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ABSTRACT 

 

DESIGN AND DEVELOPMENT OF MEMORY MAPPING FOR AN IMAGE DATA 

ACQUISITION SYSYTEM 

By 

Sahar Sadeghi 

 

Master of Science in Electrical Engineering 

  
Data acquisition systems typically convert analog signals into digital values for 

processing. In this graduate project, a memory mapping process for an image data 

acquisition system, which is built out of three levels of arrays of FPGA, has been 

developed. The system has the capability to sample the outputs of large number of photo-

detectors with high resolution and at a very high frequency.  The received data is 

sampled, digitalized and passed through a three levels of FPGAs to a fiber channel switch 

which provides the final high speed serial output. The array has 256 × 256 of photo 

detectors. Each 16 detectors of the array are grouped to make a 4× 4 photo detector array 

module. A sample from all detectors will represent one frame. To form one image, 16 

frames are required. Therefore, all the detectors of the array are sampled simultaneously 

sixteen times to form the 16 frames. The analog signal sample out of each detector is 

converted into 12-bit digital value. BRAM1 (16× 49154) is used to store the collected 

data in each level and define the address of each detector. The time required to sample, 

digitize and process the collected data through the three levels of FPGA is 0.774ms. 

                                                            
1 Block Memory RAM 
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1. CHAPTER 1: INTRODUCTION 

1.1.  INTRODUCTION TO DATA ACQUSITION SYSTEMS 

Data acquisition system is the process of sampling analog signals that measure 

the physical conditions and converting the resulting samples into digital numeric values 

that can be manipulated by a computer [1]. Sending data to a computer is used by 

various methods, such as: USB, SPI, PCI Express, I2C, Wi-Fi and Ethernet. Depending 

on the application, the complexity of data acquisition system is different. In some 

applications such as medical, space and military the accuracy of the system is the most 

important factor rather than the cost of the system. 

  Data acquisition systems typically convert analog waveforms into digital values 

for processing. The components of data acquisition systems include: 

• Sensors that convert physical parameters to electrical signals. 

• Signal conditioning circuitry to convert sensor signals into a form 

convertible to digital values. 

• Analog-to-digital converters, which convert conditioned sensor signals to 

digital values [1].  

 The parameters measured can be shown numerically whereas their relationship 

can be displayed graphically as a curve on the screen [2]. 

The storage systems of high speed and large capacity data acquisition is widely 

used in aerospace, military, telecommunications, medical and other fields. Ultra high 

speed and high capacity features have become the actual need and developing direction 
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of the data acquisition, and semiconductor devices have become the main storage 

medium. The various types of memories in FPGA with the advantage of high reliability, 

low power consumption, long life, high capacity and adapting to the harsh environment, 

anti-vibration, anti-shock, high and low temperature properties have been developed 

rapidly [3]. 

1.2. OBJECTIVE OF THIS PROJECT 

The objective of this graduate project is to design and develop a memory 

mapping for an image data acquisition system which is built of arrays of FPGAs 

connected to a PC. The system has the capability to samples the outputs of a large 

number of photo detectors with high resolution at a very high frequency.  The received 

data is digitalized and passed through a series of FPGAs to a fiber channel switch which 

provides the final high speed serial output. The array has 256 × 256 of photo detectors. 

Each 16 detectors of the array are grouped to make a 4× 4 photo detector arrays module. 

Therefore, the array of 256 ×256 detectors becomes an array of 64 × 64 modules which 

consists of 4096 modules. 

A pulse comes to initiate sampling at 1 kHz, and then 16 samples per detector at 

12 MHz are sampled.  All the detectors of the array are sampled simultaneously to form 

the 16 frames. The analog signal sample out of each detector is converted into 12-bit 

digital signal. Data will be grouped into a single data stream and transferred to the 

processing computer at about 2 Gbyte/sec. After sampling the 16 frames, there would be 

a significant amount of time to transfer the collected data through the three levels of 

FPGAs to the processing computer, before initiating the next sampling process.  
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features and functional block diagram of the ADC. Chapter 4 is the main chapter of this 

project, and presents the basic design of the image acquisition system. This chapter 

provides complete design description for each of the three levels of the architecture. 

Furthermore, Chapter 5 includes timing and data flow of the sampled data through each 

level. Chapter 6 explains how to trace and determine the location of the data collected 

from each detector in the three levels of FPGAs.  Chapter 7 includes VHDL modeling of 

the hardware component required for the system. Finally, the results and conclusions are 

presented in Chapter 8. 
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The amount of data received per sample pulse is: 

 

256 × 256 × 12 × 16 = 25,582,912     bits/pulse 

 

Each photo detector collects 12-bit samples; a total of 12,582,912-bits must be 

read out before the next sampling pulse is initiated.  

