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Abstract 

As technology advances, new products (e.g., digital cameras, computer tablets) have become 

increasingly more complex. Researchers often face considerable challenges in understanding 

consumers’ preferences for such products. The current research proposes an adaptive 

decompositional framework to elicit consumers’ preferences for complex products. The 

proposed method starts with a collaborative-filtered initial part-worths, followed by an adaptive 

question selection process where fuzzy support vector machine active learning algorithm is used 

to adaptively refine the individual-specific preference estimate after each question. Our empirical 

and synthetic studies suggest that the proposed method performs well for product categories 

equipped with as many as 70 to 100 attribute levels, which is typically considered prohibitive for 

decompositional preference elicitation methods. In addition, we demonstrate that the proposed 

method provides a natural remedy for a long-standing challenge in adaptive question design by 

gauging the possibility of response errors on the fly and incorporating it into the survey design. 

This research also explores in a live setting how responses from previous respondents may be 

used to facilitate active learning of the focal respondent’s product preferences. Overall, the 

proposed approach offers some new capabilities that complement existing preference elicitation 

methods, particularly in the context of complex products. 

 

Keywords: product development, support vector machines, machine learning, active learning, 

adaptive questions, conjoint analysis. 
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1. Introduction 

As technology advances, new products (e.g., digital cameras, computer tablets) have become 

increasingly more complex. Researchers often face considerable challenges in understanding 

consumers’ preferences for such products (e.g., Green and Srinivasan 1990; Hauser and Rao 

2004). Conventional preference elicitation methods such as conjoint analysis often become 

infeasible in this context, because the number of questions required to obtain accurate estimates 

increases rapidly with the number of attributes (and/or attribute levels). Historically, researchers 

have mostly relied on compositional approaches to handle preference elicitation of such products 

(e.g., Srinivasan 1988; Scholz et al. 2010; Netzer and Srinivasan 2011). Adaptive question 

selection algorithm has also been proposed for complex product preference elicitation, due to its 

ability to rapidly reveal consumer’s product preferences with relatively few questions (e.g., 

Netzer and Srinivasan 2011). While significantly enhancing our abilities to understand 

consumers’ preferences for complex products, the extant research has yet to address the 

following challenges. 

First, although compositional approaches have been primarily used, such methods may 

encounter obstacles such as unrealistic settings, inaccurate attribute weighting, and etc. (e.g., 

Green and Srinivasan 1990; Sattler and Hensel-Borner 2000) Second, despite its high efficiency 

in uncovering consumers’ product preferences, adaptive question selection method is often 

subject to response errors that could potentially misguide the selection of each subsequent 

question. Lastly, with the exception of Dzyabura and Hauser (2011) in the context of 

consideration heuristics elicitation, this line of research has yet to explore the possibility of 

utilizing other respondents’ data to facilitate active learning of the focal respondent’s product 

preferences. 
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The current research proposes an adaptive decompositional framework in response to 

these challenges. The proposed method starts with a collaborative-filtered initial part-worths, 

followed by an adaptive question selection process where fuzzy support vector machine (SVM) 

active learning algorithm is used to adaptively refine the individual-specific preference estimate 

after each question. Compared to extant preference elicitation methods, our research offers the 

following new capabilities: 

 Our adaptive decompositional approach is computationally efficient for preference elicitation 

of complex products on the fly, as the algorithm primarily scales with the sample size of the 

training data, rather than the dimensionality of the data vector.  

 While extant research either neglects response errors in adaptive question selection or sets 

possibility of error instance as a priori, our algorithm gauges the possibility of response 

errors on the fly and incorporates it into adaptive survey design.  

 Although most adaptive question selection methods only utilize information from the focal 

respondent, we use responses from previous respondents in a live setting via collaborative 

filtering to facilitate active learning of the focal respondent’s product preferences.  

We illustrate the proposed method in two computer-based studies involving digital 

cameras (with 30+ attribute levels) and computer tablets (with 70+ attribute levels). Our 

empirical investigation demonstrates that the proposed method outperforms the self-explicated 

method, the adaptive Choice-Based Conjoint method, the traditional Choice-Based Conjoint 

method, and an upgrading method similar to Park et al. (2008) in its ability to correctly predict 

validation choices. Our synthetic data experiments further demonstrate that the proposed method 

is able to rapidly and effectively elicit individual-level preference estimates even when the 

product category is equipped with more than 100 attribute levels. We also use synthetic data 
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experiments to compare the scalability, parameter recovery, and predictive validity of the 

proposed algorithm with that of Dzyabura and Hauser (2011) for consideration questions and of 

Abernethy et al. (2008) for choice questions. We show that the proposed question selection 

algorithm may be used either in conjunction with or as a substitute for the algorithms by 

Dzyabura and Hauser (2011) and Abernethy et al. (2008) to uncover consumers’ preferences for 

complex products. Overall, our empirical and synthetic studies suggest that the proposed 

approach offers a promising new method to complement existing preference elicitation methods. 

The remainder of the paper unfolds as follows. In Section 2, we discuss the relationship 

of this research to the extant literature. In Section 3, we present details of the proposed adaptive 

question design algorithm. In Section 4, we describe our two empirical applications. Details of 

our synthetic studies are presented in Section 5. The final section concludes the paper by 

summarizing key results and offering directions for future research. 

2. Relationship to Extant Literature 

The algorithm employed in our proposed framework is closely related to the machine learning 

literature with origins in computer science. An important application of machine learning is 

classification, in which machines "learn" to recognize complex patterns, to distinguish between 

exemplars based on their different patterns, and to make intelligent predictions on their classes. 

Many marketing problems require accurately classifying consumers and/or products (e.g., 

consumer segmentation; identification of desirable vs. undesirable products). Therefore, 

marketing researchers have started to embrace machine learning methods for estimation of 

classic marketing problems in recent years (e.g., Cui and Curry 2005; Evgeniou et al. 2005; 

Evgeniou et al. 2007; Hauser et al. 2010). 

http://en.wikipedia.org/wiki/Statistical_classification
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Built upon this stream of literature, the current paper introduces support vector machine 

based active learning into adaptive question design. Arguably the most popular statistical 

machine learning method in the past decade (Toubia, Evgeniou, Hauser 2007), support vector 

machine methods are well-known for high-dimensional classification problems (e.g., Vapnik 

1998; Tong and Koller 2001).  In particular, we employ fuzzy SVM method to adaptively select 

each subsequent question for each individual on the fly. As a weighted variant of the soft margin 

SVM formulation (the soft margin SVM was initially introduced by Cortes and Vapnik 1995), 

the fuzzy SVM method assigns different weights to different data points to enable greater 

flexibility of error control. In recent years, the class of fuzzy SVM methods has gained notable 

popularity in the SVM literature, mainly due to its effectiveness in reducing the effect of 

noises/errors in the data (e.g., Lin and Wang 2002, 2004; Wang, Wang, and Lai 2005; Shilton 

and Lai 2007; Heo and Gader 2009).  

When used for preference elicitation of complex products, this algorithm exhibits a 

number of advantages over extant methods. First, among others, one desirable property of the 

SVM-based active learning algorithm is that the optimization used to facilitate adaptive selection 

of each subsequent question can be transformed to a dual convex optimization problem (Tong 

and Koller 2001). Within our context, the primal problem (Equations 2 and 4) is also constructed 

to be convex. Therefore, the proposed algorithm not only offers an explicitly defined unique 

optimum but also is easily solvable by most software for problems with dimensions that are 

likely to be of interest to marketers. Indeed, the SVM-based classification is primarily scaled by 

the size of the training data (the number of questions presented to each consumer in our context), 

rather than the dimensionality of the data vector (Dong, Krzyzak, and Suen 2005). Consequently, 

the SVM-based active learning is particularly suitable for the problem at hand. In contrast, 
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several alternative adaptive methods (such as the adaptive fast polyhedral methods by Toubia et 

al. 2003, Toubia, et al. 2004, Toubia, et al. 2007) are scaled by the dimensionality of the product 

vector, which may become more computationally cumbersome as the dimension of product 

attributes/attribute levels increases. Moreover, while the Hessian-based adaptive methods (e.g., 

Abernethy et al. 2008; Toubia et al. 2013) require discrete transformations when used for 

discrete attributes, the SVM active learning method is flexible enough to directly accommodate 

both discrete and continuous product attributes. 

Furthermore, another unique advantage particularly related to the fuzzy SVM active 

learning method is that it enables us to gauge the possibility of response errors on the fly and to 

incorporate it into adaptive question selection. In the context of adaptive question design, 

response errors may be conceptualized as the random error component in the consumer’s utility 

function (e.g., Toubia et al. 2003). Empirical data suggest that response errors are approximately 

21% of total utility (Hauser and Toubia 2005). Because each response error has the potential to 

set the adaptive question selection to the wrong path and negatively impact selection of all 

subsequent questions, the presence of such errors poses a long-standing challenge to the adaptive 

question design literature (e.g., Hauser and Toubia 2005; Toubia et al. 2007). To date, response 

errors have either been neglected (e.g., Toubia, et al. 2004; Netzer and Srinivasan 2011) or set as 

a priori possibility for all individuals and all questions (e.g., Toubia et al. 2003; Toubia, et al. 

2007; Abernethy et al. 2008; Dzyabura and Hauser 2011; Toubia et al. 2013). We demonstrate 

that the proposed method can be used not only to gauge possible response errors on the fly but 

also to reduce the effects of such noises in adaptive question selection. 

Lastly, inspired by Dzyabura and Hauser (2011) who suggest previous-respondent data 

may be used to improve elicitation of consideration heuristics, the proposed method utilizes 
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responses from previous respondents via collaborative filtering to facilitate active learning of the 

focal respondent’s product preferences. The concept of collaborative filtering has been applied in 

various contexts such as prediction of TV show preferences and movie recommendation systems 

(Breese et al. 1998). We illustrate that such technique can be incorporated in adaptive question 

design using actual respondents in a live setting. 

