

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

DESIGN AND DEVELOPMENT OF MEMORY MAPPING FOR AN IMAGE DATA

ACQUISITION SYSYTEM

A graduate project submitted in partial fulfillment of the requirements

For the degree of Master of Science in

Electrical Engineering

By

Sahar Sadeghi

May 2012

ii

The Graduate Project of Sahar Sadeghi is approved:

Ramin Roosta, Ph.D. Date

Ali Amini, Ph.D. Date

Nagi M El Naga, Ph.D., Chair Date

SIGNATURE PAGE

California State University, Northridge

iii

ACKNOWLEDGMENTS

First and foremost, I offer my sincerest gratitude to my project advisor and my

graduate coordinator, Dr. Nagi El Naga, who has supported me throughout my project

with his patience and knowledge whilst allowing me to work in my own way. I attribute

the level of my Master’s degree to his encouragement and effort and without him this

project would not have been completed or written. One simply could not wish for a better

or friendlier advisor.

Besides my advisor, I would like to show my gratitude to the rest of my project

committee, Dr. Ramin Roosta, and Dr. Ali Amini, for their support and encouragement.

I would also like to thank my other professors at California State University,

Northridge, for their support and all they have taught me during my Master’s program.

Last but not the least, I would like to thank my family and friends for their

unconditional support throughout all my studies and life.

iv

TABLE OF CONTENTS

SIGNATURE PAGE .. ii

ACKNOWLEDGMENTS ... iii

LIST OF FIGURES ... vi

ABSTRACT ... viii

1. CHAPTER 1: INTRODUCTION .. 1

1.1. INTRODUCTION TO DATA ACQUSITION SYSTEMS 1

1.2. OBJECTIVE OF THIS PROJECT ... 2

1.3. PROJECT OUTLINE ... 3

2. CHAPTER 2: TOP LEVEL ARCHITECTURE.. 5

2.1. SPECIFICATION ANALYZES... 5

2.2. TOP LEVEL BLOCK DIAGRAM ARCHITECTUR 7

3. CHAPTER 3: ANALOG TO DIGITAL CONVERTER ... 9

4. CHAPTER 4: DESIGN AND DEVELOPMENT OF MEMORY MAPPING 13

4.1. FROM ADC TO THE FIRST LEVEL OF FPGAS 13

4.1.1 TIMING ANALYZES FOR THE FISRT LEVEL 30

4.2. FROM THE FIRST LEVEL TO THE SECOND LEVEL OF FPGAS 34

4.3. FROM THE SECOND LEVEL TO THE THIRD LEVEL OF FPGAS 38

v

5. CHAPTER 5: TIMING AND DATA FLOWS ... 45

6. CHAPTER 6: PLACE OF EACH DETECTOR .. 47

7. CHAPTER 7: VHDL DEVELOPMENT ... 50

8. CHAPTER 8: CONCLUCION .. 62

REFERENCES .. 64

APPENDIX ... 65

vi

LIST OF FIGURES

Figure 1.1. Top level block diagram of the designing system. ... 3

Figure 2.1. Array of 256 × 256 photo detectors spaced at 5mm. .. 5

Figure 2.2. The 4 × 4 photo detector array module (64 × 64 = 4096 modules). 6

Figure 2.3. The pulse initiates sampling. .. 6

Figure 2.4. Top level blocks diagram architecture. .. 8

Figure 3.1. Functional Block Diagram. .. 10

Figure 3.2. Serial Interface Timing. [4] .. 12

Figure 4.1. Top level-1 block diagram. ... 14

Figure 4.2. 12-bit serial data from D-Multiplexer to the SIPO shift register. 17

Figure 4.3. The counterI timing analyzer for first frame of detector 1. 18

Figure 4.4. The 16–bit Multiplexer selects the frame for one specific detector. 19

Figure 4.5. Timing analyzes for Clk_2. .. 20

Figure 4.6. Steps in Figure 4.2 & 4. .. 21

Figure 4.7. One 16-to-1 Multiplexer. .. 22

Figure 4.8. Timing analysis CounterIII for first frame of detector 1. 23

Figure 4.9. Steps in Figure 4.2 & 4 & 7. ... 24

Figure 4.10. Simple Dual-port RAM block diagram.[7] .. 25

Figure 4.11. BRAM (16 × 192) block diagram. ... 27

Figure 4.12. CounterA timing analyzes for the first detector and first frame. 28

Figure 4.13. Level 1- Block Diagram for a 4×4 module. ... 29

Figure 4.14. Level 1- Required time for a 4×4 module .. 30

Figure 4.15. Level-1 timing verifications for the Clk_1. .. 31

vii

Figure 4.16. Level-1 timing verification for the Clk_2. ... 31

Figure 4.17. Level- 1 timing verification for the third step .. 32

Figure 4.18. Level-1 timing verification for ClkA. .. 33

Figure 4.19. Level-1 to level-2 block diagram. .. 34

Figure 4.20. Level -2 block diagram. .. 36

Figure 4.21. Level-2 complete block diagram. ... 37

Figure 4.22. Level-2 to level-3 block diagram. .. 40

Figure 4.23. Complete block diagram of level-3. ... 42

Figure 4.24. Block diagram for level-3 to fiber channel switch. 43

Figure 4.25. Complete block diagram. .. 44

Figure 5.1. Summary of timing analyzes for all steps. ... 45

Figure 6.1. Address of photo detector in level-1. ... 47

Figure 6.2. Address of photo detector in level-2. ... 48

Figure 6.3. Address of photo detector in level-3. ... 48

Figure 6.4. The place of each detectors in a 64×64 module. .. 49

Figure 7.1. RTL View of D-Multiplexer, implementation Spartan 3A. 52

Figure 7.2 . RTL View of SIPO Shift Register, implementation Spartan 3A. 54

Figure 7.3 . RTL View of SIPO Shift Register. .. 55

Figure 7.4. Block Memory Generator for BRAM (16 × 192). ... 57

Figure 7.5. Block Memory Generator for BRAM (16 × 3072). 59

Figure 7.6. Block Memory Generator for BRAM (16 × 49152). 61

viii

ABSTRACT

DESIGN AND DEVELOPMENT OF MEMORY MAPPING FOR AN IMAGE DATA

ACQUISITION SYSYTEM

By

Sahar Sadeghi

Master of Science in Electrical Engineering

Data acquisition systems typically convert analog signals into digital values for

processing. In this graduate project, a memory mapping process for an image data

acquisition system, which is built out of three levels of arrays of FPGA, has been

developed. The system has the capability to sample the outputs of large number of photo-

detectors with high resolution and at a very high frequency. The received data is

sampled, digitalized and passed through a three levels of FPGAs to a fiber channel switch

which provides the final high speed serial output. The array has 256 × 256 of photo

detectors. Each 16 detectors of the array are grouped to make a 4× 4 photo detector array

module. A sample from all detectors will represent one frame. To form one image, 16

frames are required. Therefore, all the detectors of the array are sampled simultaneously

sixteen times to form the 16 frames. The analog signal sample out of each detector is

converted into 12-bit digital value. BRAM1 (16× 49154) is used to store the collected

data in each level and define the address of each detector. The time required to sample,

digitize and process the collected data through the three levels of FPGA is 0.774ms.

1 Block Memory RAM

1

1. CHAPTER 1: INTRODUCTION

1.1. INTRODUCTION TO DATA ACQUSITION SYSTEMS

Data acquisition system is the process of sampling analog signals that measure

the physical conditions and converting the resulting samples into digital numeric values

that can be manipulated by a computer [1]. Sending data to a computer is used by

various methods, such as: USB, SPI, PCI Express, I2C, Wi-Fi and Ethernet. Depending

on the application, the complexity of data acquisition system is different. In some

applications such as medical, space and military the accuracy of the system is the most

important factor rather than the cost of the system.

 Data acquisition systems typically convert analog waveforms into digital values

for processing. The components of data acquisition systems include:

• Sensors that convert physical parameters to electrical signals.

• Signal conditioning circuitry to convert sensor signals into a form

convertible to digital values.

• Analog-to-digital converters, which convert conditioned sensor signals to

digital values [1].

 The parameters measured can be shown numerically whereas their relationship

can be displayed graphically as a curve on the screen [2].

The storage systems of high speed and large capacity data acquisition is widely

used in aerospace, military, telecommunications, medical and other fields. Ultra high

speed and high capacity features have become the actual need and developing direction

2

of the data acquisition, and semiconductor devices have become the main storage

medium. The various types of memories in FPGA with the advantage of high reliability,

low power consumption, long life, high capacity and adapting to the harsh environment,

anti-vibration, anti-shock, high and low temperature properties have been developed

rapidly [3].

1.2. OBJECTIVE OF THIS PROJECT

The objective of this graduate project is to design and develop a memory

mapping for an image data acquisition system which is built of arrays of FPGAs

connected to a PC. The system has the capability to samples the outputs of a large

number of photo detectors with high resolution at a very high frequency. The received

data is digitalized and passed through a series of FPGAs to a fiber channel switch which

provides the final high speed serial output. The array has 256 × 256 of photo detectors.

Each 16 detectors of the array are grouped to make a 4× 4 photo detector arrays module.

Therefore, the array of 256 ×256 detectors becomes an array of 64 × 64 modules which

consists of 4096 modules.