2.2. TOP LEVEL BLOCK DIAGRAM ARCHITECTUR 

This architecture is constructed by three levels of FPGAs to transmit data from 

photo detector array to the fiber channel switch. Each 4×4 module is connected to a 

single Xilinx Spartan-3A FPGA. In the first level of FPGA, the 4096 Spartan3A are 

used. For the second level of FPGA, the 256 Spartan3A are used. The final stage 

contains the 16 Xilinx Virtex-6 FPGAs. These powerful FPGAs use PCI Express transfer 

protocol to output data through the fiber channel switch providing the final serial output. 

The top level block diagram architecture is shown in Figure 2.4. 

 

One frame 16 Frames

Total photo detectors 
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3. CHAPTER 3: ANALOG TO DIGITAL CONVERTER 

ADS5281 is a 12-bit high- performance, low-power and an octal channel Analog-

Digital Converter is selected to be used in this project. 

The physical specification of the ADS5281 is: 

• Resolution:  12-bits 

• Sample rate: 50 msps 

• Channel: 8 

• Clock inputs:  min 10 msps / max 50 msps 

• Digital outputs: min 10 MHz / max50 MHz 

• Size:  9mm × 9 mm 

The ADC uses the SPI serial interface on pin chip select (CS) and serial interface 

clock (SCLC) along with serial interface data (SDATA) for initialization. 

All ADCs are initialized simultaneously. FPGAs will initialize and control the 

ADCs via the serial interface. Serial peripheral interface (SPI) logic and timing is 

implemented on the master controller FPGA and interfaced with ADC [4]. 

Master FPGA will initialize and control the ADCs and slaves FPGAs via the 

serial interface while all ADCs are initialized simultaneously. Master FPGA send a start 

signal acquisition, which will activate the CS and BUSY signal; when CS is high, ADC 

starts sampling; once the sample is over, the CS goes low then it reads out the eight 

channel data in sequence. The functional block diagram of Analog to Digital Converter 

ADS- 5281 is shown in Figure 3.1. 
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 ADDRESS DATA (HEX) 

Initialization Register1 03 0002 

Initialization Register2 01 0010 

Initialization Register3 C7 8001 

Initialization Register4 de 01C0 

 
Table 1. Initialization Registers. 

 
The ADS528x has a set of internal registers that can be accessed through the 

serial interface formed by pins CS (chip select, active low), SCLK (serial interface 

clock), and SDATA (serial interface data). When CS is low, the following actions occur: 

• Serial shift of bits into the device is enabled 

• SDATA (serial data) is latched at every rising edge of SCLK 

• SDATA is loaded into the register at every 24th SCLK rising edge 

If the word length exceeds a multiple of 24 bits, the excess bits are ignored. Data 

can be loaded in multiples of 24-bit words within a single active CS pulse. The first eight 

bits form the register address and the remaining 16 bits form the register data. The 

interface can work with SCLK frequencies from 20MHz down to very low speeds (a few 

hertz) and also with a non-50% SCLK duty cycle. After all registers have been initialized 

to their default values through a RESET operation, the registered detailed in the table1 

must be written. This process must be done after every hardware or software RESET 

operation in order to reconfigure the device for the best mode of operation [4]. The serial 

interface timing of ADC 5281 is shown in Figure 3.2.  

 



 

 
Figure  3.2. 
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Serial Interfface Timing. [4] 
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4. CHAPTER 4: DESIGN AND DEVELOPMENT OF MEMORY MAPPING 

4.1. FROM ADC TO THE FIRST LEVEL OF FPGAS 

The presented architecture is designed based on three levels FPGAs; in this 

design the first level has 4096 Spartan3A - XCS3S1400A and each ADC has a serial 

output of eight (12- bits) samples to this level.  

 The Extended Spartan-3A family of Field-Programmable Gate Arrays (FPGAs) 

solves the design challenges involved in high volume and cost-sensitive electronic 

applications. With 12 devices ranging from 50,000 to 3.4 million system gates, the 

extended Spartan-3A family provides a broad range of densities and packaging options, 

integrating DSP MACs and low total system cost while increasing functionality. The 

extended Spartan-3A family includes the Spartan-3A device and the higher density 

Spartan-3A DSP device. In addition, it also includes the nonvolatile Spartan-3AN 

device, which combines leading-edge FPGA and flash technologies to provide a new 

evolution in security, protection and functionality ideal for space-critical or secure 

applications. The extended Spartan-3A family improves system performance and 

reduces the cost of configuration. These enhancements combined with proven 90 nm 

process technology, deliver more functionality and bandwidth per dollar.  Base on of its 

exceptionally low cost, the extended Spartan-3A family is ideally suited for a wide range 

of consumer electronics’ applications including broadband access, home networking, 

display/projection, and digital television equipment. The extended Spartan-3A family is 

a superior alternative to mask-programmed ASICs. FPGAs avoid the high initial cost, 
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The timing calculation per sample pulse and timing sample is calculated as 

below: 

• Data per sample pulse  = 12 (bit/sample) × 16 (photo detector) × 16 (samples 

collected)  = 3072 

• Required time to sample and digitalize one frame = 16 (samples collected) × 12 

(bit /sample) × 83.33ns= 15.936 µs  ͠=  16 µs 

On the rising edge of Clk_1, the first bit of the 16 photo detectors of all 4096 

(4×4) module are read by the FPGA XILINX SPARTAN3A.  