3. Adaptive Question Selection for Complex Product Preference Elicitation 
 

3.1. Overall Flow 

Figure 1 depicts the overall flow of our adaptive question design. We start with prompting the 

consumer to configure a product that he is most likely to purchase, taking into account any 

corresponding feature-dependent prices. Based on collaborative filtering between the focal and 

previous respondents’ self-configured profiles, we obtain an individual-specific initial part-

worths vector (Section 3.2). Next, we provide each consumer with an option of selecting “must-

have” and “unacceptable” product features. We utilize information obtained from such features 

to construct the pool of candidate profiles to be evaluated in the consideration stage, as it is 

infeasible to evaluate all profiles using active learning without excessive delays in between 

survey questions within our context (Section 3.3). Conditional on the initial part-worths and the 

candidate pool of profiles obtained for each individual, we employ a two-stage consider-then-

choose process where the consideration stage asks the respondent whether he would consider a 

product profile (Section 3.4) and the choice stage asks the respondent to choose among 

competing product profiles (Section 3.5). In both stages, we employ fuzzy SVM active learning 

for adaptive question design, so that each subsequent question is individually customized to 

refine the consumer-specific preference estimate while accounting for possible response errors 

on the fly.  
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<Insert Figure 1 about here> 

We explain the underlying rationale of our overall framework below. The primary goal of 

the proposed method is to estimate a part-worths vector for each respondent j. Given that the 

scale of the part-worths vector is arbitrary (Orme 2010), before the respondent answers any 

question, we may visualize the feasible region of the part-worths being all the points on the 

surface of a hypersphere with unit norm (i.e., 1  jj wWw ). Such a feasible region is 

referred to as version space in Tong and Koller (2001) and Herbrich et al. (2001) and a 

polyhedron in Toubia et al. (2003, 2004, and 2007). Conceptually, each answer given by the 

respondent provides constraint(s) that makes this feasible region smaller.  

Given the large number of attributes/attribute levels associated with complex products 

and the limited number of questions we can ask each respondent, an informative first question 

would enable us to efficiently construct the initial region of the feasible part-worths (Section 3.2). 

Similarly, by constructing a candidate pool with the majority of profiles satisfying the “must-

have”/”unacceptable” criteria, we can maximize our learning about the focal respondent’s 

product preferences by asking whether he would consider a profile based on his favorability 

towards other product features (Section 3.3). Essentially, the first two steps of our overall 

framework aim to construct a suitable foundation for the adaptive question selection later on. 

We then employ a consider-then-choice framework to elicit each respondent’s product 

preference (Sections 3.3. and 3.4). Specifically, our algorithm aims to uncover a set of part-

worths estimates that are consistent with consumer’s answers to these questions. Historically, 

researchers have often used conjunctive rules to capture consumer’s decision rules in the 

consideration process (e.g., Hauser et al. 2010; Dzyabura and Hauser 2011). And it has been less 

common to use part-worths to characterize consumer’s responses to consideration questions. Our 
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synthetic data experiments reveal that, even when the true consideration model is driven by 

conjunctive decision rules, the part-worths estimate from our algorithm exhibits good ability to 

predict whether the respondent would consider a profile (Section 5.1). Indeed, even if heuristic 

decision rules are adopted by some respondents, particularly in the consideration stage, such 

preferences will be partially captured in our individual-specific part-worths estimates that aim to 

optimally predict responses from these consumers. Therefore, while not explicitly portraying 

these respondents’ consideration heuristics, our part-worths estimates serve as an approximation 

of the decision heuristics used by such individuals.
1
 

Within this setup, we present an algorithm where we use a set of part-worths estimates to 

characterize a respondent’s answers to both consideration and choice decisions. In this context, 

we aim to select each subsequent consideration/choice question such that we can reduce the 

feasible region of the part-worths as rapidly as possible. Intuitively, one good way of achieving 

this goal is to choose a question that halves such a region (Tong and Koller 2001; Toubia et al. 

2003, 2004, and 2007). To achieve this goal, we adapt the active learning approach proposed by 

Tong and Koller (2001) to select each subsequent consideration/choice question on the fly. 

Similar to Toubia et al. (2003, 2004, and 2007), this algorithm relies on intermediate individual-

level part-worths estimates to adaptively select each next question. When the consumer makes no 

response errors, such an approach would rapidly shrink the feasible region of the part-worths. 

Nevertheless, response errors are often inevitable in practice. To reduce the effects of response 

errors, we adapt the fuzzy SVM estimation algorithm (Lin and Wang 2002) in both consideration 

                                                           
1
 It is worth noting that, in practice, some consumers may not use the same utility function for consideration and 

choice decisions. For example, an individual might emphasize different sets of attributes in the consideration phase 

versus in the choice phase. In Section 5.1, we discuss how our algorithm can be used in conjunction with the 

algorithm by Dzyabura and Hauser (2011) to accommodate a consider-then-choice framework where conjunctive 

rules are used to examine answers to consideration questions and conjoint part-worths are used to capture product 

preferences reflected in choice questions. In such cases, different utility functions may also be employed to model 

consideration and choice decisions separately. 
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and choice stages to obtain the intermediate par-worths. Under this algorithm, each part-worths 

estimate is obtained as an interior point within the current feasible region of part-worths, via a 

simultaneous optimization that balances between data-imposed constraints and weighted 

classification violation. Consequently, when selecting each subsequent question based on such 

intermediate part-worths estimates, the negative impact of response errors in the process of 

adaptive question selection would be alleviated. 

We also conjecture that our current multi-stage framework may help reducing the effect 

of response errors. In adaptive question design, early response errors are considerably more 

detrimental than errors that occur toward the end of the adaptive survey (e.g., Hauser and Toubia 

2005; Toubia et al. 2007). Therefore, when presented with the less-demanding self-configuration 

and consideration questions prior to the more-challenging choice questions, respondents may be 

less likely to incur response errors early on.
2
 Pseduo code of our algorithm is provided in Web 

Appendix A. Screenshots of the survey interface from our computer tablet applications are 

presented in Web Appendix B. 

3.2. Collaborative-Filtered Initial Part-worths Vector  

Our framework starts with asking each respondent to configure a product profile that he is most 

likely to purchase, taking into account any corresponding feature-dependent prices.
3
 Such self-

configured product profile provides substantial information about a consumer’s product 

                                                           
2
 One potential concern is that such a flow might prime respondent to answer questions in a manner consistent with 

their previous responses, even if erroneous. Our conjecture is that, given the high dimensionality of the product 

vector, consumers are less likely to accurately recall errors and intentionally adjust responses during consideration 

and choice stages. To alleviate this concern in the first two stages of our framework, our survey interface checks 

whether the respondent lists a product feature as unacceptable when he previously configured a product with this 

feature. When such scenario occurs, the respondent is prompted to go back and double check his inputs. If the 

respondent is primed to the extent that prior errors are not self-recognizable, this cross check mechanism would not 

be effective. 

 
3
 Following Johnson and Orme (2007), we include feature-dependent prices in the self-configuration task to increase 

the realism of this task (otherwise respondents may self-configure the most advanced product profile with the lowest 

price). In the subsequent consideration and choice questions, we follow Orme (2007) by adopting a summed price 

approach with a plus/minus 30% random price variation in both empirical studies. 
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preferences (Dzyabura and Hauser 2011; Johnson and Orme 2007). Within our context, the 

information contained in the self-configured profile is utilized as follows. 

First, we generate an initial individual-specific part-worths vector based on collaborative 

filtering between the focal and previous respondents’ self-configured product profiles. The basic 

intuition is that we may learn about the focal respondent’s product preferences by examining the 

preferences of previous respondents who have configured similar product profiles. For example, 

if two respondents self-configured two identical computer tablets, they are likely to share some 

commonality in their overall preferences towards computer tablets. Analogous to the role of 

informative prior in the Bayesian literature, consumer-specific initial part-worths obtained 

through collaborative filtering has the potential to enhance active learning of the focal 

respondent’s product preference at the outset of our adaptive question selection. Specifically, 

after the focal respondent j configures a profile that he is most likely to purchase, the following 

equation is used to obtain the respondent’s initial part-worths vector 0~
jw on the fly: 

(1)                                                   '

1

1'

0 ~',
1

1~
j

j

j

j jjs
j

ww 


 




        

                                           with           
'

'

'

',
jj

jj
jjs

cc

cc




  

where 
'

~
jw is the estimated part-worths of previous respondent 'j with 1,...,1'  jj ;  cj denotes 

the vector that represents product features of the self-configured profile for the focal respondent j;  

'jc represents the corresponding vector from previous respondent 'j ; and  ', jjs  measures the 

degree of cosine similarity between vectors cj and 
'jc .  

The cosine similarity measure is widely used to capture similarity between two vectors in 

informational retrieval and collaborative filtering literature (e.g., Salton and McGill 1986; Breese 



12 
 

1998 et al.). Given that our method employs aspect type coding with attribute-level dummies, 

this measure is bounded between 0 and 1.   0', jjs  if there is no overlap between cj and 
'jc ; 

  1',0  jjs  if there is partial overlap between cj and 
'jc ; and   1', jjs  if cj = 

'jc . The 

resulting initial part-worths is then used to identify the next set of profiles shown to the consumer. 

Second, we utilize information contained in the configurator to set the two initial 

anchoring points in our fuzzy SVM active learning algorithm. As a classification method, a well-

posed SVM problem entails training data from both classes. In our context, we first give the self-

configured product profile (i.e., the respondent’s favorite) a label of “1” (meaning that the 

consumer would consider it). Next, we select a profile among the ones that are the utmost 

different from the self-configured profile and give it a label of “-1”. As such a profile is not 

unique, the “opposite” profile is randomly chosen among the ones that do not share any common 

feature with the self-configured profile (our synthetic data experiments suggest that, in over 99% 

of cases, consumers would not consider such an opposite profile). After the next set of profiles is 

queried based on the collaborative-filtered initial part-worths, we combine the two anchoring 

points with the newly labeled profiles in the training data to ensure that the SVM problem is 

well-posed. When previous respondents are absent, only the two anchoring points are used to 

obtain the initial part-worths vector for the focal respondent.   

3.3. Identify Must-Have and/or Unacceptable Product Features 

After the configuration task, we proceed to provide each respondent with an option of selecting 

some “must-have” and “unacceptable” product features. Within the context of complex products, 

it is often infeasible to evaluate all profiles using active learning without excessive delays in 

between survey questions (Dzyabura and Hauser 2011). One major advantage of identifying the 
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“must-have” and “unacceptable” product features is that such information can be leveraged to 

construct the pool of candidate profiles to be evaluated in the consideration stage.
4
 

In particular, among all possible product profiles to be queried, we develop an individual-

specific pool containing mostly (e.g., 90%) profiles that satisfy the “unacceptable” and “must-

have” criteria (denoted as 1

jN ), with remaining profiles randomly chosen from the ones that do 

not satisfy these criteria (denoted as 2

jN ).
5
 The rationale of having the majority of profiles in the 

candidate pool satisfying the “must-have”/ “unacceptable” criteria is that we can maximize our 

learning about the focal respondent’s product preferences by asking whether he would consider a 

profile based on his favorability towards other product attributes. The remaining profiles are 

chosen to account for the possibility that some individuals may identify “desirable” / 

“undesirable” features as “must-haves” / “unacceptables” (Johonson and Orme 2007). As long as 

the size of 2

jN  is sufficiently large, our adaptive algorithm will update the estimated part-worths 

vector so that profiles not satisfying the initial criteria may also be queried in subsequent survey 

questions. 