A pulse comes to initiate sampling at 1 kHz, and then 16 samples per detector at

12 MHz are sampled. All the detectors of the array are sampled simultaneously to form

the 16 frames. The analog signal sample out of each detector is converted into 12-bit

digital signal. Data will be grouped into a single data stream and transferred to the

processing computer at about 2 Gbyte/sec. After sampling the 16 frames, there would be

a significant amount of time to transfer the collected data through the three levels of

FPGAs to the processing computer, before initiating the next sampling process.

ac

d

sy

d

em

im

7

th

d

sp

In thi

cquisition sy

esigning sys

This p

ystem along

evelopment

mphasized.

1.3. PRO

A com

mage data ac

chapters. Ch

he applicatio

efined in thi

pecifications

The A

is project, o

ystem, storin

stem is show

Figure 1.1.

project is par

with memo

of memor

OJECT OUT

mplete descr

cquisition sy

hapter 1 giv

ons of data

is chapter. T

s are present

Analog to Dig

one FPGA s

ng and map

wn in Figure

. Top level b

rt of a group

ory mapping

ry mapping

TLINE

ription of the

ystem is pres

es the introd

acquisition

The top level

ted in Chapte

gital Conver

3

serves as a

pping the da

1.1.

block diagram

p effort to de

of the data.

process fo

e memory m

sented in thi

duction to th

system. Mo

architecture

er2.

rter is introd

master con

ata. The top

m of the des

esign and de

In this proj

for the ima

mapping des

is project rep

his project. It

oreover, the

e of the imag

duced in Cha

ntroller to c

level block

igning syste

evelop the ar

ect, featurin

age acquisit

sign and dev

port. This pr

t describes th

objective o

ge acquisitio

apter 3. This

control, the

k diagram of

em.

rchitecture o

ng the design

tion system

velopment fo

roject consis

he importanc

of this proje

on system an

chapter incl

data

f the

of the

n and

m are

or an

sts of

ce of

ect is

nd its

ludes

4

features and functional block diagram of the ADC. Chapter 4 is the main chapter of this

project, and presents the basic design of the image acquisition system. This chapter

provides complete design description for each of the three levels of the architecture.

Furthermore, Chapter 5 includes timing and data flow of the sampled data through each

level. Chapter 6 explains how to trace and determine the location of the data collected

from each detector in the three levels of FPGAs. Chapter 7 includes VHDL modeling of

the hardware component required for the system. Finally, the results and conclusions are

presented in Chapter 8.

fi

F

sp

m

ou

2.1. SPEC

 This

irst requirem

igure 2.1.

pacing betwe

F

The n

make a 4× 4 p

ut 4096 of th

2. C

CIFICATIO

chapter desc

ment of an ar

The total n

een detector

Figure 2.1. A

next specific

photo detect

hree module

HAPTER 2

ON ANALY

cribes the sp

rray of 256 ×

number of p

rs results in a

Array of 256

ation describ

tor arrays mo

e arranged in

5

2: TOP LEV

YZES

pecifications

× 256 photo

photo detect

an array with

6 × 256 phot

bes each six

odule. Hereb

n a form of 6

VEL ARCH

s for the im

detectors sp

tors is 6553

h an approxi

to detectors s

xteen detecto

by, the array

4 × 64 array

HITECTURE

mage acquisit

paced 5mm a

36 (256 × 2

imate area 1.

spaced at 5m

ors of the ar

ys of detecto

y as shown in

E

tion system.

apart is show

256). The 5

.28m × 1.28

mm.

rray are grou

ors is constru

n Figure 2.2

The

wn in

5mm

m.

up to

ucted

.

th

sa

Figure

The n

hen 16 samp

ampled simu

 2.2. The 4 ×

next specific

ples per dete

ultaneously t

F

× 4 photo det

cation is that

ector at 12 M

to form the 1

Figure 2.3. T

6

tector array m

t a pulse co

MHz are sam

16 frames as

The pulse ini

module (64

omes to initi

mpled. All th

s shown in th

itiates sampl

× 64 = 4096

iate samplin

he detectors

he Figure 2.3

ling.

6 modules).

ng at 1 kHz,

s of the array

3.

, and

y are

7

The amount of data received per sample pulse is:

256 × 256 × 12 × 16 = 25,582,912 bits/pulse

Each photo detector collects 12-bit samples; a total of 12,582,912-bits must be

read out before the next sampling pulse is initiated.

2.2. TOP LEVEL BLOCK DIAGRAM ARCHITECTUR

This architecture is constructed by three levels of FPGAs to transmit data from

photo detector array to the fiber channel switch. Each 4×4 module is connected to a

single Xilinx Spartan-3A FPGA. In the first level of FPGA, the 4096 Spartan3A are

used. For the second level of FPGA, the 256 Spartan3A are used. The final stage

contains the 16 Xilinx Virtex-6 FPGAs. These powerful FPGAs use PCI Express transfer

protocol to output data through the fiber channel switch providing the final serial output.

The top level block diagram architecture is shown in Figure 2.4.

One frame 16 Frames

Total photo detectors

Figurre 2.4. Top le

8

evel blocks ddiagram archhitecture.

9

3. CHAPTER 3: ANALOG TO DIGITAL CONVERTER

ADS5281 is a 12-bit high- performance, low-power and an octal channel Analog-

Digital Converter is selected to be used in this project.

The physical specification of the ADS5281 is:

• Resolution: 12-bits

• Sample rate: 50 msps

• Channel: 8

• Clock inputs: min 10 msps / max 50 msps

• Digital outputs: min 10 MHz / max50 MHz

• Size: 9mm × 9 mm

The ADC uses the SPI serial interface on pin chip select (CS) and serial interface

clock (SCLC) along with serial interface data (SDATA) for initialization.

All ADCs are initialized simultaneously. FPGAs will initialize and control the

ADCs via the serial interface. Serial peripheral interface (SPI) logic and timing is

implemented on the master controller FPGA and interfaced with ADC [4].

Master FPGA will initialize and control the ADCs and slaves FPGAs via the

serial interface while all ADCs are initialized simultaneously. Master FPGA send a start

signal acquisition, which will activate the CS and BUSY signal; when CS is high, ADC

starts sampling; once the sample is over, the CS goes low then it reads out the eight

channel data in sequence. The functional block diagram of Analog to Digital Converter

ADS- 5281 is shown in Figure 3.1.

th

se

After

he exact ord

equence. [4]

the device h

der listed be

Figure 3.1.

has been pow

elow) throu

10

Functional B

wered up, the

ugh the seria

Block Diagra

e following

al interface

am.

registers mu

as part of

ust be writte

an initializa

n (in

ation

11

 ADDRESS DATA (HEX)

Initialization Register1 03 0002

Initialization Register2 01 0010

Initialization Register3 C7 8001

Initialization Register4 de 01C0

Table 1. Initialization Registers.

The ADS528x has a set of internal registers that can be accessed through the

serial interface formed by pins CS (chip select, active low), SCLK (serial interface

clock), and SDATA (serial interface data). When CS is low, the following actions occur:

• Serial shift of bits into the device is enabled

• SDATA (serial data) is latched at every rising edge of SCLK

• SDATA is loaded into the register at every 24th SCLK rising edge

If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data

can be loaded in multiples of 24-bit words within a single active CS pulse. The first eight

bits form the register address and the remaining 16 bits form the register data. The

interface can work with SCLK frequencies from 20MHz down to very low speeds (a few

hertz) and also with a non-50% SCLK duty cycle. After all registers have been initialized

to their default values through a RESET operation, the registered detailed in the table1

must be written. This process must be done after every hardware or software RESET

operation in order to reconfigure the device for the best mode of operation [4]. The serial

interface timing of ADC 5281 is shown in Figure 3.2.

Figure 3.2.

12

Serial Interfface Timing. [4]

13

4. CHAPTER 4: DESIGN AND DEVELOPMENT OF MEMORY MAPPING

4.1. FROM ADC TO THE FIRST LEVEL OF FPGAS

The presented architecture is designed based on three levels FPGAs; in this

design the first level has 4096 Spartan3A - XCS3S1400A and each ADC has a serial

output of eight (12- bits) samples to this level.

 The Extended Spartan-3A family of Field-Programmable Gate Arrays (FPGAs)

solves the design challenges involved in high volume and cost-sensitive electronic

applications. With 12 devices ranging from 50,000 to 3.4 million system gates, the

extended Spartan-3A family provides a broad range of densities and packaging options,

integrating DSP MACs and low total system cost while increasing functionality. The

extended Spartan-3A family includes the Spartan-3A device and the higher density

Spartan-3A DSP device. In addition, it also includes the nonvolatile Spartan-3AN

device, which combines leading-edge FPGA and flash technologies to provide a new

evolution in security, protection and functionality ideal for space-critical or secure

applications. The extended Spartan-3A family improves system performance and

reduces the cost of configuration. These enhancements combined with proven 90 nm

process technology, deliver more functionality and bandwidth per dollar. Base on of its

exceptionally low cost, the extended Spartan-3A family is ideally suited for a wide range

of consumer electronics’ applications including broadband access, home networking,

display/projection, and digital television equipment. The extended Spartan-3A family is

a superior alternative to mask-programmed ASICs. FPGAs avoid the high initial cost,

le

fi

fr

si

co

re

p

engthy deve

ield design u

A sam

rames are re

ixteen times

onverted int

eceived by l

er sample” ×

lopment cyc

upgrades. [6]

mple from a

quired. Ther

s to form o

to 12-bit dig

level-1 Spar

× 16 “sample

cles, inheren

]

all detectors

refore, all th

one image. T

gital value.

rtan3A FPGA

es collected

Figure 4.1.