It is important to know that the ADC has 12Clk cycle latency for the first 

sampling and will continuously retrieve 12-bit data with no Clk cycle latency. This 

amount of delay is required for initialization four registers described in Table-1[5]. 

Therefore, ADCLK requires a 12Clk cycle for the first sample. The AND gate and 2-to-1 

Multiplexer is used to make the first 12Clk cycle delay for ADCLK. When the output of 

the AND gate becomes 1, line_1 of the multiplexer is selected and the ADCLK will go to 

the 12-bit delay counter.  As a result, the output of this delay is connected to Clk_1. 

If line_0 of the multiplexer is selected, the ADCLK will be connected directly to 

Clk_1 with no delay. When Clk_1 clocks, the first 12-bit detector frame of the 4×4 

module is read. On the first rising edge of Clk_1, the 16-to-1 D-Multiplexers (Xilinx 

D4_16E) select the first frames (frame 1-16) for the 12-bit serial data of the first photo 

detectors (detectors1-16) of the all 4096 modules.  

The selected frames with 12-bit serial data are stored and converted to the 12-bit 

parallel data by using the Serial-In-Parallel-Out Shift Registers (Xilinx SR16RE).   
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Figure 4.2 describes the above process for a 4×4 module. Figure 4.2 and Figure 

4.4 show only one 4x4 module; note that there is a total of 4096 (4×4) modules. 

• Total number of D-Multiplexers for one (4×4) Module is: 

1 (16-to-1D-Multiplexer × 16 (photo detector) = 16  

 

• Total number of D-Multiplexers for level-1 is: 

4096((4×4) Module) × 16(16-to-1 D-Multiplexer) = 65,536 

 

• Total number of SIPO Shift Register for one 4×4 Module is: 

16 (Serial-In-Parallel–Out Shift Register for each detector) ×16 (photo 

detector) = 256  

 

• Total number of SIPO Shift Register for level-1 is: 

4096((4×4) Module) × 256 (SIPO Shift Register) = 1,048,576  

 

Since the first bit of each frame (frame 0 - 15) is read entirely at the same 

rising edge of the ADCLK, The 4- bit counterI (Xilinx CB4RE) shows in Figure 4.2 is 

the only controller for all D-Multiplexers in this level. 
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Each frame is placed on a row of Block Memory Ram. In addition, 12-bit parallel 

data of each detector is placed on each column. As the result, the address of each detector 

can easily be defined in the BRAM. 

The 8-bit counter for the Write address works based on the Clk_3.  At the rising 

edge of this Clk, the first frame (out of 16 frames) of the first detector (out of 16 

detectors) is selected and read by BRAM(192×16) and is placed on the first row - first 

column. This process is continued until the last frame of the last detector is placed on the 

last row and column of the BRAM (192×16) as shown in Figure 4.11.  

Up to here, a 4×4 module is read and is ready to be sent to the next level. In this 

design trace and determine the location of the data collected from each detector is easily 

feasible and each detector has an address defined by BRAM (16×192).  

 The 8-bit counter for the Read address at the rising edge of ClkB reads 12-bits 

parallel data one at a time and is incremented by one. Figure 4.11 shows this process. 
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16 (frame) × 16 (photo detectors) × 12-bit per sample × 6.9 ns (144 MHz, 

CLK) = 21.196µs 

The 12-bit parallel output of sixteen FPGAs in level-1 is collected into the one 

FPGA in level-2. Therefore, the 16-to-1 Multiplexer (Xilinx M16_1E) is used to select a 

12-bit parallel data from the 16 level-1 FPGAs.  

• Total number of Multiplexers (Xilinx M16_1E) for the second level are: 

1(16-to-1Multiplexer × 256 (the 16th groups of level-1 FPGAs out of 4096 

module) = 256  

A 4-bit counter is used to control all the 256 16-to-1Multiplexers at the same 

time. In this design, the first BRAM (192×16) from level-1 is read; then, the second 

BRAM (192×16) of level-1 is read and so forth. Therefore, finding the address of each 

detector in this level is easily feasible. 

The delay of 256 is needed since each BRAM (192×16) of level-1 must be read 

completely in each count. The counter counts from 0 to 16 and in each count has 256 Clk 

cycles delay.  

The Block Memory Generator core uses embedded Block Memory primitives in 

Xilinx FPGAs to extend the functionality and capability of a single primitive to 

memories of arbitrary widths and depths. Sophisticated algorithms within the Block 

Memory Generator core produce optimized solutions to provide convenient access to 

memories for a wide range of configurations. [6] 

Block Memory simple Dual port Ram with the write/read width 16 and write/read 

depth 3072 bits is generated by the IP core generator. 
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4.3. FROM THE SECOND LEVEL TO THE THIRD LEVEL OF FPGAS 

The presented architecture is designed based on three levels FPGAs; in this 

design the first level has 4096 Spartan3A, the second stage has 256 Spartan3A, and the 

final level has 16 Virtex6. Each 16 level-2 FPGA transmits 12-bit in parallel to one of the 

level-3 Virtex6 FPGAs in this level.   