 

 

 

                                                           
4
 Note that one potential caveat of this approach is that the inclusions of “must-have” and “unacceptable” features 

might prime the respondent into a conjunctive-style decision making. An alternative would be to use the uncertainty 

sampling method used by Dzyabura and Hauser (2011) to construct the candidate pool of product profiles, with the 

tradeoff that it might be challenging to accurately identify the most uncertain profiles during the first few queries.  
 

5
 Synthetic data experiments reveal that, as long as the total number of candidate profiles (i.e., 

21

jjj NNN  ) is 

sufficiently large, we are able to recover a part-worths estimate that is close to the true  part-worths under our active 

learning method. In the empirical applications, we set jN to be 20,000. Our synthetic studies suggest that this is 

sufficiently large to recover the true part-worths while keeping the question selection to be less than 0.25 second in 

between questions at the consideration stage. Similar approaches are used to determine the number of profiles to be 

considered in the choice stage.  
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3.4. Consideration-Based Fuzzy SVM Active Learning 

We next present the consideration-based fuzzy SVM active learning algorithm. We first describe 

the algorithm used to estimate the individual-specific part-worths vector on the fly. Then we 

elaborate the algorithm used to adaptively select profiles queried in each subsequent question.  

3.4.1. Algorithm to Estimate Individual-Specific Part-worths on the Fly.  Let i

jx (i = 1, 

2 ,…, I; j =1, 2, …, J) denote the aspect type coded product profile i labeled by respondent j with 

the label 1i

jy  when the respondent indicates that he would consider the profile and 1i

jy  if 

he would not consider it. Following the tradition in the conjoint literature, we employ a main-

effects only model where i

j

I

j xw  denotes the utility estimate of product profile i (i = 1, 2 ,…, I) 

for respondent j and  I

j  being the utility estimate of his “no-choice” option after I profiles are 

labeled. The utility of the “no-choice” option represents the decision boundary where the 

consumer would only consider a profile if its utility is no less than the baseline utility associated 

with the “no-choice” option (Haaijer, Kamakura, and Wedel 2001).  Namely, consumer i will 

only consider profile j, i.e., 1i

jy , if 0 I

j

i

j

I

j xw ; 1i

jy  otherwise. 

Within this context, the primary purpose of the SVM estimation algorithm is to find an 

individual-specific part-worths (i.e., ),(~ I

j

I

j

I

j ww  ) that can correctly classify labeled profiles 

into the two classes of “would consider” and ”would not consider”. Finding such a part-worths 

vector can be challenging in practice, since 1) there may be response errors in the data and 2) the 

true decision process may not be representable by a linear utility function as specified above. 

With regards to the first issue, we employ a fuzzy SVM algorithm that assigns different weight 

to each labeled profile along with a regularization parameter that enables classification violation 

(we will provide more details on this when we present the algorithm). And the second issue can 
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be alleviated by employing aspect type coded product utility and/or by introducing a non-linear 

kernel to the SVM algorithm. As compared to the alternative continuous/attribute level order 

coding, the aspect type coded product utility functions enable greater flexibility to accommodate 

nonlinear preference within each attribute (e.g., the utility function does not require monotone 

preferences for screen size, such as smaller/bigger size is strictly better). Additionally, nonlinear 

kernels could be used if there are nonlinear preferences across attributes. For example, if prior 

knowledge suggests that interaction effects exist among two or more product attributes levels, 

the SVM estimation algorithm can be readily adapted to accommodate such a nonlinear utility 

function. Vapnik (1998) and Evgeniou et al. (2005) provide detailed discussions on the 

generalization of the SVM estimation algorithm to such nonlinear models, which also maintains 

its computational efficiency even with highly nonlinear utility functions.  

For simplicity, we demonstrate our estimation algorithm below using the example of the 

main-effects only model. Formally, upon the labeling of I profiles (i = 1, 2 ,…, I), the following 

algorithm is used to estimate respondent j’s part-worths vector (Vapnik 1998; Tong and Koller 

2001; Lin and Wang 2002): 

(2)                                     
0

1..

2

1
min

1
,,













 



i

j

i

j

I

j
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j
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j

i

j

I

i

i

j

i

j

I

j

yts

uC
i
j
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where C is an aggregate-level regularization parameter that allows a certain degree of prior 

misclassification at the aggregate level, i

j is a slack variable that can be thought of as a measure 

of the amount of misclassification associated with profile i, and i

ju  assigns different weight to 

each labeled profile. When 1i

ju , Equation (2) corresponds to the soft margin SVM algorithm. 
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The regularization parameter C in Equation (2) needs to be determined outside of the 

SVM optimization.
6
 While this parameter may partially absorb the negative impact of noises in 

the data by allowing a certain degree of prior misclassification at the aggregate level, we discuss 

below how the fuzzy membership method provides additional flexibility to gauge potential 

response errors on the fly. 

 Instead of assuming that all labeled data belong to one of the two classes with 100% 

accuracy, the fuzzy SVM method assigns a fuzzy membership to each labeled profile so that data 

points with high probability of being corrupted by noises will be given lower values of fuzzy 

memberships (Lin and Wang 2002). Therefore, rather than giving each labeled data point equal 

weight in the optimization, profiles with higher probabilities of being meaningless will be given 

less weight in the estimation under the fuzzy SVM method.  

In practice, researchers often do not have complete knowledge about the causes and/or 

nature of noises in the data. Therefore, in the machine learning literature, researchers have 

explored various approaches to discern noises/outliers in the data (e.g., Lin and Wang 2002, 

2004; Wang, Wang, and Lai 2005; Shilton and Lai 2007; Heo and Gader 2009). We adopt a 

method similar to Lin and Wang (2002) to assign each labeled profile with a fuzzy membership 

i

ju  ( 10  i

ju ) as follows: 

(3)                                        
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6 Following approaches described in Evgeniou et al. (2005) and Toubia et al. (2007), we employ a cross-validation 

method based on pretest data from the same population as the main study to determine the values of C in our two 

empirical applications. 
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where )(max
;

I

j

i

j
Ni

I

j
j

r 


 


xx represents the radius of each class (with the two classes being 
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ju .  

Because the respondent’s true part-worths are unknown to researchers, given the two 

classes of labeled profiles, we use the center of each class to approximate our current best guess 

about a profile that is representative of its class. We then define the fuzzy membership as a 

function of the Euclidean distance of each labeled profile to its current class center. Namely, 

given our current knowledge about the respondent’s product preferences, we assess the 

possibility of response errors by examining to what extent the labeled profile differs from other 

labeled profiles in its class.  

Therefore, depending on its distance to the current class center, the labeled profile may be 

assigned a 90% probability belonging to one class and a 10% probability of being meaningless, 

or a 20% probability belonging to one class and an 80% probability of being meaningless. In 

Equation (2), profiles with higher probabilities of being meaningless (i.e., profiles with smaller 

i

ju  estimates) are given less weight in the fuzzy SVM estimation algorithm. 

We repeat the process outlined in Equations (2) and (3) iteratively upon the labeling of 

each additional profile. Specifically, each time an additional profile is labeled, we assign it with a 

fuzzy membership given the class center of prior labeled profiles in its class, based on which an 

updated part-worths is estimated. Next, we update our class center estimates and the i

ju

( I1,2,...,i  ) estimate for each labeled profile to date. As a result, as we gain additional 
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information about respondent j’s product preferences, the algorithm can be used to iteratively 

refine both the part-worths estimate and the fuzzy membership estimates. Because the 

intermediate part-worths estimate is used to adaptively select the subsequent question, the 

proposed fuzzy SVM method can be used not only to gauge possible response errors in the data 

but also to reduce the effects of such noises in the adaptive question design. 

We have also used synthetic data experiments to explore several alternative approaches to 

define a profile’s class membership probability, such as defining a profile’s class membership as 

a function of its distances to both its own class center and the center of the opposite class, or 

imposing an underlying error distribution assumption similar to the Logit, Probit, or the Gaussian 

Mixture models. To the extent that the estimation is feasible, we do not observe improvement in 

model performance by implementing such alternative weighing schemes (details in Web 

Appendix C).  

It is also worth noting that the class of fuzzy SVM methods discussed above faces both 

potential gains and losses in adaptive question selection. On the positive side, this method 

alleviates the negative effect of response errors if such errors exist (see more investigation on 

this matter in Section 5.3). On the negative side, if the respondent does not incur an error, our 

fuzzy membership estimates may render the estimation less efficient. Given that the slack 

variable i

j in Equation (2) equals to 0 for all non-support vectors in the solution, the efficiency 

loss only occurs when the solutions to the optimization in Equation (2) are affected by the i

ju

estimates associated with correctly classified support vectors. Synthetic data experiments reveal 

that, when employed to data with no response errors, the fuzzy SVM active learning indeed 

incurs a minor efficiency loss when compared to the soft margin SVM active learning (Section 

5.3). Therefore, if researchers are uncertain about the degree of response errors in adaptive 
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question design, the fuzzy SVM method described above may be used to alleviate the negative 

effect of possible response errors at the expense of a potentially minor efficiency loss. On the 

other hand, the soft margin SVM can be used to maximize the efficiency in active learning if 

prior experiences indicate that consumer’s responses are highly deterministic (i.e., response 

errors play a negligible role). 

3.4.2. Algorithm to Adaptively Select Profiles to Be Queried in Subsequent Question.  

In this section we discuss how we adaptively select the next set of profiles shown to the 

respondent based on the latest estimate of his individual-specific part-worths. We employ an 

approach adapted from Tong and Koller (2001). Our primary goal is to query each subsequent 

profile in such a way that we can reduce the feasible region of the part-worths as rapidly as 

possible. Intuitively, one good way of achieving this goal is to choose a query that halves such a 

region.  