14

nt inflexibili

will represe

he detectors

The analog

Then, the o

As. Each Sp

× 16 “ photo

Top level-1

ity of conve

ent one fram

of the array

signal samp

output of ea

partan 3A w

o detector “)

block diagra

entional AS

me. To form

are sampled

mple out of

ach ADC is

will store 307

) as shown in

am.

SICs, and pe

m one image

d simultaneo

each detecto

s simultaneo

72 bits (12

n Figure 4.1.

ermit

e, 16

ously

or is

ously

“bits

.

15

The timing calculation per sample pulse and timing sample is calculated as

below:

• Data per sample pulse = 12 (bit/sample) × 16 (photo detector) × 16 (samples

collected) = 3072

• Required time to sample and digitalize one frame = 16 (samples collected) × 12

(bit /sample) × 83.33ns= 15.936 µs ͠= 16 µs

On the rising edge of Clk_1, the first bit of the 16 photo detectors of all 4096

(4×4) module are read by the FPGA XILINX SPARTAN3A.

It is important to know that the ADC has 12Clk cycle latency for the first

sampling and will continuously retrieve 12-bit data with no Clk cycle latency. This

amount of delay is required for initialization four registers described in Table-1[5].

Therefore, ADCLK requires a 12Clk cycle for the first sample. The AND gate and 2-to-1

Multiplexer is used to make the first 12Clk cycle delay for ADCLK. When the output of

the AND gate becomes 1, line_1 of the multiplexer is selected and the ADCLK will go to

the 12-bit delay counter. As a result, the output of this delay is connected to Clk_1.

If line_0 of the multiplexer is selected, the ADCLK will be connected directly to

Clk_1 with no delay. When Clk_1 clocks, the first 12-bit detector frame of the 4×4

module is read. On the first rising edge of Clk_1, the 16-to-1 D-Multiplexers (Xilinx

D4_16E) select the first frames (frame 1-16) for the 12-bit serial data of the first photo

detectors (detectors1-16) of the all 4096 modules.

The selected frames with 12-bit serial data are stored and converted to the 12-bit

parallel data by using the Serial-In-Parallel-Out Shift Registers (Xilinx SR16RE).

16

Figure 4.2 describes the above process for a 4×4 module. Figure 4.2 and Figure

4.4 show only one 4x4 module; note that there is a total of 4096 (4×4) modules.

• Total number of D-Multiplexers for one (4×4) Module is:

1 (16-to-1D-Multiplexer × 16 (photo detector) = 16

• Total number of D-Multiplexers for level-1 is:

4096((4×4) Module) × 16(16-to-1 D-Multiplexer) = 65,536

• Total number of SIPO Shift Register for one 4×4 Module is:

16 (Serial-In-Parallel–Out Shift Register for each detector) ×16 (photo

detector) = 256

• Total number of SIPO Shift Register for level-1 is:

4096((4×4) Module) × 256 (SIPO Shift Register) = 1,048,576

Since the first bit of each frame (frame 0 - 15) is read entirely at the same

rising edge of the ADCLK, The 4- bit counterI (Xilinx CB4RE) shows in Figure 4.2 is

the only controller for all D-Multiplexers in this level.

Figure

e 4.2. 12-bit serial data f

17

from D-Mult

tiplexer to thhe SIPO shifft register.

fi

(s

d

M

re

so

fr

1

co

se

The A

irst sampling

system Clk)

isplayed in F

 On th

Multiplexers.

etrieve the fi

o forth. This

rames. This c

Fig

The fi

2Clk cycle.

onvert the 1

erial data to

ADCLK for t

g. The ADC

) is the stre

Figure4.2 is

he first risin

 The counte

first 12-bit da

s process tak

concept is sh

gure 4.3. The

irst bit of the

The 12-bit

12-bit serial

be read from

the FPGAs s

CLK is the f

eam bit Clk

controlled b

ng edge of

er counts fr

ata. At the s

kes 12Clk cy

hown in Figu

e counterI tim

e first frame

t Serial-In-P

data to para

m ADC and c

18

should be clo

frame Clk at

k at 144 M

by the Clk un

Clk_1, a 1

rom 0 to 15

second count

ycle; 192 Clk

ure 4.3.

ming analyz

will be read

Parallel-Out

allel. 24Clk

converted to

ocked with 1

t a 12 MHz

MHz frequen

nder ADCLK

2-bit serial

5 and each c

t, the second

k cycles are r

zer for first fr

dy on the ou

Shift Regis

cycle laten

o 12-bit para

12 clock cyc

z frequency

ncy. The firs

K and the sy

data is rea

count takes

d 12-bit data

required for

frame of dete

utput of D-M

sters takes a

ncy is requir

allel data.

cle latency fo

while the L

st 4-bit cou

ystem CLK.

d by 16-to-

12Clk cycl

a is retrieved

a total of six

ector 1.

Multiplexer a

a 12Clk cyc

red for the 1

or the

LCLK

unterI

-1 D-

les to

d and

xteen

fter a

cle to

12-bit

1

st

•

 In the

2-bit paralle

tep. Figure4.

Figure

12 Clk cy

sample) =

e next step, t

el data from

.4 shows thi

 4.4. The 16–

ycle (SIPO

24 Clk cycl

the 16-to-1 M

each frame

s process.

–bit Multiple

19

Shift Regist

e

Multiplexers

e (frame 0-1

exer selects t

ter) + 12(C

s (Xilinx M

5) in order

the frame fo

Clk cycle de

16_1E) are u

to send this

or one specif

elay for the

used to selec

s data to the

fic detector.

e first

ct the

 next

ed

co

on

st

by

4

•

•

 Sinc

dge of the C

ontroller for

Figure

n the input o

tarted after 3

y the multip

.5 shows tim

Total num

 1(16-to

Total num

4096((4×

e the first bi

Clk_2, The 4

r all 16-to-1 M

e 4.5 shows

of multiplexe

38 ADCLK.

lexer and th

ming analyze

mber of 16-to

o-1 Multiple

mber of 16-to

4) Module)

it of each fra

4-bit counter

Multiplexers

that the first

er .Therefore

On the risin

is process sh

es for clk_2 a

Figure 4.5. T

20

-1 Multiplex

xer × 16 (ph

-1 Multiplex

× 16(16-to-1

ame (frame 0

rII (Xilinx C

s in this step

t 12-bit paral

e, the Clk_2

ng edge of th

hould take 16

and Figure 4

Timing anal

xers for a 4×

hoto detector

xers for leve

1 Multiplexe

0- 15) is rea

CB4RE) show

p.

llel data will

 for all of th

he 38th ADCl

6 cycles to r

4.6 shows all

lyzes for Clk

×4 Module is

r)) = 16

el-1 is:

er) = 65,536

ad entirely at

wn in Figur

l be ready af

hese multiple

lk the first fr

read the last

l step in Figu

k_2.

s:

t the same ri

re 4.4 is the

fter 24 Clk c

exer should h

rame is selec

frame. Figur

ure 4.2 & 4.

ising

only

cycle

have

cted

re

Figure 4.6

21

6. Steps in Fi

igure 4.2 & 4.

n

1

Since

eeded to sel

6 photo dete

a 4 ×4 arr

ect the 12-b

ectors. Figur

ray module

it parallel da

re 4.7 shows

Figure 4.7.

22

has 16 dete

ata from a sp

s this process

. One 16-to-

ectors, only

pecific fram

s.

-1 Multiplex

y one 16-to-

me (frame 0 -

er.

-1 Multiplex

-15) of one o

xer is

of the

on

la

un

X

m

M

m

 The 1

n the 25th C

ast frame of

ntil detector

Fi

The B

Xilinx FPGA

memories of

Memory Gen

memories for

12-bit paralle

lk edge. Cou

the first det

r16 of frame

igure 4.8. Tim

Block Memo

As to exten

f arbitrary w

nerator core

r a wide rang

el of the firs

unterIII cloc

tector is sele

16 is selecte

ming analys

ory Generato

nd the func

widths and d

produce op

ge of configu

23

st frame will

cks after 25

ected. This p

d. Figure 4.8

sis CounterII

or core uses

ctionality an

depths. Sop

ptimized sol

urations. [7]

l be ready on

ADCLK, it

process will

8 & 9 show

II for first fra

embedded B

nd capabilit

phisticated a

lutions to p

n the input o

waits in eac

be taken fo

these steps.

ame of detec

Block Mem

ty of a sin

algorithms w

rovide conv

of the multip

ch count unt

or 192 Clk c

ctor 1.

mory primitiv

gle primitiv

within the B

venient acce

plexer

til the

cycles

ves in

ve to

Block

ess to

FFigure 4.9. S

24

Steps in Figuure 4.2 & 4 && 7.

sh

o

u

ex

re

1

in

W

T

The B

hared memo

 In Zy

f the four in

sing all fou

xample, a

esource utiliz

As the

2-bit paralle

n the first lev

 The

Write access

The block dia

Block Memor

ory space. Bo

ynq-7000, 7

nterfaces can

ur interfaces

Single-Port

zation.[7]

e final step

el data) × 16

vel.