Virtex-6 FPGAs are the programmable silicon foundation for Targeted Design 

Platforms that deliver integrated software and hardware components to enable designers 

to focus on innovation as soon as their development cycle begins. In addition to the high-

performance logic fabric, Virtex-6 FPGAs contain many built-in system-level blocks. 

These features allow logic designers to build the highest levels of performance and 

functionality into their FPGA-based systems. Built on a 40 nm state-of-theart copper 

process technology, Virtex-6 FPGAs are a programmable alternative to custom ASIC 

technology. Virtex-6 FPGAs offer the best solution for addressing the needs of high-

performance logic designers, high-performance DSP designers, and high-performance 

embedded systems designers with unprecedented logic, DSP, connectivity, and soft 

microprocessor capabilities. The Virtex6 has the integrated interface blocks for PCI 

Express® designs. So, the Level-3 is designed by Virtex-6 FPGAs to use PCI Express 

transfer protocol to pass data forward. [7] 

An optional output data pipeline register allows higher clock rates at the cost of 

an extra cycle of latency. During a write operation, the data output can reflect either the 

previously stored data, the newly written data, or remain unchanged. DSP applications 

use many binary multipliers and accumulators, best implemented in dedicated DSP 
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slices. All Virtex-6 FPGAs have many dedicated, full-custom, low-power DSP slices 

combining high speed with small size, while retaining system design flexibility. 

 The number of I/O pins varies from 240 to 1200 depending on device and 

package size. Each I/O pin is configurable and can comply with a large number of 

standards, using up to 2.5V. The Virtex-6 FPGA Select IO Resources User Guide 

describes the I/O compatibilities of the various I/O options. With the exception of supply 

pins and a few dedicated configuration pins, all other package pins have the same I/O 

capabilities, constrained only by certain banking rules. All I/O pins are organized in 

banks, with 40 pins per bank. Each bank has one common VCCO output supply-voltage 

pin, which also powers certain input buffers. Some single-ended input buffers require an 

externally applied reference voltage (VREF). There are two VREF pins per bank (except 

configuration bank 0). A single bank can have only one VREF voltage value. An 

integrated Tri-mode Ethernet MAC (TEMAC) block is easily connected to the FPGA 

logic, the GTX transceivers, and the Select IO resources. This TEMAC block saves logic 

resources and design effort. All of the Virtex-6 devices (except the XC6VLX760) have 

four TEMAC blocks, implementing the link layer of the OSI protocol stack.  

The CORE Generator™ software GUI helps to configure flexible interfaces to 

GTX transceiver or Select IO technology, to the FPGA logic, and to a microprocessor 

(when required). The TEMAC is designed to the IEEE STD 802.3-2005 specification. 

2,500 Mb/s support is also available. [7] 

Each 16 level-2 FPGA transmits 12-bit in parallel to one of the level-3 Virtex6 

FPGAs in this level. Therefore, 49152 bits of data is transferred in 12-bit parallel. On 192 

input pins a total of 786,432 bits are received by each level-3 FPGA.   
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Every Virtex-6 FPGA has between 156 and 1064 dual-port block RAMs, each 

storing 36 Kbits. Each block RAM has two completely independent ports that share 

nothing but the stored data.  Each memory access, read and write is controlled by the 

clock. All inputs, data, address, clock enables, and write enables are registered. Nothing 

happens without a clock. The input address is always clocked, retaining data until the 

next operation. . [7] 

Since the 16 level-2 BRAM (16×3072) is collected and stored in one Virtex6 of 

level-3, the 16-to-1 Multiplexer is designed to select each level-2 BRAM (16×3072) one 

at a time and send it to the output. Therefore, the counter controlling all multiplexers in 

this level has a significant delay in each count in order to get one 4×4 module and finally 

send it to the output. As a final result, the next 4×4 module is counted and so forth.  

The BRAM (16 × 49152) is needed for storing all data bits in the final step. 

Single Port RAM and block memory resources are:  

• 18K BRAM: 1 

• 36k BRAM: 22 

• Address Width: 16 

The output must be 12-bit in serial to transfer all serial data to the fiber channel 

switch. Output of the multiplexer goes to the one Parallel-In – Serial-Out Shift Register 

to convert 12- bit parallel data to 12- bit serial data. 

• Total number of Multiplexers (Xilinx M16_1E) for the third level is: 

1(16-to-1 Multiplexer ×16 (the 16th groups of level-2 FPGAs out of 256) 

=16 
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Required timing sample for level-1 = 16 samples × 12-bit /sample × 83.33 ns (12 Mhz) = 

16 µs 

• Time to parallel transmit one frame of data to the second level is:  

0.996 µs (first step) +1.992 µs (second step) +2.075 µs (third step) +2.241µs 

(write to the BRAM) = 7.304 µs  

Finally, time to parallel transmit one sample data (received data) to the second 

level is 414.336 µs. Since the initial pulse comes at 1 kHz and data is sampled sixteen 

frames at 1ms, this time is acceptable. Therefore, the system has enough time to process 

data to the next level by the time the next pulse arrives. 