Let ),(~ I

j

I

j

I

j ww  denote the part-worths vector obtained from the optimization in 

Equation (2) after I profiles are labeled ( 0~
jw in Equation (1) is used if no profiles have been 

labeled). In its simplest form, Tong and Koller (2001) suggest that the next profile to be queried 

can be the one with the smallest distance (margin) to the current hyperplane estimate represented 

by I

jw~ . Within our context, the margin of an unlabeled profile is computed as I

j

g

j

I

j

g

jm  xw , 

with g being the index of unlabeled profiles. Tong and Koller (2001) show that, when the 

training data are symmetrically distributed and the feasible region of part-worths is nearly sphere 

shaped, active learning via this simple margin approach is able to reduce the current version 

space into half.  

In the context of adaptive question design, the training data are very likely to be 

asymmetrically distributed and/or the feasible region of the current part-worths can be elongated. 
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To overcome such restrictions in the simple margin approach, Tong and Koller (2001) propose 

the ratio margin approach as an augmentation. While conceptually appealing, the ratio margin 

approach is considerably more computationally burdensome than the simple margin approach. In 

this research, we employ the following hybrid method to combine the two approaches. 

Let us assume that, with the simple margin approach, we have narrowed down to S trial 

profiles that are closest to the current hyperplane estimate represented by I

jw~ . We then take each 

trial profile s (s = 1, 2, …, S) from this set, give it a hypothetical label of 1, calculate a new part-

worths by combining this new trial profile to the labeled profiles, and obtain a hypothetical 

margin 
s

jm' . Next, we perform a similar calculation by relabeling this profile as -1, calculating 

the resulting part-worths vector, and obtaining a hypothetical margin
s

jm' . And the ratio margin 

of this profile is defined as
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max . After repeating these for all the S trial profiles, we 

pick the profile with the smallest ratio margin as the next profile shown to the consumer (i.e., 
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). By asking the consumer to reveal his preference for such a profile 

iteratively, we will be able to most rapidly reduce the current feasible region of the part-worths 

(Tong and Koller 2001). 

In our empirical application, because more than one profile is shown to the respondent at 

one time (Figure B3 in Web Appendix), the set of profiles (e.g., five) with the smallest ratio 

margins under the most recent part-worths estimate are selected to query the respondent. 

Additionally, upon satisfying the smallest ratio margin criterion, if two or more profiles have the 

same ratio margins, the profiles with the shortest overall distances to both class centers will be 

chosen. We impose this modification to the original approach by Tong and Koller (2001) so that, 
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within the context of our fuzzy SVM estimation, if such profiles turn out to be correctly labeled 

support vectors, the efficiency loss will be minimized.  

This process is repeated iteratively until Q1 questions are asked. As discussed in 

Dzyabura and Hauser (2011), the number of questions to be included may be chosen based on 

prior experience or managerial judgment. Within our context, we carried out synthetic data 

experiments with the same dimensions as the two studies in our empirical investigation. We 

discovered that the proposed method could correctly classify the vast majority of profiles in 

various contexts after eight screens of profiles are queried, with each screen comprising of five 

profiles. Consequently, we adopted this stopping rule for the data collection in our empirical 

application. Similar approaches were used to determine the number of questions to be asked in 

the choice stage. 

3.5. Choice-Based Fuzzy SVM Active Learning  

Upon completion of the consideration stage, we use the latest part-worths estimate to compute 

the utilities of all candidate profiles for respondent j, from which a set of Mj profiles is selected 

to be considered in the choice stage. Similar in spirit to the “uncertainty sampling” rule adopted 

in Dzyabura and Hauser (2011), the profiles are selected such that their utility estimates are the 

closest to the decision boundary determined by the most recent part-worths estimate. 

In choice tasks, when an individual frequently opts for the no-choice option, we cannot 

efficiently learn about his favorability towards various product features. In contrast, we obtain 

substantially more information about how an individual makes tradeoffs among different product 

features when he chooses one profile over the competing profile(s) in a choice set. Therefore, in 

addition to selecting profiles whose utility estimates are closest to the baseline utility estimate 

(i.e., the no-choice option), we employ a selection rule in which the majority (e.g., 90%) of 
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profiles in Mj has utility estimates above the threshold defined by the “no-choice” option. And 

the remaining profiles in Mj have utility estimates less than the threshold to allow for potential 

estimation error from our consideration stage.  

3.5.1. Algorithm to Estimate Individual-Specific Part-Worths on the Fly. For 

simplicity, we illustrate our approach using the example of a choice question with two product 

profiles and a “no-choice” option. The general principles apply to choice questions consisting of 

more than two profiles. Let us denote the two profiles in the k
th

 choice question as kA

jx and kB

jx . 

After a total of T responses from the respondent (including both at the consideration and the 

choice stages), depending on respondent j’s choice among {profile A, profile B, none of the two}, 

we obtain the following information correspondingly: 

(4)          
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As shown in Equation (4), we obtain two data points each time the respondent makes a 

choice. For all inequalities containing 
T

j , the fuzzy membership of the labeled response can be 

obtained directly using Equation (3), with class center and radius estimates calculated from 

pooled responses from both the consideration and the choice stages. When the inequalities in 

Equation (4) entail utility comparison between the two profiles, we denote  kB

j

kA

j

kAB

j xxx   and 

rewrite such inequalities as 0  orkAB

j

T

j xw . Next, we assign a fuzzy class membership to each 

data point obtained, with kAB

jx  replacing i

jx  in Equation (3). Under such scenarios, the class 

center of each class captures the mean differences between the two profiles when one profile is 

favored over the other. Conceptually, if the position of kAB

jx  considerably deviates from its class 

center, it implies that the labeled response does not align with our current knowledge about the 
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respondent’s product preferences. Therefore, we will assign a low class membership to such a 

response. Formally, the optimization we solve at this stage of the adaptive question design can be 

expressed as: 

(5)                       
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with the first constraint denoting all labeled responses related to 
T

j (hence including responses 

from both consideration and choice stages) and the second constraint containing all responses 

related to utility comparison between the two profiles. It is evident that this optimization remains 

to be convex. 

Similar to Section 3.4.1, we update our fuzzy membership estimates for all prior labeled 

responses (including the ones obtained in the consideration stage) each time after the respondent 

makes a choice among the two product profiles and the no-choice option. Consequently, our 

fuzzy membership estimates are refined over time as we accumulate additional knowledge about 

the focal respondent’s product preferences.  

3.5.2. Algorithm to Adaptively Select Profiles in the Next Choice Question. We 

discuss below how we identify the next set of profile pair (i.e., profile g1 and profile g2) to be 

shown to the respondent. In the choice stage, )( 21
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2
xw  capture our most recent estimates of respondent j’s relative preferences 

across the two profiles and the no-choice option. Based on these utility estimates, we first use the 

criterion  ),,max(min 212,1 g

j

g

j

gg

j mmm  for all   
jMgg 21,  to select a trial set of choice sets that 
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we would consider for the next choice question. The utilities of all options in this choice set are a 

priori near equal. This corresponds to the utility balance criterion commonly adopted in the 

conjoint literature. As suggested by various prior studies (e.g., Huber and Hansen 1986; Haaijer, 

Kamakura, and Wedel 2001; Toubia et al. 2004), utility balanced questions are the most 

informative in further refining the part-worths estimates. This criterion is also consistent with the 

simple margin approach proposed by Tong and Koller (2001), which aims to cut the feasible 

region of part-worths approximately in half. 

Given that labeled responses are likely to be asymmetrically distributed and/or the 

feasible region of part-worths may be elongated, we employ a hybrid of simple margin and ratio 

margin approaches similar to the one described in Section 3.4.2. After using simple margin 

approach to obtain a trial set of choice sets, we calculate a ratio margin  
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 for each choice set in this  

trial set. We first give this choice set a hypothetical response of choosing profile g1, calculating a 

new part-worths by combining this response with the prior obtained responses, and obtaining 

hypothetical margins 
2,1' gg

jm and 
1'gjm . We then give this choice set of a hypothetical response 

of choosing profile g2 and obtain hypothetical margins of 
2,1' gg

jm and 
2'gjm . Similar approach is 

used to obtain 
1'gjm and 

2'gjm when the choice set is given a hypothetical response of no-choice. 

Then the pair of profiles with the smallest ratio margin (i.e., 
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next choice set shown to the consumer. Similar to Section 3.4.2, conditional on satisfying the 

smallest ratio margin criterion, if two or more choice sets have the same ratio margins, the choice 
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set with the shortest overall distance to the corresponding class centers will be chosen to 

minimize efficiency loss. We repeat this process iteratively to shrink the feasible region of part-

worths as rapidly as possible, until Q2 questions are asked. 

4. Empirical Investigation 

In this section we describe two empirical studies involving digital cameras and computer tablets. 

Our pretest indicates that both product categories are of interest to the respondents’ population 

(undergraduate students). The overall complexity of the digital camera category (with 30+ 

attribute levels) is parallel to product categories studied in prior research that elicits consumers’ 

preferences for complex products (e.g., Park et al. 2008; Netzer and Srinivasan 2011; Scholz et 

al. 2010). The computer tablet category (with 70+ attribute levels) is considerably more complex 

than the ones used in extant methods, particularly in the context of decompositional preference 

elicitation methods. To keep our empirical applications meaningful and realistic, we conducted 

pretests to choose a set of attributes that the respondents typically consider. We then used retail 

websites such as Bestbuy.com and Amazon.com to identify the ranges and values of attribute 

levels used in both empirical applications.  

4.1. Digital Camera Study 

4.1.1. Research Design. A total of 425 participants are randomly assigned to one of the 

six preference measurement conditions. We included two conditions of the fuzzy SVM method: 

Condition 1: fuzzy SVM with collaborative filtering; Condition 2: fuzzy SVM without 

collaborative filtering. The overall flow of the two fuzzy SVM conditions follows Figure 1, with 

the exception that in Condition 2 the initial part-worths is attained solely based on the focal 

respondent’s self-configured product profile. We further compare the predictive validity of the 

proposed method with the following four benchmark methods: Condition 3: the self-explicated 
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method; Condition 4: an upgrading method similar to Park et al. 2008 with no incentive 

alignment; Condition 5: the adaptive Choice-Based Conjoint (ACBC); and Condition 6: the 

traditional Choice-Based Conjoint (CBC). The list of attributes and attribute levels included in 

our digital camera study is provided in Table A1 in Web Appendix D. 

Similar to prior studies in the literature (e.g., Scholz, et al. 2010; Netzer and Srinivasan 

2011), participants in all conditions first complete the preference measurement task, followed by 

an external validation task and a post-survey feedback task. Identical across the six experimental 

conditions, the external validation task comprises two choice questions, each including two 

camera profiles. Generated using fractional factorial design, the profiles are carefully chosen so 

that one profile does not clearly dominate the other in each choice set.  

