small hole effective
mass along the c axis. We should note that the rigid band
approach most probably fails at high carrier concentrations
(>1020 cm−3).

The calculated Seebeck coefficients along and perpendic-
ular to the chain axis as a function of carrier concentration
are shown in Figs. 4(c) and 4(d) for p- and n-type doping,
respectively, at 300 K. We find a large asymmetry of the
Seebeck coefficient along and perpendicular to the c axis
for p-type doped tellurium where S‖/S⊥ ∼ 1.25 at a hole
concentration about 1019 cm−3. It is important to note that the
Seebeck coefficients for both n- and p-type doped tellurium
are quite large at room temperature, reaching a peak value
of 450 μV/K at a hole concentration around 1017 cm−3 and
with an average value in the range of 200–250 μV/K. These
values of S for a single-element solid compare favorably with
those reported for optimized Bi2Te3 [37]. The large Seebeck
coefficient for tellurium is mainly due to the large asymmetry
of the transport distribution function from the the staircaselike
DOS shown in Fig. 3(a). For the p-type doped tellurium, the
staircaselike DOS arises from the contribution of the lower
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FIG. 5. (Color online) Ratio of (σ/τ )‖ and (σ/τ )⊥ as a function
of carrier concentration at 300 K for (a) p-type and (b) n-type doped
tellurium. The Fermi surfaces at (c) 0.06 eV below the VBM and (d)
0.06 eV above the CBM.

valence bands, which is similar to superlattice systems where
the asymmetry arises from the contribution of the various
minibands. In contrast, for n-type doped tellurium, the increase
in DOS is due to the increase of the band effective mass
as the chemical potential shifts above the conduction band
minimum. This in turn increases the Seebeck coefficient, albeit
not beneficially for the electrical conductivity.

Figures 4(e) and 4(f) show the power factor S2σ/τ at 300 K
parallel and perpendicular to the chain axis for p- and n-doped
tellurium, respectively. The results show a larger anisotropy
in the power factor for the p-type carriers compared to that
for the n type. For p-type doped tellurium (S2σ/τ )‖ is about
three times larger than (S2σ/τ )⊥ around 1019 cm−3. The power
factor anisotropy arises from the large and different anisotropy
of the conductivity and Seebeck coefficient for p and n types,
as described above.

The anisotropic behavior of (σ/τ ) associated with band
structure is shown in Fig. 5(a), where we plot the ratio (σ/τ )‖

(σ/τ )⊥
as a function of carrier concentration at 300 K. We find that
this ratio is ∼1 for n-type doped tellurium, indicating that the
electron transport is isotropic if one neglects the scattering
factor. In contrast, this ratio can reach about 3 in p-type doped
tellurium, indicating that the hole transport is anisotropic
where the effective hole transport takes place primarily along
the chains. This anisotropic difference can be understood from
the Fermi surfaces shown in Figs. 5(c) and 5(d). The Fermi
surface at 0.06 eV above the CBM shows that the electron
pockets are almost spherical. On the other hand, the Fermi
surface at 0.06 eV below the VBM shows that the hole pockets
have an ellipsoidal shape.

Figure 6 shows the temperature dependence of the
average Seebeck coefficient, 〈S〉 = (Sxxσxx + Syyσyy +
Szzσzz)/(σxx + σyy + σzz), for the hole- and electron-doped
tellurium, respectively, for various carrier concentrations. For
the hole-doped system we also show for comparison the exper-

FIG. 6. (Color online) Temperature dependence of the calculated
(solid curves) average Seebeck coefficient, 〈S〉 = (Sxxσxx + Syyσyy +
Szzσzz)/(σxx + σyy + σzz), for various carrier concentrations for p-
and n-type doped tellurium. For the p-type doping, for comparison,
we also show the experimental results (circles).

imental data (circles) for the antimony-doped tellurium [38].
Since tellurium has a small band gap, the contribution of the
thermally activated minority carriers to the Seebeck coefficient
compensates that from the majority carriers. Thus, at low
carrier concentration, tellurium exhibits a bipolar effect which
becomes weaker as the carrier concentration increases. The n-
type tellurium has a larger bipolar effect than the p type, where
at low carrier concentration the Seebeck coefficient changes
sign with increasing temperature. Overall, the results of the
ab initio calculations are in good agreement with experiment
except in the high temperature region, which is due presumably
to the reduction of the band gap with increasing temperature.