Simple-Dua

to the memo

agram is sho

Figure 4

ry Generator

oth A and B

series, Virte

n be uniquel

, the user c

Memory o

of level-1, t

photo detec

al Ram has

ory is allowe

wn in Figure

4.10. Simple

25

r has two ful

ports have a

ex-6, Virtex-

ly configure

can selects a

or Simple D

the Block M

ctors) is used

the Conten

ed via port A

e 4.10.

e Dual-port R

lly independ

a Write and a

-5 and Virtex

d with a dif

a simplified

Dual-Port M

Memory RAM

d to store all

nt of address

A, and Read

RAM block

dent ports tha

a Read inter

x-4 FPGA a

fferent data w

d memory co

Memory) to

M (192 × 1

16 frames o

sable memo

access is all

diagram.[7]

at access a

face.

architectures

width. When

onfiguration

 reduces F

6) ((16 fram

of a 4 × 4 mo

ories and FI

lowed via po

each

n not

n (for

FPGA

mes ×

odule

IFOs.

ort B.

26

Each frame is placed on a row of Block Memory Ram. In addition, 12-bit parallel

data of each detector is placed on each column. As the result, the address of each detector

can easily be defined in the BRAM.

The 8-bit counter for the Write address works based on the Clk_3. At the rising

edge of this Clk, the first frame (out of 16 frames) of the first detector (out of 16

detectors) is selected and read by BRAM(192×16) and is placed on the first row - first

column. This process is continued until the last frame of the last detector is placed on the

last row and column of the BRAM (192×16) as shown in Figure 4.11.

Up to here, a 4×4 module is read and is ready to be sent to the next level. In this

design trace and determine the location of the data collected from each detector is easily

feasible and each detector has an address defined by BRAM (16×192).

 The 8-bit counter for the Read address at the rising edge of ClkB reads 12-bits

parallel data one at a time and is incremented by one. Figure 4.11 shows this process.

Figuure 4.11. BR

27

RAM (16 × 1

192) block ddiagram.

re

w

cy

th

an

ta

T

it

A

pr

Timin

eady to be w

will be writte

ycles being t

he second 12

nd so forth.

akes 256 Clk

Figure

Readi

This Clk start

t starts to rea

Up to

ADC and sto

rocess as a w

ng analysis o

written after 2

en into BRA

that the 16 f

2-bit paralle

Therefore,

k cycle.

e 4.12. Coun

ing the 12-bi

ts after the f

ad the first fr

 here, we ha

oring it into

whole.

of the final

25 ADCLK

AM on the 2

frame of the

l data of the

the process

nterA timing

it parallel da

first row is w

rame of the f

ave describe

o the FPGA

28

step shown

cycles. The

26th rising e

first photo d

e second det

for writing

analyzes for

ata from the

written. The

first detector

ed the proce

As for the fi

n in Figure 4

e 12-bit para

edge of ClkA

detector is w

tector is read

16 frames

r the first de

BRAM (16×

ClkB should

r and sends i

ess of readin

irst level. F

4.12 determ

allel data form

A. Each Clk

written first. M

dy to be wri

of 16 detect

etector and fi

×192) is bas

d wait for 55

it to the next

ng the 12-bit

igure 4.13

mines that da

m the first fr

kA takes 16

Moving forw

itten into BR

tors into BR

first frame.

ed on the CL

5 ADCLK b

t level.

t serial data

shows the e

ata is

frame

6 Clk

ward,

RAM

RAM

LKB.

efore

from

entire

Figure 44.13. Level 1

29

1- Block Dia

agram for a 44×4 module.

4

tr

d

m

m

T

th

.1.1 TIMI

As di

ransmit all d

ata acquisiti

msec to trans

module to sam

The required

Based

he first frame

•

•

•

ING ANALY

scussed, in

data in 1ms

ion system n

fer all 12,58

mple and di

time is show

Figure

d on the calc

e that is show

Clk_1: the

First frame

Time to sa

16×12 × 0

YZES FOR

order to me

interval. T

needs to pro

82,912-bits t

igitalize the

wn in Figure

4.14. Level

culations in F

wn in Figure

e first bit wil

e-first detect

ample and di

0.083 µs = 15

30

R THE FISR

eet the speci

The specifica

ocess the col

through a 2 G

incoming si

4.14.

1- Required

Figure 4.3, t

e 4.15 is as f

ll be ready af

tor: 0.083 µs

igitalize for o

5.936 µs

RT LEVEL

ifications, th

ations analys

llected data

Gbyte/sec se

ignal (1ms –

d time for a 4

the time requ

follows:

fter 12 ADC

s× 12 = 0.99

one frame :

he system h

sis showed

is 0.252mse

erial output a

– 0.732 ms –

4×4 module

uired for the

CLK:

96 µs

as to collect

that the tim

ec. It takes 0

and 16 µs fo

– 16µs = 0.

e first detect

t and

me the

0.732

or the

252).

tor of

th

1m

Based

he first frame

•

•

•

To me

ms intervals

Figure 4

d on the calc

e that is show

Clk_2: the

First frame

All 16 fram

eet the speci

s. Since 31.8

Figure 4

4.15. Level-1

culations in F

wn in Figure

e first 12 par

e-first detect

me of one de

ifications, th

872 µs is les

4.16. Level-

31

1 timing veri

Figure 4.5, t

e 4.16 is as f

allel data wi

tor: 0.083 µs

etector: 16 ×

he system m

s than 500 µ

1 timing ver

ifications for

the time requ

follows:

ill be ready a

s× 24 = 1.99

× 1.992 µs =

must collect a

µs (0.5 ms), t

rification for

r the Clk_1.

uired for the

after 37 ADC

92 µs

31.872 µs

and transmit

the time is a

r the Clk_2.

e first detect

CLK:

t all 16 fram

acceptable.

tor of

mes in

th

in

th

Based

he first frame

•

•

•

To me

ntervals. Sin

Based

he first frame

•

•

•

d on the calc

e that is show

Clk_3: the

First frame

All 16 fram

eet the spec

ce 397.44 µs

Figure 4.

d on the calc

e that is show

ClkA: the

First frame

One sampl

culations in F

wn in Figure

e first 12 par

e-first detect

me of one de

ifications, th

s is less than

17. Level- 1

culations in F

wn in Figure

first 12 para

e-first detect

le of data: 1

32

Figure 4.8, t

e 4.17 is as f

allel data wi

tor: 0.083 µs

etector: 192

he system m

n 1 ms, the ti

 timing veri

Figure 4.9, t

e 4.18 is as f

allel data wil

tor: 0.083 µs

192 × 2.158

the time requ

follows:

ill be ready a

s× 25 = 2.07

× 2.075 µs =

must collect

ime is accep

fication for t

the time requ

follows:

ll be ready a

s× 26= 2.158

µs = 414.33

uired for the

after 38 ADC

75 µs

= 397.44 µs

and transmi

ptable.

the third step

uired for the

after26 ADC

8 µs

6 µs

e first detect

CLK:

it all data in

p

e first detect

LK:

tor of

n 1ms

tor of

in

en

0

B

ac

T

b

To me

ntervals. Sin

nough time t

Finall

.996 µs (firs

BRAM) = 7.3

The t

cquisition sy

Therefore, the

it parallel da

eet the speci

nce 414.336

to process an

Figur

ly, the time t

st step) +1.99

31µs

timing analy

ystem to pro

e data acquis

ata into BRA

ifications, sy

µs is less

nd take anoth

re 4.18. Leve

to parallel tra

92 µs (secon

ysis for the

ocess the co

sition system

AM (16×192

33

ystem should

than 1 ms

her sample o

el-1 timing v

ansmit one f

nd step) +2.0

e first level

ollected data

m has enough

) and data is

d collects an

the time is

of data.

verification f

frame of data

075 µs (third

l shows the

a is 414.336

h time to col

s then sent to

nd transmits

 acceptable

for ClkA.

a to the seco

d step) +2.24

e time need

µs which is

llect, digitali

o the next lev

all data in a

and system

ond level is:

41µs (write t

ded by the

s less than 1

ize, and stor

vel.

a 1ms

m has

to the

data

1 ms.

re 12-

th

on

4.2. FRO

In the

he second sta

ne of the lev

•

•

•

OM THE FIR

 architecture

age has 256

vel-2 Spartan

Fig

Total Data

16 (level-1

Time to tra

RST LEVE

e described i

Spartan3A.

n-3A FPGAs

ure 4.19. Le

a Transferred

1 FPGA) × 3

ansfer from

34

L TO THE

in Figure2.4

Each 16 lev

s in this leve

evel-1 to leve

d per Sample

3072 (16 det

Level-1 to L

 SECOND L

, the first sta

vel-1 FPGA t

el. Figure 4.

el-2 block di

e Pulse for th

tectors × 12-

Level-2 is:

LEVEL OF

age has 4096

transmits 12

19 shows th

iagram.

he second le

-bit × 16 fram

F FPGAS

6 Spartan3A

2-bit in paral

his concept.

evel is:

me) = 49,152

A, and

llel to

2

35

16 (frame) × 16 (photo detectors) × 12-bit per sample × 6.9 ns (144 MHz,

CLK) = 21.196µs

The 12-bit parallel output of sixteen FPGAs in level-1 is collected into the one

FPGA in level-2. Therefore, the 16-to-1 Multiplexer (Xilinx M16_1E) is used to select a

12-bit parallel data from the 16 level-1 FPGAs.