3. Level- 2: 

Time required for one sample of data in Level- 2 is:  

[3072 (12-bit per sample×16 photo detectore×16 frame) +1 (multiplexer) +1 

(write to the BRAM)]× 6.9 ns (144 MHz CLK)= 21.2106 µs 

4. Level- 3: 

Time requirement for one sample of data in Level- 3is:  

[3072 (12-bit per sample×16 photo detectore×16 frame) × 16 level-2 FPGA 

+1(multiplexer) +1 (write to the BRAM)] × 6.9 ns (144 MHz CLK) = 339.16 µs 

Total time by image acquisition system for collecting one sample of data and 

transferring it to the fiber channel switch requires 0.774 µs (414.336 µs + 21.2106 µs + 

339.16 µs). This amount of time is less than 1 ms, which meets the initial requirement. 

Since 0.774 µs is smaller than 1 ms, this design is considered optimal. Therefore, the 

system has a sufficient amount of time to process the next sample of data. 
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7. CHAPTER 7: VHDL DEVELOPMENT 

Digital hardware has experienced drastic expansion and improvement in the past 

40 years. Since its introduction, the number of transititors in a single chip has grown 

exponentially, and a sillicon chip now routinely contains hundreds of millions trasisitors.  

In the past, the major applications of digital hardware were computational 

systems.  As application become larger and more complex, the task of designing digital 

cuircuits becomes more difficult. The best way to handle the complexity is to view the 

cuircuit at a more abstract level and utilize software tools to derive the low-level 

implementation.[10] 

FPGAs have traditionally been configured by hardware engineers using a 

Hardware Design Language (HDL). The two principal languages used are verilog HDL( 

Verilog) and Very Hight Speed Integrated Cuircuits(VHSIC) HDL (VHDL) which 

allows designers to design at various levels of abstarction.[11] 

Given the importance of digital image processing and the significant role of 

hardware implemention in order to achive better performance, this chapter covers starting 

point for VHDL and guides for future VHDL implemention projects. 

The system level is designed by Xilinx components. The ISE software is used to 

implement VHDL hardware language defining the RTL level of the system. The ISE 

software controls all aspects of the design flow. Throughout the project navigator 

interface, the access to all design entries and design implemention tools are acceptable.  

VHDL and RTL level for the componets used in the system level are as below: 
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1. 16-to-1 D-Multiplexer: 

Hardware design element select the D-Multiplexer D4_16E (16 × 1) with enable 

from Xilinx library. When the enable (EN) input of the D4_16E decoder/demultiplexer is 

high, one of the 16 active-High output ( D15-D0) is selected with 4 bit binary 

address(A3-A0) input. The non selected outputs are Low. Also, when the EN inputs is 

Low,all outputs are Low. [12] 

The part of VHDL code for the above describtion for D-Multiplexer is : 

                   Y (0) <= I when S="0000" else '0'; 

   Y (1) <= I when S="0001" else '0'; 

   Y (2) <= I when S="0010" else '0'; 

   Y (3) <= I when S="0011" else '0'; 

   Y (4) <= I when S="0100" else '0'; 

   Y (5) <= I when S="0101" else '0'; 

   Y (6) <= I when S="0110" else '0'; 

   Y (7) <= I when S="0111" else '0'; 

   Y (8) <= I when S="1000" else '0'; 

   Y (9) <= I when S="1001" else '0'; 

   Y (10) <= I when S="1010" else '0'; 

   Y (11) <= I when S="1011" else '0'; 

   Y (12) <= I when S="1100" else '0'; 

   Y (13) <= I when S="1101" else '0'; 

   Y (14) <= I when S="1110" else '0'; 

   Y (15) <= I when S="1111" else '0'; 

 



 

Figgure  7.1. RTLL View of D
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2. Serial – In – Parallel – Out Shift Register: 

The SRL16RE is the 16-bit shift register, with shift – left serial input (SLI), 

parallel outputs(Qn), clock enable (CE), and synchronous rest® inputs is selected from 

Xilinx library for the system level. The R input, when High, overrides all other inputs 

during the Low-To High clock© transition and resets the data outputs(Q) low. When CE 

is High and R is Low, the data on the SLI is loaded into the first bit of the shift register 

during the Low-To-High clock(C) transition and appears on the Q0 output. During 

subsequent Low-To-High clock transitions, when CE is High and R is Low, data is 

shifted to the next highest bit position as new data is loaded into Q0.[12] 

The VHDL code that describes above describtion is: 

 signal tmp: std_logic_vector(11 downto 0); 

                         begin 

 process (Clk) 

 begin 

    if (Clk ‘event and Clk='1') then 

                              tmp <= tmp(10 downto 0)& SI; 

     end if; 

 end process; 