The calculation of the power factor and zT as a function
of hole concentration and temperature requires knowledge
of the concentration- and temperature-dependent relaxation
times parallel, τ‖(nH ,T ), and perpendicular, τ⊥(nH ,T ), to the

c axis. These are determined from τ‖(⊥) = |e|nH μ
expt.
‖(⊥)

( σ
τ

)theor
‖(⊥)

, where

nH is the concentration of holes, μ
expt.
‖(⊥) is the experimentally

determined [38,39] concentration- and temperature-dependent
mobility parallel and perpendicular to the chains, and ( σ

τ
)theor
‖(⊥)

is calculated from (1). Since the available experimental data
for μ

expt.
‖(⊥)(nH ,T ) is limited to T = 300 K, assuming that

the mobility is dominated by phonon scattering where its
temperature dependence is proportional to T −3/2, we have
determined also the mobility and the relaxation times at 500 K.
The hole concentration dependence of τ‖(⊥) at T = 300 and
500 K is shown in the insets of Figs. 7(a) and 7(b), respectively.
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FIG. 7. (Color online) The calculated (a), (b) power factor and
(c), (d) zT of tellurium parallel (red) and perpendicular (blue) to the
c axis vs hole concentration at room temperature and 500 K. The insets
show the concentration dependence of the relaxation times parallel
and perpendicular to the chains at 300 and 500 K, respectively.

For the calculation of the figure of merit zT we have
taken into account the contributions of both the lattice thermal
conductivity κL(T ) and the electronic thermal conductivity
κe(nH ,T ) to the total thermal conductivity parallel and per-
pendicular to the c axis. The concentration- and temperature-
dependent electronic thermal conductivity is obtained using
the Boltzmann transport expression (3). At a low hole concen-
tration of 2 × 1017 cm−3 we find that the room-temperature
electronic thermal conductivity perpendicular and parallel to
the c axis is 0.19 and 0.49 W m−1 K−1, respectively. At a higher
hole concentration of 6 × 1018 cm−3 the room-temperature
electronic thermal conductivity perpendicular and parallel to
the c axis is ∼0.87 and 2.5 W m−1 K−1, respectively. On the
other hand, the lattice contribution to the thermal conductivity
is taken from experiment [40]. The room-temperature lattice
thermal conductivity perpendicular and parallel to the c axis
is 1.6 and 2.9 W m−1 K−1, respectively. In the absence of
experimental data for the thermal conductivity at 500 K we
have employed the 1/T temperature dependence of κL(T )
and extrapolated to higher temperatures. Figure 7 shows the
hole concentration dependence of the power factor and zT

parallel and perpendicular to the chain axis at 300 and 500 K,
respectively. At room temperature, the power factor can reach

a value as high as about 5 mW/mK2. Note that for p-type
doped tellurium with a carrier concentration of 6 × 1018 cm−3,
the room-temperature zT along the c axis is 0.31, which
is comparable to the maximum room-temperature value of
0.6 for Bi2Te3 if one considers only the doping effect [26].
At 500 K, zT can reach the maximum value of about 0.56
at a hole concentration of 1 × 1019 cm−3. It is important to
emphasize that if the lattice thermal conductivity of tellurium
is reduced though doping with Bi or Sb or the bipolar effect
is reduced through nanostructure engineering [41], the zT of
Te p-doped alloys could be even further enhanced, rendering
them promising materials for thermoelectric applications.

IV. CONCLUSION

The electronic structure and thermoelectric transport prop-
erties of tellurium have been investigated by DFT and the
Boltzmann transport theory. We find that, overall, the electrical
conductivity, Seebeck coefficient, and figure of merit of p-
doped tellurium parallel to the helical chains are much higher
than those perpendicular to the chains due to the anisotropy of
the hole pockets. The underlying origin lies on the complex
electronic structure consisting of (i) the heavy-hole uppermost
(H4) and extremely light-hole lower (H5) lone-pair derived
valence bands contributing to both the high Seebeck coefficient
and the electrical conductivity, and (ii) the stairlike DOS
yielding a large asymmetry for the transport distribution
function relative to the Fermi level, which is beneficial for
large thermopower. The average Seebeck coefficient at room
temperature of about 250 μV/K is comparable to that of
Bi2Te3. The optimum zT of p-type doped tellurium is 0.31
at room temperature and 0.56 at 500 K at the optimum hole
concentration around 1 × 1019 cm−3 via Sb or Bi doping.
More importantly, such doping can reduce the lattice thermal
conductivity and hence further enhance zT . Current work is
aimed at employing a first-principles theoretical approach
to calculate the lattice thermal conductivity of tellurium
based on a solution of the Boltzmann transport equation
with a relaxation time approximation. These results pave
the way towards opportunities for developing chiral-based
polychalcogenide thermoelectric materials and we hope they
inspire further experimental explorations.
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