• Total number of Multiplexers (Xilinx M16_1E) for the second level are:

1(16-to-1Multiplexer × 256 (the 16th groups of level-1 FPGAs out of 4096

module) = 256

A 4-bit counter is used to control all the 256 16-to-1Multiplexers at the same

time. In this design, the first BRAM (192×16) from level-1 is read; then, the second

BRAM (192×16) of level-1 is read and so forth. Therefore, finding the address of each

detector in this level is easily feasible.

The delay of 256 is needed since each BRAM (192×16) of level-1 must be read

completely in each count. The counter counts from 0 to 16 and in each count has 256 Clk

cycles delay.

The Block Memory Generator core uses embedded Block Memory primitives in

Xilinx FPGAs to extend the functionality and capability of a single primitive to

memories of arbitrary widths and depths. Sophisticated algorithms within the Block

Memory Generator core produce optimized solutions to provide convenient access to

memories for a wide range of configurations. [6]

Block Memory simple Dual port Ram with the write/read width 16 and write/read

depth 3072 bits is generated by the IP core generator.

w

so

F

On th

written into B

o forth, as sh

igure 4.20 sh

e first rising

BRAM (16 ×

hown in Figu

hows the lev

g edge of the

× 3072). Firs

ure 4.20. Th

vel -2 block

Figure 4.20

36

e write Clk (

st level-1 BR

he address wi

diagram.

0. Level -2 b

(ClkB_2), th

RAM (16×19

idth of addre

block diagram

he first detec

92) is placed

essA and Ad

am.

ctor-first fram

d in first row

ddressB is 12

me is

w and

2-bit.

 2

2

M

F

•

256 (Clk cyc

8.44µs

Moreover, the

PGAs -144M

The time t

cle need to

e transfer clo

MHz. Figure

Fig

to parallel tra

send one lev

ock speed is

e4.21 shows

gure 4.21. Le

37

ansmit one s

vel-1 BRAM

s limited to th

the complet

evel-2 compl

sample of the

M (16×192))

the system cl

te block diag

lete block di

e data to the

) × 6.9 ns (1

lock speed o

gram for leve

iagram.

e third level i

144 MHz) ×

of the Sparta

el-2.

is:

×16 =

an 3A

38

4.3. FROM THE SECOND LEVEL TO THE THIRD LEVEL OF FPGAS

The presented architecture is designed based on three levels FPGAs; in this

design the first level has 4096 Spartan3A, the second stage has 256 Spartan3A, and the

final level has 16 Virtex6. Each 16 level-2 FPGA transmits 12-bit in parallel to one of the

level-3 Virtex6 FPGAs in this level.

Virtex-6 FPGAs are the programmable silicon foundation for Targeted Design

Platforms that deliver integrated software and hardware components to enable designers

to focus on innovation as soon as their development cycle begins. In addition to the high-

performance logic fabric, Virtex-6 FPGAs contain many built-in system-level blocks.

These features allow logic designers to build the highest levels of performance and

functionality into their FPGA-based systems. Built on a 40 nm state-of-theart copper

process technology, Virtex-6 FPGAs are a programmable alternative to custom ASIC

technology. Virtex-6 FPGAs offer the best solution for addressing the needs of high-

performance logic designers, high-performance DSP designers, and high-performance

embedded systems designers with unprecedented logic, DSP, connectivity, and soft

microprocessor capabilities. The Virtex6 has the integrated interface blocks for PCI

Express® designs. So, the Level-3 is designed by Virtex-6 FPGAs to use PCI Express

transfer protocol to pass data forward. [7]

An optional output data pipeline register allows higher clock rates at the cost of

an extra cycle of latency. During a write operation, the data output can reflect either the

previously stored data, the newly written data, or remain unchanged. DSP applications

use many binary multipliers and accumulators, best implemented in dedicated DSP

39

slices. All Virtex-6 FPGAs have many dedicated, full-custom, low-power DSP slices

combining high speed with small size, while retaining system design flexibility.

 The number of I/O pins varies from 240 to 1200 depending on device and

package size. Each I/O pin is configurable and can comply with a large number of

standards, using up to 2.5V. The Virtex-6 FPGA Select IO Resources User Guide

describes the I/O compatibilities of the various I/O options. With the exception of supply

pins and a few dedicated configuration pins, all other package pins have the same I/O

capabilities, constrained only by certain banking rules. All I/O pins are organized in

banks, with 40 pins per bank. Each bank has one common VCCO output supply-voltage

pin, which also powers certain input buffers. Some single-ended input buffers require an

externally applied reference voltage (VREF). There are two VREF pins per bank (except

configuration bank 0). A single bank can have only one VREF voltage value. An

integrated Tri-mode Ethernet MAC (TEMAC) block is easily connected to the FPGA

logic, the GTX transceivers, and the Select IO resources. This TEMAC block saves logic

resources and design effort. All of the Virtex-6 devices (except the XC6VLX760) have

four TEMAC blocks, implementing the link layer of the OSI protocol stack.

The CORE Generator™ software GUI helps to configure flexible interfaces to

GTX transceiver or Select IO technology, to the FPGA logic, and to a microprocessor

(when required). The TEMAC is designed to the IEEE STD 802.3-2005 specification.

2,500 Mb/s support is also available. [7]

Each 16 level-2 FPGA transmits 12-bit in parallel to one of the level-3 Virtex6

FPGAs in this level. Therefore, 49152 bits of data is transferred in 12-bit parallel. On 192

input pins a total of 786,432 bits are received by each level-3 FPGA.

•

 Figu

Total Data

16 (level-

FPGA) = 7

ure 4.22 show

Fig

a Transferred

1 FPGA) ×

786,432 bits

ws this confi

ure 4.22. Le

40

d per Sample

3072 (16 d

s are received

guration:

evel-2 to leve

e Pulse for th

detectors×12

d by each lev

el-3 block di

he third leve

2-bit ×16 fra

vel-3 FPGA

iagram.

el is:

ame) ×16(le

A

evel-2

41

Every Virtex-6 FPGA has between 156 and 1064 dual-port block RAMs, each

storing 36 Kbits. Each block RAM has two completely independent ports that share

nothing but the stored data. Each memory access, read and write is controlled by the

clock. All inputs, data, address, clock enables, and write enables are registered. Nothing

happens without a clock. The input address is always clocked, retaining data until the

next operation. . [7]

Since the 16 level-2 BRAM (16×3072) is collected and stored in one Virtex6 of

level-3, the 16-to-1 Multiplexer is designed to select each level-2 BRAM (16×3072) one

at a time and send it to the output. Therefore, the counter controlling all multiplexers in

this level has a significant delay in each count in order to get one 4×4 module and finally

send it to the output. As a final result, the next 4×4 module is counted and so forth.

The BRAM (16 × 49152) is needed for storing all data bits in the final step.

Single Port RAM and block memory resources are:

• 18K BRAM: 1

• 36k BRAM: 22

• Address Width: 16

The output must be 12-bit in serial to transfer all serial data to the fiber channel

switch. Output of the multiplexer goes to the one Parallel-In – Serial-Out Shift Register

to convert 12- bit parallel data to 12- bit serial data.

• Total number of Multiplexers (Xilinx M16_1E) for the third level is:

1(16-to-1 Multiplexer ×16 (the 16th groups of level-2 FPGAs out of 256)

=16

Figure

e 4.23 shows

Figu

s the Level-3

ure 4.23. Com

42

3 complete b

mplete block

block diagram

k diagram of

am.

f level-3.

 2

S

se

to

re

C

th

F

•

256 (Clk cyc

Moreo

partan 3A F

Each

erial output

o establish th

eceived and

Channel Swit

he final steps

igure 4.25 sh

The time t

cle need to se

over, the tra

PGAs -144M

level-3 FPG

at a rate of 5

he PCI Expr

d processed

tch takes ov

s of this arch

Figure 4.24

hows the com

to parallel tra

end one leve

ansfer clock

MHz.

GA uses the

5Gbits/sec.

ress protoco

by level-3

ver to genera

hitecture.

. Block diag

mplete block

43

ansmit one s

el-1 BRAM)

k speed is lim

PCI Express

Two additio

l – GTX Tra

FPGAs (at

ate the 2GB

gram for leve

k diagram fo

sample of da

) × 6.9 µs (14

mited to the

s transfer pr

onal Intellec

ansceiver an

t approxima

Byte/sec tran

el-3 to fiber

or all three le

ata to the thir

44 MHz) ×1

e system clo

rotocol to pr

ctual Propert

nd Block RA

ately 5Gbits

nsfer rate. Fi

channel swit

evels of FPG

rd level is:

6 =28.44 µs

ock speed o

roduce an op

ty Cores are

AM. Once da

s/sec), the

igure 4.24 sh

tch.

GAs.

s

of the

ptical

used

ata is

Fiber

hows

49152

Figure 4.25

44

5. Complete

4096

block diagraam.