4.1.2. Results. We obtain the individual-specific part-worths estimates from the two 

fuzzy SVM conditions using the fuzzy SVM estimation algorithm. The self-explicated estimates 

are obtained by multiplying the attribute importance weights with the corresponding desirability 

ratings (Srinivasan 1988). And hierarchical Bayesian estimation was used to obtain individual-

level part-worths estimates from the upgrading method, the ACBC method, and the CBC method. 

Following the tradition in this literature (e.g., Evgeniou et al. 2005; Netzer and Srinivasan 

2011; Park et al. 2008), we use the hit rate of the external validity tasks to gauge the predictive 

validity of the six preference measurement methods (Table 1).
7
 We find that the two fuzzy SVM 

                                                           
7 We also tried to incorporate the Kullback-Leibler (KL) measure used by Dzyabura and Hauser (2011), Ding et al. 

(2011), and Hauser et al. (2014) in our digital camera application. We discovered that this measure is only 

applicable with three or more validation tasks. Our digital camera application includes two choice validation tasks. 

In such cases, when the consumer chooses the profile on the left in one task and the profile on the right in the other 

task, the KL measure equals to zero regardless whether both predictions are correct, wrong, or one being correct and 

one being wrong. Essentially, the KL measure does not discriminate whether observed and predicted choices are 

aligned when the total number of validation tasks is two. In our computer tablet study, we included six choice 

validation tasks and were able to use the KL measure to gauge predictive validity. 
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conditions perform significantly better than all benchmark methods in correctly predicting 

respondents’ choices in hold-out tasks (p < .05).  

Comparing hit rates across the two fuzzy SVM conditions, we find that collaborative 

filtering improved predictions but not significantly (.801 vs. .779, p > .05). This finding is 

consistent with empirical results from Dzyabura and Hauser (2011). It is possible that, after all 

the consideration and choice questions are queried in our adaptive survey, incremental benefits 

from the collaborative filtered initial part-worths have diminished. This matter is explored 

further in synthetic data experiments in Section 5.4.  

We also compared participants’ responses to the post survey feedback questions across 

the six experimental conditions. Overall, participants provided more favorable feedback to the 

format and questions generated under the fuzzy SVM conditions than those from the benchmark 

methods (Table A2 in Web Appendix D).
8
  

<Insert Table 1 about here> 

4.2. Computer Tablet Study 

4.2.1. Research Design. In a second empirical study, we examine the performance of the 

proposed method for the more complex product category of computer tablets (with 70+ attribute 

levels). The complete list of attributes and attribute levels included in this study can be found in 

Figure A1 in Web Appendix B. In addition to the different product category and the increased 

number of attribute levels, we also made the following modifications in this empirical 

application. First, given the high complexity of the product category, we included a warm-up 

task so that the participants can get familiar with the different attribute levels before the 

preference measurement task. Such task has been shown to improve the accuracy of preference 

                                                           
8
In both empirical applications, we also recorded the amount of time it takes for each participant to complete the 

survey. Such information is provided in Tables A3 and A4 in Web Appendix D. 
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elicitation (Huber et al. 1993). Specifically, we provided the list of 14 attributes used to describe 

the computer tablets, followed by a brief verbal and graphic description for each attribute level, 

displayed for one attribute at a time.  

Second, as a number of prior studies (e.g., Ding et al. 2005; Ding 2007; Ding et al. 2009; 

Dong et al. 2010; Ding et al. 2011; Hauser et al. 2014) suggest that incentive alignment offers 

benefits such as greater respondent involvement, less boredom, and higher data quality, we 

incorporated incentive alignment in this application. At the beginning of the experiment, we told 

the participants that we would award a computer tablet device to one randomly selected 

participant from this study, plus cash representing difference between the price of the tablet 

device and $900. We set the $900 as the maximum prize value because the vast majority of 

computer tablets cost less than $900 at the time of our study. The participants were told that the 

total number of participants for this study would be approximately 150 individuals (i.e., the 

chance of winning is about 1 in 150). Because we wanted both the preference elicitation tasks 

and the validation tasks to be incentive aligned, the participants were told that we would 

randomly decide which of the two tasks to use when determining the final prize. We also told 

each participant that, if chosen as a winner, he would receive a computer tablet based on: 1) 

either his choice from one of the validation questions; or 2) his most preferred tablet among a list 

of 25 tablets, inferred from his answers to the preference elicitation questions. Following Ding et 

al. (2011) and Hauser et al. (2014), participants were told that this list was pre-determined by the 

researchers and it would be made public after the study. Therefore, the respondents have 

incentives to answer the questions carefully and truthfully. 

Lastly, we modified our validation procedure relative to the digital camera study. We 

included both initial and delayed validation tasks as in Ding et al. (2011) and Hauser et al. (2014). 
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Following Hauser et al. (2014), the delayed validation questions were sent to the respondents by 

email one week after the preference measurement task. Additionally, we included both pre- and 

post- preference measurement validation questions as suggested by Netzer and Srinivasan (2011). 

Each respondent answered six validation choice questions, with three before the preference 

measurement task and three in the delayed validation task. As pointed out by Netzer and 

Srinivasan (2011), the standard validation task procedure as the one employed in our digital 

camera study might be susceptible to idiosyncrasies of the chosen validation questions. In the 

computer tablet study, we followed Netzer and Srinivasan (2011) by including a broader set of 

validation choice questions in the validation task. We first used fractional factorial design to 

generate a set of orthogonal balanced choice questions. Next, we scanned through the generated 

questions and only retained those comprising profiles available in the marketplace (as any one of 

the computer tablets in the validation questions can be potentially awarded to a participant). To 

allow for appropriate comparison across conditions, we also followed Netzer and Srinivasan 

(2011) by using the same sets of randomly drawn validation questions in all conditions. 

In this study, a total of 151 participants are randomly assigned to one of the four 

preference measurement conditions. To better understand the incremental benefit from including 

consideration questions in our adaptive question design, we compared the proposed method 

(Condition 1) to an alternative fuzzy SVM method in which the choice questions are followed 

immediately after the self-configuration task and the unacceptable and must-have questions 

(Condition 2). Furthermore, we included the self-explicated method (Condition 3) and the ACBC 

method (Condition 4) to replicate results from the first empirical application.  

The flow of each experimental condition is described below. First, the participant was 

introduced to the study along with a basic description of the incentive alignment mechanism. 
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Second, the participant was presented with the warm-up task. Third, three validation questions 

are shown to the participant, with each consisting of two tablet profiles. Fourth, the participant 

was presented with the preference measurement task (which varies by experimental condition). 

Lastly, a week later, the participant was followed up by an email with a survey link to a second 

set of three validation questions.  

4.2.2. Results. Table 2 reports the predictive validity of the four experimental conditions. 

In addition to the traditional hit rate measure, we used the Kullback-Leibler (KL) divergence 

measure to gauge the degree of divergence from predicted choices to those that are observed in 

the validation data. The KL divergence measure is an information-theory-based measure of 

divergence (Kullback and Leibler 1951; Chaloner and Verdinelli 1995). Dzyabura and Hauser 

(2011), Ding et al. (2011), and Hauser et al. (2014) demonstrate that, for consideration data, the 

KL divergence measure provides an evaluation of predictive ability that is rigorous and 

discriminates well. We followed the formulae provided in Dzyabura and Hauser (2011) to 

calculate the KL divergence measures. In our context, we conceptualize a false-positive 

prediction as the case in which the respondent is predicted to choose a profile but did not actually 

choose it in a validation question; and a false-negative prediction as the case that the respondent 

is predicted not to choose a profile but actually chose it in a validation question. Since this 

measure evaluates divergence from perfect prediction, a smaller KL divergence measure 

indicates better model prediction. 

<Insert Table 2 about here> 

Consistent with findings from our digital camera application, the proposed method 

exhibits superior predictive ability when compared to the self-explicated and ACBC methods in 

both the initial and delayed validation tasks. We also find that the proposed method has smaller 
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KL divergence than the fuzzy SVM condition without consideration questions (marginally 

significant at p < .1). It is evident that the inclusion of consideration questions is helpful in 

improving preference elicitation in our context. It is possible that, when consideration questions 

are absent, respondents may encounter greater cognitive difficulty in making accurate trade-offs 

of choice questions. Respondents may also be less likely to incur early response errors (which is 

known to be detrimental in adaptive question design), when they are presented with the less 

demanding consideration questions prior to the more cognitively challenging choice tasks. 

We also compared the KL divergence measure from the initial validation task with that 

from the delayed validation task within each experimental condition. No significant differences 

are observed. Therefore, when pooling results across the initial and the delayed validation tasks 

for each individual, the KL divergence measures follow the same pattern as the one discussed 

above.
9
 The hit rate comparisons are also provided in Table 4. The proposed method also 

outperforms the three benchmark methods in terms of hit rate. 

One of the main advantages of adaptive question design is the opportunity to reduce 

respondents’ cognitive burden by asking fewer questions. We further examine the out-of-sample 

performance of the proposed method when only the first k questions are used for each respondent 

(Table 3). We find that both the KL divergence and the hit rate measures gradually improve with 

the inclusion of self-configurator (k = 1), consideration questions (k = 2 to 9 with 8 screens of 

consideration questions with 5 profiles on each screen), and choice questions (k = 10 to 34), 

indicating that all these questions positively contribute to our preference elicitation task. Table 3 

also reveals that the proposed method performs well with much fewer choice questions. In 

particular, the predictive validity after only 6-8 choice questions (i.e., k = 15 or 17) is already 

                                                           
9
 Note that the values of the KL measure depend on the number of the validation tasks (Hauser et al. 2014). 

Therefore, the pooled KL measures differ in magnitude from those based on initial or delayed validation tasks only. 
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similar to the predictive validity with all the 25 choice questions (i.e., k =34). Indeed, after only 

the first 8 choice questions (i.e., k = 17), the proposed method already exhibits significantly 

better predictive validity than both the self-explicated method and the ACBC method. This 

finding suggests that respondent burden in this application may be substantially reduced with a 

much shorter survey. This is consistent with Netzer and Srinivasan (2011) who also report 

negligible improvement in predictive validity after 5-7 adaptive paired comparison questions.  

<Insert Table 3 about here> 

Overall, in comparing the predictive ability of the proposed method with that of the 

ACBC and self-explicated methods, our computer tablet application replicated results from the 

digital camera application. The comparison between the two fuzzy SVM conditions also reveals 

that the inclusion of consideration questions is useful in facilitating preference elicitation in our 

context. In addition, this application illustrates that the proposed method scales well when the 

focal product category is considerably more complex than the ones used in prior studies. 