                    PO <= tmp;   

 

And the RTL view is shown in Figure 7.2. 
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In level-1, the simple Dual Block Ram ( 16× 192) is generated to store the image 

and an 8-bit address by Xilinx Core Generator software.  Once the BRAM is generated, 

this VHDL code must be instantiated to the top level program. Figure 7.4 shows the steps 

for generating this  BRAM. 

component bram_16_192 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(7 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

Part of  VHDL code for BRAM ( 16 × 192) is: 
-- synthesis translate_on 

BEGIN 

-- synthesis translate_off 

U0 : wrapped_bram_16_192 

 port map ( 

 Clka => Clka, 

 wea => wea, 

 addra => addra, 

 dina => dina, 

 douta => douta); 

-- synthesis translate_on 

 

 

 

 

 

 



 

 

 

 

 

Figure  7.4.. Block Mem
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In level-2, the simple Dual Block Ram ( 16× 3072) is generated to store the image 

by Xilinx Core Generator software.  Once the BRAM is generated, this VHDL code must 

be instantiated to the top level program. Figure 7.5 shows the steps for generating this  

BRAM. 

 

component wrapped_bram_16_3072 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(11 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

A protion of  the VHDL code for BRAM ( 16 × 3072) is: 
 
component bram_16_3072 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(11 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 



 

Figure  7.5. Block Mem
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In level-3, the simple Dual Block Ram ( 16× 49152) is generated to store the 

image by Xilinx Core Generator software.  Once the BRAM is generated, this VHDL 

code must be instantiated to the top level program. Figure 7.6 shows the steps for 

generating this  BRAM. 

component wrapped_BRAM_16_49152 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(15 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 
A portion of the  VHDL code for BRAM( 16 × 49152) is: 
 
component BRAM_16_49152 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(15 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

   



 

 

 

 
 

 
 

Figure  77.6. Block M
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8. CHAPTER 8: CONCLUCION 

Data acquisition system is the process of sampling analog signals that measure the 

physical conditions and converting the resulting samples into digital numeric values that 

can be manipulated by a computer [1]. Data acquisition systems typically convert analog 

signals into digital values for processing. In this project, a memory mapping process for 

an image data acquisition system, which is built out of three levels of arrays of FPGA, 

has been developed. The system has the capability to sample the outputs of large number 

of photo detectors with high resolution, and at a very high frequency.  The received data 

is sampled, digitalized and passed through a three levels of FPGAs to a fiber channel 

switch which provides the final high speed serial output. The array has 256 × 256 of 

photo detectors. Each 16 detectors of the array are grouped to make a 4× 4 photo detector 

array module. A sample from all detectors will represent one frame. To form one image, 

16 frames are required. Therefore, all the detectors of the array are sampled 

simultaneously sixteen times to form the 16 frames. The analog signal sample out of each 

detector is converted into 12-bit digital value.  

The presented architecture is designed based on three levels FPGAs; in this 

design the first level has 4096 Spartan3A, the second stage has 256 Spartan3A, and the 

final level has 16 Virtex6.   

The Block Memory Generator core uses embedded Block Memory primitives in 

Xilinx FPGAs to extend the functionality and capability of a single primitive to 

memories of arbitrary widths and depths.  In level-1, the simple Dual Block Ram is used 

to store the image, and an 8-bit address is used. The LS four bits of this address defines 
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the place location of each detector in the (4×4) module, and the MS four bits determines 

the location of module in each frame.  

Each 16 level-1 FPGAs transmit 12-bit parallel data to one level-2 Spartan-3A 

FPGAs. The Block Memory simple Dual ports RAM with the write/read width of 16 and 

write/read depth of 3072 bits has been generated to store the collected data. The data 

transition from level-1 to level-2 takes 21.196µs. 

 In the third level of the architecture, Virtex-6 FPGAs receive data from 16 level-

2 FPGAs.  The Block Memory simple Dual port RAM (16 ×49,152) has been generated 

to store the collected data. Data transition from level-2 to level-3 takes 28.44 µs. 

The total time required by image acquisition system to collect one frame of data 

and transfer it to the fiber channel switch is 0.774 µs. This amount of time is less than 1 

ms, which meets the requirement. It also gives the system enough time to process the 

next sample of data.  