49152

sa

an

0

g

su

1

2

A

In ord

ample of dat

nd process th

.774ms. Thi

ives the syst

ummary of t

Summ

. ADCC

 12 M

ADCL

LCLK

2. Level

Amount of da

5. C

der to meet

ta in 1ms int

he collected

is amount o

tem enough

timing analy

Figure

mary of timin

CLK input s

MHZ (0.083 µ

LK output (L

K output (LV

- 1 :

ata per samp

CHAPTER

the specific

tervals. Calc

d data (entire

f time is les

time to proc

ysis for the en

 5.1. Summa

ng analysis m

sample per r

µs); 12-bit pe

LVDS) : 12 M

VDS) :144 M

ple pulse = 12

45

5: TIMING

cations, the

culations sho

e 12,582,912

ss than 1 m

cess the next

ntire process

ary of timing

meets the spe

rate is:

er sample; 1

MHZ

MHZ

2-bit/sample

G AND DAT

system shou

ow that time

2-bit) through

ms, which m

t sample of d

s.

g analyzes fo

ecifications

6 sample pe

e × 16 photo

TA FLOWS

uld collect a

e required to

h the three le

eets the req

data. Figure

or all steps.

for all three

er pulse

odetector = 3

S

and transmit

o sample, dig

evels of FPG

quirement. It

5.1 describe

levels is:

3072

t one

gitize

GA is

t also

es the

46

Required timing sample for level-1 = 16 samples × 12-bit /sample × 83.33 ns (12 Mhz) =

16 µs

• Time to parallel transmit one frame of data to the second level is:

0.996 µs (first step) +1.992 µs (second step) +2.075 µs (third step) +2.241µs

(write to the BRAM) = 7.304 µs

Finally, time to parallel transmit one sample data (received data) to the second

level is 414.336 µs. Since the initial pulse comes at 1 kHz and data is sampled sixteen

frames at 1ms, this time is acceptable. Therefore, the system has enough time to process

data to the next level by the time the next pulse arrives.

3. Level- 2:

Time required for one sample of data in Level- 2 is:

[3072 (12-bit per sample×16 photo detectore×16 frame) +1 (multiplexer) +1

(write to the BRAM)]× 6.9 ns (144 MHz CLK)= 21.2106 µs

4. Level- 3:

Time requirement for one sample of data in Level- 3is:

[3072 (12-bit per sample×16 photo detectore×16 frame) × 16 level-2 FPGA

+1(multiplexer) +1 (write to the BRAM)] × 6.9 ns (144 MHz CLK) = 339.16 µs

Total time by image acquisition system for collecting one sample of data and

transferring it to the fiber channel switch requires 0.774 µs (414.336 µs + 21.2106 µs +

339.16 µs). This amount of time is less than 1 ms, which meets the initial requirement.

Since 0.774 µs is smaller than 1 ms, this design is considered optimal. Therefore, the

system has a sufficient amount of time to process the next sample of data.

an

ea

in

B

w

d

th

In lev

n 8-bit addr

ach detector

n each frame

In the

Block Memo

width addres

etectors in l

his concept.

6. C

vel-1, the sim

ress is used.

r in the 4×4

e. Figure 6.1

Figu

e seconed lev

ory Genrator

s for readin

level-1, leve

HAPTER 6

mple Dual B

 The LS fou

module, and

shows this c

ure 6.1. Addr

vel of this a

r as shown i

ng and writi

el-2 and the

47

6: PLACE O

Block Ram (

ur bits of th

d the MS fou

concept.

ress of photo

architecture,

in Figure 4.2

ing. This 12

related fram

OF EACH D

(16×192) is

his address d

ur bits deter

o detector in

one BRAM

20. This BR

2-bit address

me for each

DETECTOR

used to stor

defines the p

rmine the loc

n level-1.

M (16× 3072)

RAM is gene

s determines

detectors. F

R

re the image

place locatio

cation of mo

) is generate

erated with

s the locatio

Figure 6.2 sh

e, and

on of

odule

ed by

12bit

on of

hows

G

fo

le

a

Finaly

Genrator as s

or readng an

evel-2 , level

Furthe

64×64 modu

Figu

y, in the third

shown in Fig

nd writing. T

l-3,and the r

Figu

ermore, Figu

ule .

ure 6.2. Addr

d level, one

gure 4.23. T

This 16 bit

elated frame

ure 6.3. Addr

ure 6.4 show

48

ress of photo

BRAM (16×

This BRAM

address dete

es for each d

ress of photo

ws the place

o detector in

× 49154) is

is generated

ermines the

detectors. Fig

o detector in

of each leve

n level-2.

generated by

d with a 16b

place of de

gure 6.3 show

n level-3.

el of FPGAs

y Block Mem

bit width ad

etector in lev

ws this conc

s and detecto

mory

ddress

vel-1,

cept.

ors in

Figure 6.44. The place

49

of each deteectors in a 644×64 module.

50

7. CHAPTER 7: VHDL DEVELOPMENT

Digital hardware has experienced drastic expansion and improvement in the past

40 years. Since its introduction, the number of transititors in a single chip has grown

exponentially, and a sillicon chip now routinely contains hundreds of millions trasisitors.

In the past, the major applications of digital hardware were computational

systems. As application become larger and more complex, the task of designing digital

cuircuits becomes more difficult. The best way to handle the complexity is to view the

cuircuit at a more abstract level and utilize software tools to derive the low-level

implementation.[10]

FPGAs have traditionally been configured by hardware engineers using a

Hardware Design Language (HDL). The two principal languages used are verilog HDL(

Verilog) and Very Hight Speed Integrated Cuircuits(VHSIC) HDL (VHDL) which

allows designers to design at various levels of abstarction.[11]

Given the importance of digital image processing and the significant role of

hardware implemention in order to achive better performance, this chapter covers starting

point for VHDL and guides for future VHDL implemention projects.

The system level is designed by Xilinx components. The ISE software is used to

implement VHDL hardware language defining the RTL level of the system. The ISE

software controls all aspects of the design flow. Throughout the project navigator

interface, the access to all design entries and design implemention tools are acceptable.

VHDL and RTL level for the componets used in the system level are as below:

51

1. 16-to-1 D-Multiplexer:

Hardware design element select the D-Multiplexer D4_16E (16 × 1) with enable

from Xilinx library. When the enable (EN) input of the D4_16E decoder/demultiplexer is

high, one of the 16 active-High output (D15-D0) is selected with 4 bit binary

address(A3-A0) input. The non selected outputs are Low. Also, when the EN inputs is

Low,all outputs are Low. [12]

The part of VHDL code for the above describtion for D-Multiplexer is :

 Y (0) <= I when S="0000" else '0';

 Y (1) <= I when S="0001" else '0';

 Y (2) <= I when S="0010" else '0';

 Y (3) <= I when S="0011" else '0';

 Y (4) <= I when S="0100" else '0';

 Y (5) <= I when S="0101" else '0';

 Y (6) <= I when S="0110" else '0';

 Y (7) <= I when S="0111" else '0';

 Y (8) <= I when S="1000" else '0';

 Y (9) <= I when S="1001" else '0';

 Y (10) <= I when S="1010" else '0';

 Y (11) <= I when S="1011" else '0';

 Y (12) <= I when S="1100" else '0';

 Y (13) <= I when S="1101" else '0';

 Y (14) <= I when S="1110" else '0';

 Y (15) <= I when S="1111" else '0';

Figgure 7.1. RTLL View of D

52

D-Multiplexe

er, implemenntation Sparttan 3A.

53

2. Serial – In – Parallel – Out Shift Register:

The SRL16RE is the 16-bit shift register, with shift – left serial input (SLI),

parallel outputs(Qn), clock enable (CE), and synchronous rest® inputs is selected from

Xilinx library for the system level. The R input, when High, overrides all other inputs

during the Low-To High clock© transition and resets the data outputs(Q) low. When CE

is High and R is Low, the data on the SLI is loaded into the first bit of the shift register

during the Low-To-High clock(C) transition and appears on the Q0 output. During

subsequent Low-To-High clock transitions, when CE is High and R is Low, data is

shifted to the next highest bit position as new data is loaded into Q0.[12]

The VHDL code that describes above describtion is:

 signal tmp: std_logic_vector(11 downto 0);

 begin

 process (Clk)

 begin

 if (Clk ‘event and Clk='1') then

 tmp <= tmp(10 downto 0)& SI;

 end if;

 end process;

 PO <= tmp;

And the RTL view is shown in Figure 7.2.

sy

d

is

ca

Figure

3. 1

M16_

ystem level.

ata bit from

s Low, the ou

The p

ase S_1 is

 when "0000"

 when "0001"

 when "0010" =

 when "0011" =

 when "0100" =

 when "0101" =

 when "0110"

 when "0111"

 when "1000"

 when "1001"

 when "1010"

 when "1011"

 when "1100"

e 7.2 . RTL V

16-to-1 Mult

_1E is a 16-to

 When the

16 sources (

utput is Low

art of VHDL

 => Z <= D1; --D

 => Z <= D2;

=> Z <= D3;

=> Z <= D4;

=> Z <= D5;

=> Z <= D6;

 => Z <= D7;

 => Z <= D8;

 => Z <= D9;

 => Z <= D10;

 => Z <= D11;

 => Z <= D12;

 => Z <= D13;

View of SIPO

tiplexer:

o-1 multiple

enable inpu

(D15-D0) un

w.[12]

L code that s

Detector1

54

O Shift Regi

exer with ena

ut(E) is High

nder the con

shows above

ister, implem

able is select

h, the M16_

ntrol of the se

e describtion

mentation Sp

ted from Xil

_1E multiple

elect inputs

n is:

partan 3A.

linx library a

exer chooses

(S3-S0). Wh

at the

s one

hen E

R

X

m

M

m

 when "1101"

 when "1110"

 when "1111"

 when others

 end case;

RTL view is

4. B

The B

Xilinx FPGA

memories of

Memory Gen

memories for

 => Z <= D14;

 => Z <= D15;

 => Z <= D16; --

 => null;

shown in Fig

Figu

Block Memo

Block Memo

As to exten

f arbitrary w

nerator core

r a wide rang

Detector16

gure 7.3.

ure 7.3 . RTL

ory RAM:

ory Generato

nds the func

widths and d

produce op

ge of configu

55

L View of S

or core uses

ctionality an

depths. Sop

ptimized sol

urations. [7]

SIPO Shift R

embedded B

nd capabilit

phisticated a

lutions to p

Register.