5. Synthetic Data Experiments 

In this section we describe a series of synthetic data experiments we conduct to complement our 

empirical investigation. In Section 5.1, we compare the performance of the proposed question 

selection algorithm with that of Dzyabura and Hauser (2011) for consideration questions when 

the true consideration decisions are conjunctive. In Section 5.2, we examine the performance of 

the proposed method with that of benchmark methods when the true consideration and choice 

decisions are both based on a part-worths model. Under this comparison, we use the question 

selection algorithm in Dzyabura and Hauser (2011) as the benchmark question selection method 

for consideration questions and that in Abernethy et al. (2008) as the benchmark method for 

choice questions. To investigate the applicability of these question selection methods to high-
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dimensional problems, in both Sections 5.1 and 5.2, we examine the scalability of each algorithm 

when the focal product category is equipped with up to 100+ attribute levels. To ensure fair 

comparisons across methods, only the focal respondent’s responses are used in the adaptive 

question selection in all comparisons described above. We also test the upper bound of parameter 

recovery and predictive validity by assuming no response errors in such comparisons. In Section 

5.3, we compare the performances of the fuzzy SVM vs. soft margin SVM active learning with 

and without response errors. In Section 5.4, we examine the improvements of collaborative-

filtered initial part-worths over non-informative initial part-worths on parameter recovery and 

predictive validity. We report our main findings below. Additional implementation details can be 

found in Web Appendix E. 

5.1. Using Proposed vs. Conjunctive Question Selection When the True Consideration 

Decisions are Conjunctive 

 

In Section 3 we describe a framework where a set of part-worths is used to characterize 

consumer’s responses to both consideration and choice questions. In the literature, conjunctive-

like criteria are often used to examine answers to consideration questions (e.g., Bettman 1970; 

Hauser et al. 2010). Therefore, we carry out synthetic data experiments to examine the 

performance of the proposed question selection algorithm for consideration questions when the 

true consideration model is conjunctive. Specifically, the adaptive question selection algorithm 

in Dzyabura and Hauser (2011) is used as the benchmark method in this comparison. 

Given our emphasis on complex products, we examine three scenarios in which the focal 

product category comprises 15, 25, and 35 attributes with 3 levels each. Under each scenario, we 

simulate 300 synthetic respondents (i.e., 300 conjunctive decision rules) as described in 

Dzyabura and Hauser (2011). We then perform active learning for each individual where 40 

consideration questions are adaptively selected, with each synthetic respondent labeling the 
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profile as “would consider” or “would not consider” based on the underlying true conjunctive 

decision rule. In order to compare the relative performance of the two question selection methods, 

we generate 3,000 validation profiles for each synthetic respondent, with the respondent 

considering 1,500 profiles and not considering the remaining under the individual’s true 

underlying conjunctive decision rule. Because each synthetic respondent considers 50% of the 

validation profiles, the null model that predicts “randomly considers profiles” would achieve a 

hit rate of 50%. Therefore, while the hit rate measure can be misleading for consideration data 

empirically, it provides a valid measure of predictive validity in our synthetic setting. 

Table 4 provides comparison results. To compare the question selection methods, we 

keep the estimation method constant. Specifically, we present the comparison results using both 

the conjunctive estimation method as in Dzyabura and Hauser (2011) and those using the fuzzy 

SVM estimation method proposed in this paper. In terms of performance metrics, hit rate, KL 

divergence, and U
2
 are used to measure predictive validity and parameter recovery (Table 4a). U

2
 

is an information-theoretic measure of parameter recovery (Hauser 1978). It measures the 

percentage of uncertainties explained by the model, with U
2
 = 100% indicates perfect parameter 

recovery.
10

 To examine scalability of these two question selection methods, we also report the 

average time it takes to generate the next question in seconds (Table 4b). The reported 

                                                           
10

While the original U
2
 measure in Hauser (1978) is based on choice probabilities, the fuzzy SVM estimation gives 

rise to dichotomous (e.g., consider vs. not consider; choose product A vs. product B) rather than probabilistic 

predictions. Therefore, when the fuzzy SVM algorithm is used for model estimation, we calculated the U
2
 measure 

based on a logit transformation, with the deterministic component of the product utility calculated from the 

estimated part-worths given by the fuzzy SVM algorithm. Because the scale of utility estimates matters in the 

magnitude of U
2
 (if we multiply the part-worths estimates by a constant, larger part-worths results in more extreme 

choice probabilities, hence more extreme U
2
 estimate), we normalize the estimated part-worths to the scale of the 

true part-worths and use the relative U
2
 (the U

2
 calculated from the fuzzy SVM part-worth estimates divided by the 

U
2
 calculated from the true part-worths) to remove the effect of scaling. This measure was not used in our empirical 

studies because the true part-worths are unknown empirically and it is ambiguous regarding how to determine the 

baseline scale in our empirical comparisons. 
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computing times are all based on Matlab code run on an Intel 3.2GHz personal computer with 

Windows 7 Operating System.  

<Insert Table 4 about here> 

When the estimation method in Dzyabura and Hauser (2011) is used (i.e., for each 

attribute level, the model estimates a probability for which the respondent finds it acceptable), 

the question selection algorithm by Dzyabura and Hauser (2011) exhibits superior hit rate, KL 

divergence, and U
2
 than the focal question selection algorithm in almost all problem instances. 

Indeed, when the product dimension is relatively moderate (15 attributes and 3 levels), Dzyabura 

and Hauser (2011)’s method yields perfect parameter recovery and holdout prediction after 40 

questions. Such results reveal that, when the true consideration model is conjunctive, the 

algorithm proposed by Dzyabura and Hauser (2011) works exceptionally well in estimating the 

probability for which the respondent finds each attribute level acceptable.  

Because our approach aims to obtain a set of part-worths estimates for each individual, 

we also compare the performance of the two question selection methods when the fuzzy SVM 

method is used for estimation. In such cases, an individual-specific part-worths vector is 

estimated after all 40 questions are queried under each question selection algorithm. The 

estimated part-worths are then used to predict the validation profiles. Interestingly, we discover 

that, when the fuzzy SVM estimation is used, the proposed method outperforms the method by 

Dzyabura and Hauser (2011) in terms of the hit rate, KL divergence, and U
2
 measures. Such 

results are likely to be driven by the fact that the algorithm by Dzyabura and Hauser (2011) is 

specifically developed for uncovering the probability for which the respondent considers each 

attribute level, rather than a utility estimate associated with the attribute level. Therefore, when 
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the primary focus is to estimate part-worths, this method does not perform as well, even when 

the true consideration model is conjunctive.  

We further study scalability of the two methods by examining the average time it takes to 

generate the next question under each question selection algorithm. When the proposed question 

selection algorithm is used, on average it takes less than 0.25 second to generate the next 

question in all scenarios. In contrast, under the question selection algorithm by Dzyabura and 

Hauser (2011), the average time it takes to generate the next question are considerably longer 

(ranging from 2.856 seconds to 11.861 seconds in the three scenarios). Note that such 

discrepancies may diminish considerably if we were to optimize and/or code both algorithms in a 

more computationally efficient language such as C or C++. 

Overall, our synthetic data experiments reveal the following. First, even when the true 

consideration model is conjunctive, the part-worths estimate from the proposed method exhibit a 

reasonably good ability to predict whether the respondent would consider a profile. Given that 

both the part-worths model of consideration and the conjunctive model of consideration as in 

Dzyabura and Hauser (2011) aim to capture a set of linear decision rules in the consideration 

process, we believe that such findings are quite reasonable. Second, the proposed framework is 

not restricted to the question selection algorithm discussed in Section 3.4. Indeed, the algorithm 

by Dzyabura and Hauser (2011) could be used in conjunction with the proposed algorithm in a 

consider-then-choice framework to uncover both consideration heuristics and conjoint part-

worths. In such cases, different utility functions may also be employed to model consumer’s 

consideration and choice decisions separately. 
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5.2. Performance Comparisons When True Consideration and Choice Decisions are Both 

Based On a Part-Worths Model 

 

We now compare the performance of the proposed method with that of benchmark methods 

when the true consideration and choice decisions are both based on a part-worths model. For 

simplicity, we examine the case where the same utility function is used for both consideration 

and choice decisions. If different part-worths models were specified for consideration and choice 

questions, we expect that our key findings would not change qualitatively.  

In each scenario under study, we perform active learning where 40 consideration 

questions are adaptively designed for each individual, followed by 25 adaptive choice questions 

with 2 alternatives each. In the first benchmark condition, the question selection algorithm by 

Dzyabura and Hauser (2011) is used for the adaptive design of consideration questions. In the 

second benchmark condition, the question selection algorithm by Abernethy et al. (2008) is used 

for the adaptive design of choice questions. Because the algorithm by Dzyabura and Hauser 

(2011) is designed for consideration questions only and that by Abernethy et al. (2008) is for 

choice questions only, the fuzzy SVM active learning is used as the question selection method 

for choice questions in the first benchmark condition and for consideration questions in the 

second benchmark condition to ensure fair comparison. For similar reasons, the fuzzy SVM 

method is used as the estimation method after all questions are queried in all three conditions. 

Similar as before, we examine three scenarios in which the focal product category 

comprises 15, 25, and 35 attributes with 3 levels each. 300 synthetic respondents are simulated in 

each scenario. The part-worths for each respondent are randomly generated with (-β, 0, β) for 

each attribute, with β ~ N (0.5, 1.5). To compare performances across conditions, 3,000 

validation questions consisting of two profiles are generated for each respondent, with the 

respondent choosing the profile on the left 50% of the time and choosing the profile on the right 



38 
 

in the remaining questions. Under this setup, the null model for the hit rate and U
2
 is the one that 

predicts “randomly choose among the two profiles”. In addition to the hit rate, KL divergence, 

and U
2
 measures, we also use MAE (mean-absolute-error) and RMSE (root-mean-square-error) 

to measure the ability of each question selection method in recovering the true part-worths. For 

comparability across methods, we normalize the estimated part-worths to the scale of the true 

part-worths in each problem instance. 