This work was performed as part of a large project in which several students were 

involved and worked independently on different part of the project to design and develop 

the architecture of the system along with memory mapping of the data. My role in this 

project was the design and development of the memory mapping process which has been 

done successfully. 
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APPENDIX 

1. VHDL CODE FOR BRAM_16_192: 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

Library XilinxCoreLib; 

 

ENTITY bram_16_192 IS 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(7 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

END bram_16_192; 

 

ARCHITECTURE bram_16_192_a OF bram_16_192 IS 

 

component wrapped_bram_16_192 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(7 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

-- Configuration specification  

   generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_rstram_b => 0, 

   c_rstram_a => 0, 

   c_has_injecterr => 0, 

   c_rst_type => "SYNC", 

   c_prim_type => 1, 

   c_read_width_b => 16, 
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   c_initb_val => "0", 

   c_family => "spartan3", 

   c_read_width_a => 16, 

   c_disable_warn_bhv_coll => 0, 

   c_use_softecc => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "READ_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_softecc_output_regs_b => 0, 

   c_has_softecc_output_regs_a => 0, 

   c_has_mem_output_regs_b => 0, 

   c_has_mem_output_regs_a => 0, 

   c_load_init_file => 0, 

   c_xdevicefamily => "spartan3a", 

   c_write_depth_b => 192, 

   c_write_depth_a => 192, 

   c_has_rstb => 0, 

   c_has_rsta => 0, 

   c_has_mux_output_regs_b => 0, 

   c_inita_val => "0", 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 8, 

   c_has_softecc_input_regs_b => 0, 

   c_has_softecc_input_regs_a => 0, 

   c_addrb_width => 8, 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 16, 

   c_write_width_a => 16, 

   c_read_depth_b => 192, 

   c_read_depth_a => 192, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_common_Clk => 0, 

   c_wea_width => 1, 
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   c_has_enb => 0, 

   c_web_width => 1, 

   c_has_ena => 0, 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_rst_priority_b => "CE", 

   c_rst_priority_a => "CE", 

   c_use_default_data => 0); 

BEGIN 

 

U0 : wrapped_bram_16_192 

  port map ( 

   Clka => Clka, 

   wea => wea, 

   addra => addra, 

   dina => dina, 

   douta => douta); 

 

END bram_16_192_a; 

component bram_16_192 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(7 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

bram_16_192 

  port map ( 

   Clka => Clka, 

   wea => wea, 

   addra => addra, 

   dina => dina, 

   douta => douta); 
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2. VHDL CODE FOR BRAM_16_3072: 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

Library XilinxCoreLib; 

ENTITY bram_16_3072 IS 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(11 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

END bram_16_3072; 

 

ARCHITECTURE bram_16_3072_a OF bram_16_3072 IS 

 

component wrapped_bram_16_3072 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(11 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

-- Configuration specification  

  generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_rstram_b => 0, 

   c_rstram_a => 0, 

   c_has_injecterr => 0, 

   c_rst_type => "SYNC", 

   c_prim_type => 1, 

   c_read_width_b => 16, 

   c_initb_val => "0", 

   c_family => "spartan3", 
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   c_read_width_a => 16, 

   c_disable_warn_bhv_coll => 0, 

   c_use_softecc => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "READ_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_softecc_output_regs_b => 0, 

   c_has_softecc_output_regs_a => 0, 

   c_has_mem_output_regs_b => 0, 

   c_has_mem_output_regs_a => 0, 

   c_load_init_file => 0, 

   c_xdevicefamily => "spartan3a", 

   c_write_depth_b => 3072, 

   c_write_depth_a => 3072, 

   c_has_rstb => 0, 

   c_has_rsta => 0, 

   c_has_mux_output_regs_b => 0, 

   c_inita_val => "0", 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 12, 

   c_has_softecc_input_regs_b => 0, 

   c_has_softecc_input_regs_a => 0, 

   c_addrb_width => 12, 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 16, 

   c_write_width_a => 16, 

   c_read_depth_b => 3072, 

   c_read_depth_a => 3072, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_common_Clk => 0, 

   c_wea_width => 1, 

   c_has_enb => 0, 

   c_web_width => 1, 
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   c_has_ena => 0, 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_rst_priority_b => "CE", 

   c_rst_priority_a => "CE", 

   c_use_default_data => 0); 

BEGIN 

 

U0 : wrapped_bram_16_3072 

  port map ( 

   Clka => Clka, 

   wea => wea, 

   addra => addra, 

   dina => dina, 

   douta => douta); 

 

END bram_16_3072_a; 

 

component bram_16_3072 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(11 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

3. VHDL CODE FOR BRAM_16_49152: 

LIBRARY ieee; 

USE ieee.std_logic_1164.ALL; 

 

Library XilinxCoreLib; 

ENTITY BRAM_3 IS 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(15 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 
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 douta: OUT std_logic_VECTOR(15 downto 0)); 

END BRAM_3; 

 

ARCHITECTURE BRAM_3_a OF BRAM_3 IS 

component wrapped_BRAM_3 

 port ( 

 Clka: IN std_logic; 

 wea: IN std_logic_VECTOR(0 downto 0); 

 addra: IN std_logic_VECTOR(15 downto 0); 

 dina: IN std_logic_VECTOR(15 downto 0); 

 douta: OUT std_logic_VECTOR(15 downto 0)); 

end component; 

 