Block Mem

ty of a sin

algorithms w

rovide conv

mory primitiv

ngle primitiv

within the B

venient acce

ves in

ve to

Block

ess to

56

In level-1, the simple Dual Block Ram (16× 192) is generated to store the image

and an 8-bit address by Xilinx Core Generator software. Once the BRAM is generated,

this VHDL code must be instantiated to the top level program. Figure 7.4 shows the steps

for generating this BRAM.

component bram_16_192

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(7 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

Part of VHDL code for BRAM (16 × 192) is:
-- synthesis translate_on

BEGIN

-- synthesis translate_off

U0 : wrapped_bram_16_192

 port map (

 Clka => Clka,

 wea => wea,

 addra => addra,

 dina => dina,

 douta => douta);

-- synthesis translate_on

Figure 7.4.. Block Mem

57

mory Generaator for BRAAM (16 × 192

2).

58

In level-2, the simple Dual Block Ram (16× 3072) is generated to store the image

by Xilinx Core Generator software. Once the BRAM is generated, this VHDL code must

be instantiated to the top level program. Figure 7.5 shows the steps for generating this

BRAM.

component wrapped_bram_16_3072

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(11 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

A protion of the VHDL code for BRAM (16 × 3072) is:

component bram_16_3072

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(11 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

Figure 7.5. Block Mem

59

mory Generat

tor for BRAMM (16 × 30772).

60

In level-3, the simple Dual Block Ram (16× 49152) is generated to store the

image by Xilinx Core Generator software. Once the BRAM is generated, this VHDL

code must be instantiated to the top level program. Figure 7.6 shows the steps for

generating this BRAM.

component wrapped_BRAM_16_49152

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(15 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

A portion of the VHDL code for BRAM(16 × 49152) is:

component BRAM_16_49152

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(15 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

Figure 77.6. Block M

61

Memory Gene

erator for BRRAM (16 × 449152).

62

8. CHAPTER 8: CONCLUCION

Data acquisition system is the process of sampling analog signals that measure the

physical conditions and converting the resulting samples into digital numeric values that

can be manipulated by a computer [1]. Data acquisition systems typically convert analog

signals into digital values for processing. In this project, a memory mapping process for

an image data acquisition system, which is built out of three levels of arrays of FPGA,

has been developed. The system has the capability to sample the outputs of large number

of photo detectors with high resolution, and at a very high frequency. The received data

is sampled, digitalized and passed through a three levels of FPGAs to a fiber channel

switch which provides the final high speed serial output. The array has 256 × 256 of

photo detectors. Each 16 detectors of the array are grouped to make a 4× 4 photo detector

array module. A sample from all detectors will represent one frame. To form one image,

16 frames are required. Therefore, all the detectors of the array are sampled

simultaneously sixteen times to form the 16 frames. The analog signal sample out of each

detector is converted into 12-bit digital value.

The presented architecture is designed based on three levels FPGAs; in this

design the first level has 4096 Spartan3A, the second stage has 256 Spartan3A, and the

final level has 16 Virtex6.

The Block Memory Generator core uses embedded Block Memory primitives in

Xilinx FPGAs to extend the functionality and capability of a single primitive to

memories of arbitrary widths and depths. In level-1, the simple Dual Block Ram is used

to store the image, and an 8-bit address is used. The LS four bits of this address defines

63

the place location of each detector in the (4×4) module, and the MS four bits determines

the location of module in each frame.

Each 16 level-1 FPGAs transmit 12-bit parallel data to one level-2 Spartan-3A

FPGAs. The Block Memory simple Dual ports RAM with the write/read width of 16 and

write/read depth of 3072 bits has been generated to store the collected data. The data

transition from level-1 to level-2 takes 21.196µs.

 In the third level of the architecture, Virtex-6 FPGAs receive data from 16 level-

2 FPGAs. The Block Memory simple Dual port RAM (16 ×49,152) has been generated

to store the collected data. Data transition from level-2 to level-3 takes 28.44 µs.

The total time required by image acquisition system to collect one frame of data

and transfer it to the fiber channel switch is 0.774 µs. This amount of time is less than 1

ms, which meets the requirement. It also gives the system enough time to process the

next sample of data.

This work was performed as part of a large project in which several students were

involved and worked independently on different part of the project to design and develop

the architecture of the system along with memory mapping of the data. My role in this

project was the design and development of the memory mapping process which has been

done successfully.

64

REFERENCES

 1 Data acquisition system, retrieved January 2012 from URL:
http://en.wikipedia.org/wiki/Data_acquisition.

 2 S. Thanee S. Somkuarnpanit and K. Saetang, “FPGA-Based Multi-Protocol
Data Acquisition System with High Speed USB Interface” Proceedings of the
international Multi Conference of Engineers and Computer Scientists 2010 Vol II,
IMCES 2010, 17, Hong Kong, retrieved January 2012 from URL:
www.pelagiaresearchlibrary.com

3 Xiao Jun Hu, “Data acquisition and analysis techniques”; 2010, 6, retrieved
January 2012 from URL: www.sciencedirect.com

4 Yonghai Nig, Zongqiang Guo, Sen Shen, Bo Peng ,”Design of Data Acquisition
and storage system Based on the FPGA”, International workshop on information and
electronics engineering (IWIEE), 2012, retrieved January 2012 from URL:
www.Sciencedirect.com

5 Texas Instruments “12- bit octal channel ADC family up to 65 msps data sheet”
2008, Texas instrument incorporated, retrieved January 2012 from URL: www.ti.com

6 Xilinx “Spartan3A family overview”, retrieved January 2012 from URL:
www.xilinx.com

7 Xilinx “The Block Memory Generator”, retrieved January 2012 from URL:
www.xilinx.com

8 Xilinx “Virtex family overview”, retrieved January 2012 from URL:
www.xilinx.com

 9 Xilinx “XST general guide”, retrieved January 2012 from URL:
www.xilinx.com

10 Pong P.CHU, “RTL Hardware Design Using VHDL coding for Efficiency,
Portability, and Scalability”, A JOHN WILEY &SON’s, INC., Publication, ISBN-
13:978-0-471-72092-8, 2006.

11 Daggu Venkateshwar Rao, Shruti Patil, “Implementation and Evaluation of
Image Processing Algorithms on Reconfigurable Architecture using C-based Hardware
Description Languages” International Journal of Theoretical and Applied Computer
Sciences , 2006 Vol I, India, http://www.gbspublisher.com/ijtacs.htm

12 Xilinx “Library Guide”, retrieved January 2012 from URL: www.xilinx.com

65

APPENDIX

1. VHDL CODE FOR BRAM_16_192:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;

ENTITY bram_16_192 IS

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(7 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

END bram_16_192;

ARCHITECTURE bram_16_192_a OF bram_16_192 IS

component wrapped_bram_16_192

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(7 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

-- Configuration specification

 generic map(

 c_has_regceb => 0,

 c_has_regcea => 0,

 c_mem_type => 0,

 c_rstram_b => 0,

 c_rstram_a => 0,

 c_has_injecterr => 0,

 c_rst_type => "SYNC",

 c_prim_type => 1,

 c_read_width_b => 16,

66

 c_initb_val => "0",

 c_family => "spartan3",

 c_read_width_a => 16,

 c_disable_warn_bhv_coll => 0,

 c_use_softecc => 0,

 c_write_mode_b => "WRITE_FIRST",

 c_init_file_name => "no_coe_file_loaded",

 c_write_mode_a => "READ_FIRST",

 c_mux_pipeline_stages => 0,

 c_has_softecc_output_regs_b => 0,

 c_has_softecc_output_regs_a => 0,

 c_has_mem_output_regs_b => 0,

 c_has_mem_output_regs_a => 0,

 c_load_init_file => 0,

 c_xdevicefamily => "spartan3a",

 c_write_depth_b => 192,

 c_write_depth_a => 192,

 c_has_rstb => 0,

 c_has_rsta => 0,

 c_has_mux_output_regs_b => 0,

 c_inita_val => "0",

 c_has_mux_output_regs_a => 0,

 c_addra_width => 8,

 c_has_softecc_input_regs_b => 0,

 c_has_softecc_input_regs_a => 0,

 c_addrb_width => 8,

 c_default_data => "0",

 c_use_ecc => 0,

 c_algorithm => 1,

 c_disable_warn_bhv_range => 0,

 c_write_width_b => 16,

 c_write_width_a => 16,

 c_read_depth_b => 192,

 c_read_depth_a => 192,

 c_byte_size => 9,

 c_sim_collision_check => "ALL",

 c_common_Clk => 0,

 c_wea_width => 1,

67

 c_has_enb => 0,

 c_web_width => 1,

 c_has_ena => 0,

 c_use_byte_web => 0,

 c_use_byte_wea => 0,

 c_rst_priority_b => "CE",

 c_rst_priority_a => "CE",

 c_use_default_data => 0);