Our comparison results are shown in Table 5. When the true consideration and choice 

decisions are both based a part-worths model, the proposed question selection method 

outperforms the two benchmark methods in both parameter recovery and predictive validity 

(Table 5a). It is not surprising that the question selection algorithm by Dzyabura and Hauser 

(2011) does not work as well in this setting, as the algorithm is specifically developed to uncover 

consideration heuristics when the true consideration decisions follow a set of conjunctive rules, 

rather than a part-worths model. Meanwhile, the lack of performance from the question selection 

algorithm by Abernethy et al. (2008), particularly in high dimensional problems, is likely to be 

related to the discrete transformation required by its gradient-based algorithm when used for a 

large number of discrete attributes in our setting.
11

  

<Insert Table 5 about here> 

                                                           
11 While we obtain significantly better performance from the proposed method, the hit rate differences between the 

proposed method and Dzyabura and Hauser (2011) are rather small in the case of 35 attributes with 3 levels each 

(.901 vs. 0.893 as in Table 5a). We further examine the percentages of times that the estimated part-worths from the 

two methods could correctly predict the most preferred attribute level in each attribute. We do not find significant 

differences between the two methods in this case (both methods are able to correctly predict the most preferred 

attribute levels about 86% of the time). We also compare the MAPEs (mean absolute percentage error) between the 

predicted and actual part-worths from the two methods. Consistent with findings from the MAE and RMSE 

measures in Table 5, the proposed method provides more accurate part-worths estimates than Dzyabura and Hauser 

(2011) in all cases. Managerially, if the primary focus of the firm is to identify the most preferred attribute level in 

each attribute, we think that such differences in hit rates do not entail additional insights. Nevertheless, if the firm’s 

central goal is to obtain precise forecast of market share or product profit, we believe that the improved accuracy in 

our part-worths estimates would be beneficial.  
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We also report the average time it takes to generate the next question under each question 

selection method in Table 5b. Because the algorithm by Dzyabura and Hauser (2011) is used for 

consideration questions only and that by Abernethy et al. (2008) is used for choice questions 

only, the corresponding average time is reported in this table. When it comes to consideration 

questions, the algorithm by Dzyabura and Hauser (2011) takes approximately 3 or more seconds 

on average to generate the next question (again, the computing speed may improve considerably 

if the code were optimized and/or written in a more computationally efficient language). 

Regarding choice questions, the algorithm by Abernethy et al. (2008) is very fast 

computationally because the solution used to generate the next question can be derived in closed 

form. Therefore, when the focal product consists of a large number of continuous attributes, this 

method is a good alternative for adaptive design of choice questions. 

5.3. Performance Comparisons between Fuzzy SVM and Soft Margin SVM Active 

Learning With and Without Response Errors 

 

A key advantage of the proposed method is its ability to gauge response errors on the fly. In this 

section, we investigate the use of the fuzzy SVM active learning vs. that of the soft margin SVM 

active learning without fuzzy membership probabilities. Because both methods scale well in high 

dimensional problems, we examine the case where the focal product category consists of 35 

attributes with 3 levels each. We use similar methods as in Section 5.2 to simulate the true part-

worths and the holdout profiles for the 300 synthetic respondents used in each problem instance. 

We first investigate performance comparisons of the two methods when there are 

response errors. Given that the positions of response errors play an integral role in the 

performance of adaptive question design, we examine the two question selection methods’ 

abilities to recover true part-worths and to predict holdout profiles under the scenarios of 1) early 

vs. 2) middle vs. 3) late response errors. To ensure fair comparisons, we set the instances of 
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response errors to be 15% across the three scenarios. In the early/middle/late response errors 

scenario, all response errors occur during the first/middle/late 1/3 of adaptive questions. For each 

synthetic respondent, we use random draws from a uniform distribution to determine the 

positions of the errors. Within each scenario, we hold error positions constant across the two 

question selection methods so that our results are comparable.  

Our performance comparisons are reported in Table 6a.
12

 When response errors take 

place during early or middle portions of the adaptive study, the fuzzy SVM active learning 

method exhibits superior ability to recover the true part-worths and to predict holdout questions 

than the soft-margin SVM active learning. Nevertheless, if response errors occur towards the end 

of the adaptive survey, both question selection methods perform similarly. This pattern is quite 

reasonable because early response errors are in general more detrimental than errors taking place 

later in adaptive question design. Given its primary goal of alleviating negative effect from 

response errors on the fly, the fuzzy SVM active learning method provides the most 

improvement over the soft-margin SVM method when the impact of response errors is salient. In 

contrast, because the negative effect from response errors is limited when errors take place 

towards the end of the adaptive question selection, the advantage from using fuzzy SVM over 

soft margin SVM diminishes correspondingly. 

<Insert Table 6 about here> 

We also examine performances of the two methods when respondents do not make any 

response error. As expected, the use of the fuzzy SVM active learning incurred an efficiency loss, 

                                                           
12

 For simplicity, we report the performance metrics with 40 adaptive questions where each synthetic respondent 

labels the profile as “would consider” or “would not consider”. Similar patterns are found when choice questions are 

added after the consideration questions. In line with Table 6a, the advantage of the fuzzy SVM active learning is the 

most salient when errors take place towards the beginning and middle portions of the consideration/choice questions. 

We also conducted similar comparisons under varying levels of error instances and product dimensions. We find 

that the general results hold qualitatively as long as the error instance is not excessive (if the respondents incur too 

many errors, neither method can effectively recover the true part-worths).  
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originated from the less than perfect fuzzy membership probabilities assigned to the correctly 

labeled support vectors (Table 6b). Nevertheless, such an efficiency loss is relatively minor, 

possibly due to the fact that that active learning is inherently less challenging in the absence of 

response errors.  

5.4. Tests of Improvements over Non-informative Initial Part-worths 

In the synthetic experiments above, we only utilize the focal respondent’s information in the 

design of adaptive questions. In this section, we examine the use of collaborative-filtered initial 

part-worths vs. that of non-informative initial part-worths in parameter recovery and predictive 

validity. Because the initial individual-specific part-worths in our proposed framework is 

obtained via collaborative filtering between the focal and previous respondents’ self-configured 

product profiles, we also investigate whether the degree of heterogeneity in synthetic 

respondents’ configurators play a role in the usefulness of incorporating data from other 

respondents. Intuitively, if all respondents have the same product preferences and self-configure 

the same profile, past respondents’ data should be quite informative in determining the focal 

respondent’s initial part-worths. In contrast, when respondents differ vastly in their most favorite 

product profiles, collaborative filtering may not be very helpful.  

We consider the following two scenarios of homogenous vs. heterogeneous configurators 

accordingly. In the homogenous case, we simulate 300 synthetic respondents with identical part-

worths (hence identical self-configured profile). In the heterogeneous case, we consider 300 

synthetic respondents with all different self-configurators. By excluding perfect over-lap in the 

focal and previous respondents’ self-configured profiles, the average cosine similarity (  ', jjs  in 

Equation 1) in the heterogeneous case is 0.331.  
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In each case described above, we consider a baseline model where non-informative initial 

part-worths are used at the outset of the adaptive question design. Instead of utilizing information 

from both the focal and previous respondents’ configurators as in the two collaborative filtering 

conditions, the non-informative initial part-worths are obtained by randomly querying one profile 

that the synthetic respondent would consider and one profile the respondent would not consider 

from the training data. We then compare improvements obtained from collaborative-filtered 

initial part-worths over non-informative initial part-worths in the respective cases of 

homogenous vs. heterogeneous configurators. In both comparisons, we examine the scenario 

where the focal product category consists of 35 attributes with 3 levels each. The adaptive 

question design is based on 40 consideration questions and 25 choice questions as in Section 5.2. 

We follow the same procedure as described in Section 5.2 to construct the 3,000 validation 

questions for each synthetic respondent.  

Table 7 provides comparison results from these two cases as a function of the number of 

questions queried. Consistent with our conjecture, at the outset of the adaptive question design, 

incremental benefits from the collaborative-filtered vs. the non-informative initial part-worths 

are considerably more salient in the homogenous configurator case. This finding is rather 

intuitive because previous respondents’ estimated part-worths are quite information rich if all 

respondents have the same product preferences. Interestingly, Table 7 also reveals that, in both 

cases, the advantages from collaborative-filtered initial part-worths diminish during the course of 

the adaptive question survey. Indeed, after the respondents answer about 40 consideration 

questions, the benefits from the collaborative-filtered initial part-worths become more or less 

negligible. Such finding implies that, analogous to the role of priors in the Bayesian literature, 

benefits from informative initial part-worths can lessen considerably as more data become 
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available. Similar results hold when we employ an alternative baseline model where the initial 

part-worths vector is calculated based on the focal respondent’s configurator alone. These 

synthetic experiments suggest that, collaborative-filtered initial part-worths in the proposed 

method may only be beneficial when consumers exhibit similar product preferences and practical 

concerns preclude longer surveys. 

<Insert Table 7 about here> 

6. Conclusions 

In this paper, we propose an adaptive decompositional framework to elicit consumers’ 

preferences for complex products. Our research suggests that the proposed method has the 

potential to provide the following new capabilities to complement existing preference elicitation 

methods. First, compared to extant methods, the proposed algorithm is particularly suitable for 

high-dimensional problems. Our empirical and synthetic studies demonstrate that the proposed 

framework is able to rapidly and effectively elicit individual-level preference estimates for 

product categories equipped with 70-100 attribute levels. This is typically considered prohibitive 

for decompositional preference elicitation methods. Second, we demonstrate that the fuzzy SVM 

active learning method provides a natural remedy for a long-standing challenge in adaptive 

question design by gauging the possibility of response errors on the fly and incorporating it into 

the survey design. We illustrate via synthetic data experiments that, the proposed algorithm is 

particularly effective when response errors take place towards the beginning/middle portions of 

adaptive questions. Lastly, while most adaptive question selection methods only utilize 

information from the focal respondent, our research explores in a live setting how previous-

respondent data may be used to assist active learning of the focal respondent’s product 

preferences. Overall, our research suggests that the proposed approach is a promising new 
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method that can be used to complement extant preference elicitation methods, particularly in the 

context of complex products.  

Our research is also subject to limitations and suggests promising avenues for future 

research. First, while we use part-worths models to characterize consumers’ responses to both 

consideration and choice questions, our algorithm does not explicitly uncover decision heuristics 

used by consumers. Future research may adapt the proposed algorithm to directly capture such 

heuristics. In such cases, the SVM classification would be performed at the product feature level, 

rather than at the product level as in the proposed method. Separate utility functions may also be 

used in the consideration and choice stages if the underlying decision rules for the consideration 

phase versus the choice phase are known to be different. 

Second, while the current research is among the first efforts to explore the use of previous 

respondent’s data in complex product preference elicitation in a live setting, we only observe 

incremental benefits of collaborative filtering at the outset of the adaptive question survey. 