BEGIN

U0 : wrapped_bram_16_192

 port map (

 Clka => Clka,

 wea => wea,

 addra => addra,

 dina => dina,

 douta => douta);

END bram_16_192_a;

component bram_16_192

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(7 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

bram_16_192

 port map (

 Clka => Clka,

 wea => wea,

 addra => addra,

 dina => dina,

 douta => douta);

68

2. VHDL CODE FOR BRAM_16_3072:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;

ENTITY bram_16_3072 IS

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(11 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

END bram_16_3072;

ARCHITECTURE bram_16_3072_a OF bram_16_3072 IS

component wrapped_bram_16_3072

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(11 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

-- Configuration specification

 generic map(

 c_has_regceb => 0,

 c_has_regcea => 0,

 c_mem_type => 0,

 c_rstram_b => 0,

 c_rstram_a => 0,

 c_has_injecterr => 0,

 c_rst_type => "SYNC",

 c_prim_type => 1,

 c_read_width_b => 16,

 c_initb_val => "0",

 c_family => "spartan3",

69

 c_read_width_a => 16,

 c_disable_warn_bhv_coll => 0,

 c_use_softecc => 0,

 c_write_mode_b => "WRITE_FIRST",

 c_init_file_name => "no_coe_file_loaded",

 c_write_mode_a => "READ_FIRST",

 c_mux_pipeline_stages => 0,

 c_has_softecc_output_regs_b => 0,

 c_has_softecc_output_regs_a => 0,

 c_has_mem_output_regs_b => 0,

 c_has_mem_output_regs_a => 0,

 c_load_init_file => 0,

 c_xdevicefamily => "spartan3a",

 c_write_depth_b => 3072,

 c_write_depth_a => 3072,

 c_has_rstb => 0,

 c_has_rsta => 0,

 c_has_mux_output_regs_b => 0,

 c_inita_val => "0",

 c_has_mux_output_regs_a => 0,

 c_addra_width => 12,

 c_has_softecc_input_regs_b => 0,

 c_has_softecc_input_regs_a => 0,

 c_addrb_width => 12,

 c_default_data => "0",

 c_use_ecc => 0,

 c_algorithm => 1,

 c_disable_warn_bhv_range => 0,

 c_write_width_b => 16,

 c_write_width_a => 16,

 c_read_depth_b => 3072,

 c_read_depth_a => 3072,

 c_byte_size => 9,

 c_sim_collision_check => "ALL",

 c_common_Clk => 0,

 c_wea_width => 1,

 c_has_enb => 0,

 c_web_width => 1,

70

 c_has_ena => 0,

 c_use_byte_web => 0,

 c_use_byte_wea => 0,

 c_rst_priority_b => "CE",

 c_rst_priority_a => "CE",

 c_use_default_data => 0);

BEGIN

U0 : wrapped_bram_16_3072

 port map (

 Clka => Clka,

 wea => wea,

 addra => addra,

 dina => dina,

 douta => douta);

END bram_16_3072_a;

component bram_16_3072

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(11 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

3. VHDL CODE FOR BRAM_16_49152:

LIBRARY ieee;

USE ieee.std_logic_1164.ALL;

Library XilinxCoreLib;

ENTITY BRAM_3 IS

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(15 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

71

 douta: OUT std_logic_VECTOR(15 downto 0));

END BRAM_3;

ARCHITECTURE BRAM_3_a OF BRAM_3 IS

component wrapped_BRAM_3

 port (

 Clka: IN std_logic;

 wea: IN std_logic_VECTOR(0 downto 0);

 addra: IN std_logic_VECTOR(15 downto 0);

 dina: IN std_logic_VECTOR(15 downto 0);

 douta: OUT std_logic_VECTOR(15 downto 0));

end component;

-- Configuration specification

 generic map(

 c_has_regceb => 0,

 c_has_regcea => 0,

 c_mem_type => 0,

 c_rstram_b => 0,

 c_rstram_a => 0,

 c_has_injecterr => 0,

 c_rst_type => "SYNC",

 c_prim_type => 1,

 c_read_width_b => 16,

 c_initb_val => "0",

 c_family => "virtex6",

 c_read_width_a => 16,

 c_disable_warn_bhv_coll => 0,

 c_use_softecc => 0,

 c_write_mode_b => "WRITE_FIRST",

 c_init_file_name => "no_coe_file_loaded",

 c_write_mode_a => "READ_FIRST",

 c_mux_pipeline_stages => 0,

 c_has_softecc_output_regs_b => 0,

 c_has_softecc_output_regs_a => 0,

 c_has_mem_output_regs_b => 0,

 c_has_mem_output_regs_a => 0,

 c_load_init_file => 0,

72

 c_xdevicefamily => "virtex6",

 c_write_depth_b => 49152,

 c_write_depth_a => 49152,

 c_has_rstb => 0,

 c_has_rsta => 0,

 c_has_mux_output_regs_b => 0,

 c_inita_val => "0",

 c_has_mux_output_regs_a => 0,

 c_addra_width => 16,

 c_has_softecc_input_regs_b => 0,

 c_has_softecc_input_regs_a => 0,

 c_addrb_width => 16,

 c_default_data => "0",

 c_use_ecc => 0,

 c_algorithm => 1,

 c_disable_warn_bhv_range => 0,

 c_write_width_b => 16,

 c_write_width_a => 16,

 c_read_depth_b => 49152,

 c_read_depth_a => 49152,

 c_byte_size => 9,

 c_sim_collision_check => "ALL",

 c_common_Clk => 0,

 c_wea_width => 1,

 c_has_enb => 0,

 c_web_width => 1,

 c_has_ena => 0,

 c_use_byte_web => 0,

 c_use_byte_wea => 0,

 c_rst_priority_b => "CE",

 c_rst_priority_a => "CE",

 c_use_default_data => 0);

BEGIN

U0 : wrapped_BRAM_3

 port map (

 Clka => Clka,

 wea => wea,

 addra => addra,

73

 dina => dina,

 douta => douta);

END BRAM_3_a;

4. D – Multiplexer (1×16):
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity rtl_1 is

 PORT (I, Clk : in std_logic; -- input of th edemux

 S : in std_logic_vector (3 downto 0); --4 bit address line

 Y : out std_logic_vector(15 downto 0)); -- 16 out put

end rtl_1;

architecture Behavioral of rtl_1 is

begin

 process (Clk, Y)

 variable cnt : integer range 0 to 16:='0';

 begin

 if (Clk'event and Clk='1') then

 Y(0) <= I when S="0000" else '0';

 Y(1) <= I when S="0001" else '0';

 Y(2) <= I when S="0010" else '0';

 Y(3) <= I when S="0011" else '0';

 Y(4) <= I when S="0100" else '0';

 Y(5) <= I when S="0101" else '0';

 Y(6) <= I when S="0110" else '0';

 Y(7) <= I when S="0111" else '0';

 Y(8) <= I when S="1000" else '0';

 Y(9) <= I when S="1001" else '0';

 Y(10) <= I when S="1010" else '0';

 Y(11) <= I when S="1011" else '0';

 Y(12) <= I when S="1100" else '0';

 Y(13) <= I when S="1101" else '0';

74

 Y(14) <= I when S="1110" else '0';

 Y(15) <= I when S="1111" else '0';

end Behavioral;

5. SIPO Shift Register:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.NUMERIC_STD.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity SI_PO is

port(Clk, SI : in std_logic;

 PO : out std_logic_vector(11 downto 0));

end SI_PO;

architecture beh of SI_PO is

signal tmp: std_logic_vector(11 downto 0);

begin

 process (Clk)

 begin

 if (Clk'event and Clk='1') then

 tmp <= tmp(10 downto 0)& SI;

 end if;

 end process;

PO <= tmp;

end beh;

6. Multiplexer (16 ×1) :
library ieee;

use ieee.std_logic_1164.all;

entity Multiplexer_16_1 is

 port (D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16 : in std_logic_vector(11 downto 0);

 Clk : in std_logic;

 S_1 : in std_logic_vector (3 downto 0);

 Z : out std_logic_vector(11 downto 0));

end Multiplexer_16_1;

75

architecture Behavioral of Multiplexer_16_1 is

signal cnt : integer range 0 to 16 ;

begin

process (Clk,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16)

 begin

 if (Clk'event and Clk='1') then

 if (cnt > 16) then

 z<=(others=>'0');

 else

 cnt<=cnt+1;

 case S_1 is

 when "0000" => Z <= D1; --Detector1

 when "0001" => Z <= D2;

 when "0010" => Z <= D3;

 when "0011" => Z <= D4;

 when "0100" => Z <= D5;

 when "0101" => Z <= D6;

 when "0110" => Z <= D7;

 when "0111" => Z <= D8;

 when "1000" => Z <= D9;

 when "1001" => Z <= D10;

 when "1010" => Z <= D11;

 when "1011" => Z <= D12;

 when "1100" => Z <= D13;

 when "1101" => Z <= D14;

 when "1110" => Z <= D15;

 when "1111" => Z <= D16;

 when others => null;

 end case;

 end if;

 end if;

 end process;

end Behavioral;