Future research may consider alternative approaches to take better advantages of this technique. 

For example, richer covariates such as demographic, social-economic, and/or product usage 

information may be incorporated into collaborative filtering. Furthermore, advantages from using 

other respondents’ data might become more salient if researchers were to incorporate 

collaborative filtering into the entire course of adaptive question design rather than only in the 

selection of initial questions.  

Lastly, while the proposed algorithm is flexible enough to accommodate nonlinear utility 

functions, the specifications of such nonlinear utility functions are ad hoc by nature. Managerial 

insights and/or pretests are needed to determine the exact form of the kernel function. If an 

inappropriate kernel is used, response errors may be undistinguishable from the incorrectly 
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specified utility form. Therefore, prior to the adaptive question design, managerial consultation 

and/or pretests are needed to carefully specify the exact utility model to be estimated.  

With regards to extensions, future research may further explore the use of semi-

supervised active learning in marketing context, particularly in the area of adaptive question 

design. For example, a common challenge faced by adaptive question design is the lack of 

labeled data points, particularly at the beginning of the survey. The basic idea of semi-supervised 

active learning is to iteratively identify unlabeled data points that are similar to labeled data, and 

to assign pseudo labels to such points so that the training data set can be enlarged. Recent 

research has shown that such efforts can effectively alleviate the problem of small-sized training 

data (e.g., Wu and Yap 2006; Hoi et al. 2009; Leng et al. 2013). Future research may further 

explore how to utilize such methods to improve extant adaptive question design, or in any 

marketing context where individual-level consumer data are relatively sparse. Additionally, if 

consumer responses are classified in multiple categories (e.g., not preferred; neutral; preferred), 

researchers can leverage recent methods that use support vector machine classifier for active 

learning of multiclass classification (e.g., Patra and Bruzzone 2012). We leave such endeavors as 

fruitful areas for future research. 
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Figure 1: Overall Flow of the Proposed Adaptive Question Design Method 
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Table 1: Comparison of Predictive Validity: Digital Camera Study 

Method (Sample Size) 
Hit Rate 

Ave. SE 

Cond 1: Proposed Method (N=73) .801* .030 

Cond 2: Fuzzy SVM without Collaborative Filtering (N=69) .779* .032 

Cond 3: Self-Explicated (N=66) .689 .041 

Cond 4: Upgrading (N=80) .563 .038 

Cond 5: ACBC (N=75) .660 .038 

Cond 6: CBC (N=62) .605 .045 
 *best in column or not significantly different from best in column at the .05 level 

 

Table 2: Comparison of Predictive Validity: Computer Tablet Study 

Method  

KL Divergence Hit Rate 

(Pooled) Initial Validation Delayed Validation Pooled 

N Ave. SE N Ave. SE Ave. SE Ave. SE 

Cond 1: Proposed Method  35 .288*
a
 .062 26 .260*

a 
.073 .471*

a
 .054 .671* .041 

Cond 2: Fuzzy SVM without 

Consideration Questions 
36 .426 .066 26 .407 .077 .577 .052 .565 .049 

Cond 3: Self-Explicated 39 .443 .058 27 .479 .080 .662 .043 .585 .031 

Cond 4: ACBC  41 .472 .059 30 .531 .062 .652 .048 .520 .033 
*best in column or not significantly different from best in column at the .05 level 

a
marginally better than the fuzzy SVM without consideration questions condition (p < .1) 

 

Table 3: Predictive Validity by Number of Questions Asked: Computer Tablet Study 

 # of 

Questions (k) 

KL-Divergence 

(smaller is better) 

Hit Rate 

(larger is better) 

1 .557 .538 

3 .600 .586 

5 .602 .619 

7 .611 .648 

9 .522 .614 

11 .529 .638 

13 .504 .648 

15 .484 .638 

17 .494 .671 

19 .552 .657 

21 .498 .667 

23 .496 .676 

25 .500 .667 

27 .502 .662 

29 .502 .676 

31 .480 .681 

33 .480 .652 

34 .471 .671 

Self-Configurator  

Consideration 

Questions  

Choice 

Questions 
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Table 4: Using Proposed vs. Conjunctive Question Selection When the True Consideration 

Decisions are Conjunctive: Synthetic Data Experiments  
 

Table 4a: Parameter Recovery and Predictive Validity Comparisons 

Product 

Dimension 

Performance 

Measure 

Question Selection Method Question Selection Method 

Proposed 

Method 

Dzyabura and 

Hauser (2011) 

Proposed 

Method 

Dzyabura and 

Hauser (2011) 

  Conjunctive Estimation Fuzzy SVM Estimation 

3x15 Hit Rate .986 1.000* .966* .919 

 KL Divergence
 

.072 .000* .091* .264 

 U
2 

.928 1.000* .728* .515 

      

3x25 Hit Rate .948 .992* .948* .910 

 KL Divergence
 

.252 .013* .117* .246 

 U
2 

.818 .850 .693* .588 

      

3x35 Hit Rate .945 .994* .936* .892 

 KL Divergence
 

.232 .018* .131* .267 

 U
2 

.685 .743* .614* .577 
*significantly better than the alternative method at the .05 level 

 

Table 4b: Average Time to Generate Next Question Comparisons (In Seconds) 

Product Dimension 
Question Selection Method 

Proposed Method Dzyabura and Hauser (2011) 

3x15 .218* 2.856 

3x25 .214* 6.920 

3x35 .215* 11.861 
*significantly better than the alternative method at the .05 level 
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Table 5: Performance Comparisons When True Consideration and Choice Decisions Are 

Both Based on A Part-Worths Model: Synthetic Data Experiments  
 

Table 5a: Parameter Recovery and Predictive Validity Comparisons 

Product 

Dimension 
Performance Measure 

Proposed 

Method 

Dzyabura and 

Hauser (2011) 

Abernethy et 

al. (2008) 

3x15 Hit Rate .948* .929 .937 

 KL Divergence
 

.279* .365 .327 

 U
2 

.736* .701 .701 

 MAE .745* .858 .834 

 RMSE .920* 1.057 1.037 

 

3x25 Hit Rate .933* .925 .870 

 KL Divergence
 

.343* .373 .553 

 U
2 

.679* .623 .596 

 MAE .839* .877 1.109 

 RMSE 1.040* 1.086 1.374 

 

3x35 Hit Rate .901* .893 .812 

 KL Divergence
 

.460* .480 .694 

 U
2 

.625* .583 .487 

 MAE 1.015* 1.042 1.347 

 RMSE 1.254* 1.291 1.668 
*significantly better than the alternative methods at the .05 level 

 

Table 5b: Average Time to Generate Next Question Comparisons (In Seconds) 

Product 

Dimension 

Question 

Type 

Proposed 

Method 

Dzyabura and 

Hauser (2011) 

Abernethy et 

al. (2008) 

3x15 Consideration .269* 5.779 - 

 Choice .612 - .002* 

3x25 Consideration .206* 3.075 - 

 Choice .609 - .002* 

3x35 Consideration .217* 4.702 - 

 Choice .690 - .004* 
*significantly better than the alternative method at the .05 level 
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Table 6: Performance Comparisons between Fuzzy SVM and Soft Margin SVM Active 

Learning: Synthetic Data Experiments 

 

Table 6a: Parameter Recovery and Predictive Validity Comparisons with Response Errors 

Error Positions Performance Measure Fuzzy SVM  Soft Margin SVM 

Early Hit Rate .760* .720 

 KL Divergence
 

.769* .827 

 U
2 

.280* .201 

 MAE 1.694* 1.834 

 RMSE 2.103* 2.275 

    

Middle Hit Rate .834* .819 

 KL Divergence
 

.634* .669 

 U
2 

.417* .394 

 MAE 1.519* 1.596 

 RMSE 1.889* 1.978 

    

Late Hit Rate .893 .890 

 KL Divergence
 

.483 .492 

 U
2 

.511 .507 

 MAE 1.319 1.338 

 RMSE 1.636 1.649 
*significantly better than the alternative method at the .05 level 

 

Table 6b: Parameter Recovery and Predictive Validity Comparisons with No Response Error 

Performance Measure Fuzzy SVM  Soft Margin SVM 

Hit Rate .901 .904
a 

KL Divergence
 

.460 .448 

U
2 

.625 .648* 

MAE 1.015 .992* 

RMSE 1.254 1.226* 
*significantly better than the alternative method at the .05 level 

a
marginally better than the alternative method at the .1 level 
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Table 7: Performance Improvements (in Percentage) Over Non-Informative Initial Part-worths 
 

# of 

Questions 

Heterogeneous Configurators Homogenous Configurator 

Hit Rate KL U
2 

MAE RMSE Hit Rate KL U
2 

MAE RMSE 

1 40.89% 27.61% 443.33% 21.23% 22.28% 54.33% 45.78% 652.14% 30.64% 32.20% 

5 21.12% 14.03% 186.49% 12.26% 12.24% 23.93% 16.47% 209.10% 15.07% 15.21% 

10 13.81% 10.21% 104.38% 9.00% 8.70% 13.79% 9.97% 99.54% 9.57% 9.59% 

15 9.53% 8.22% 60.92% 6.95% 6.43% 8.37% 6.93% 51.38% 6.95% 6.70% 

20 6.57% 6.85% 36.56% 5.51% 5.03% 4.97% 4.87% 26.21% 4.85% 4.53% 

25 5.03% 6.03% 25.50% 4.75% 4.22% 3.47% 4.01% 16.47% 4.19% 3.55% 

30 4.25% 5.85% 20.36% 3.45% 3.54% 2.42% 3.40% 10.32% 3.13% 2.63% 

35 3.26% 5.25% 13.87% 2.93% 2.91% 2.17% 3.64% 8.26% 2.43% 2.39% 

40 2.61% 4.79% 10.28% 2.73% 2.60% 1.45% 2.87% 5.40% 2.03% 2.05% 

45 .90% 2.04% 3.24% 1.20% 1.25% -.42% -1.05% -1.58% -.55% -.51% 

50 1.18% 3.19% 4.46% 1.53% 1.64% -.21% -.65% -.086% -.85% -.51% 

55 .88% 2.80% 2.97% 1.32% 1.49% -.16% -.66% -.57% -.41% -.39% 

60 .65% 2.32% 2.22% 1.21% 1.28% .04% .27% .04% .23% -.17% 

65 .44% 1.76% 1.54% 1.06% 1.09% -.10% -.81% -.36% -.35% -.42% 

 