-- Configuration specification  

   generic map( 

   c_has_regceb => 0, 

   c_has_regcea => 0, 

   c_mem_type => 0, 

   c_rstram_b => 0, 

   c_rstram_a => 0, 

   c_has_injecterr => 0, 

   c_rst_type => "SYNC", 

   c_prim_type => 1, 

   c_read_width_b => 16, 

   c_initb_val => "0", 

   c_family => "virtex6", 

   c_read_width_a => 16, 

   c_disable_warn_bhv_coll => 0, 

   c_use_softecc => 0, 

   c_write_mode_b => "WRITE_FIRST", 

   c_init_file_name => "no_coe_file_loaded", 

   c_write_mode_a => "READ_FIRST", 

   c_mux_pipeline_stages => 0, 

   c_has_softecc_output_regs_b => 0, 

   c_has_softecc_output_regs_a => 0, 

   c_has_mem_output_regs_b => 0, 

   c_has_mem_output_regs_a => 0, 

   c_load_init_file => 0, 
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   c_xdevicefamily => "virtex6", 

   c_write_depth_b => 49152, 

   c_write_depth_a => 49152, 

   c_has_rstb => 0, 

   c_has_rsta => 0, 

   c_has_mux_output_regs_b => 0, 

   c_inita_val => "0", 

   c_has_mux_output_regs_a => 0, 

   c_addra_width => 16, 

   c_has_softecc_input_regs_b => 0, 

   c_has_softecc_input_regs_a => 0, 

   c_addrb_width => 16, 

   c_default_data => "0", 

   c_use_ecc => 0, 

   c_algorithm => 1, 

   c_disable_warn_bhv_range => 0, 

   c_write_width_b => 16, 

   c_write_width_a => 16, 

   c_read_depth_b => 49152, 

   c_read_depth_a => 49152, 

   c_byte_size => 9, 

   c_sim_collision_check => "ALL", 

   c_common_Clk => 0, 

   c_wea_width => 1, 

   c_has_enb => 0, 

   c_web_width => 1, 

   c_has_ena => 0, 

   c_use_byte_web => 0, 

   c_use_byte_wea => 0, 

   c_rst_priority_b => "CE", 

   c_rst_priority_a => "CE", 

   c_use_default_data => 0); 

BEGIN 

U0 : wrapped_BRAM_3 

  port map ( 

   Clka => Clka, 

   wea => wea, 

   addra => addra, 
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   dina => dina, 

   douta => douta); 

 

END BRAM_3_a; 

  

4. D – Multiplexer ( 1×16): 
library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity rtl_1 is 

 PORT ( I, Clk : in std_logic;   -- input of th edemux 

    S : in std_logic_vector (3 downto 0);   --4 bit address line 

    Y : out std_logic_vector(15 downto 0)); -- 16 out put 

     

end rtl_1; 

 

architecture Behavioral of rtl_1 is 

 

begin 

 process (Clk, Y ) 

 variable cnt : integer range 0 to 16:='0'; 

 begin 

  if ( Clk'event and Clk='1') then  

         Y(0)  <= I when S="0000" else '0'; 

   Y(1)  <= I when S="0001" else '0'; 

   Y(2)  <= I when S="0010" else '0'; 

   Y(3)  <= I when S="0011" else '0'; 

   Y(4)  <= I when S="0100" else '0'; 

   Y(5)  <= I when S="0101" else '0'; 

   Y(6)  <= I when S="0110" else '0'; 

   Y(7)  <= I when S="0111" else '0'; 

   Y(8)  <= I when S="1000" else '0'; 

   Y(9)  <= I when S="1001" else '0'; 

   Y(10) <= I when S="1010" else '0'; 

   Y(11) <= I when S="1011" else '0'; 

   Y(12) <= I when S="1100" else '0'; 

   Y(13) <= I when S="1101" else '0'; 
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   Y(14) <= I when S="1110" else '0'; 

   Y(15) <= I when S="1111" else '0'; 

    

end Behavioral; 

 

5. SIPO Shift Register: 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.NUMERIC_STD.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

 

entity SI_PO is 

port(Clk, SI : in std_logic; 

     PO      : out std_logic_vector(11 downto 0)); 

end SI_PO; 

 

architecture beh of SI_PO is 

signal tmp: std_logic_vector(11 downto 0); 

begin 

 process (Clk) 

 begin 

  if (Clk'event and Clk='1') then 

   tmp <= tmp(10 downto 0)& SI; 

  end if; 

 end process; 

PO <= tmp; 

end beh; 

 

6. Multiplexer (16 ×1) : 
library ieee; 

use ieee.std_logic_1164.all; 

entity Multiplexer_16_1 is 

    port (D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16 : in std_logic_vector(11 downto 0); 

        Clk : in std_logic; 

          S_1 : in std_logic_vector (3 downto 0); 

          Z : out std_logic_vector(11 downto 0)); 

end Multiplexer_16_1; 
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architecture Behavioral of Multiplexer_16_1 is 

signal cnt : integer range 0 to 16  ; 

 

begin 

process (Clk,D1,D2,D3,D4,D5,D6,D7,D8,D9,D10,D11,D12,D13,D14,D15,D16) 

    begin 

  if ( Clk'event and Clk='1' ) then 

     if ( cnt > 16 ) then 

    z<=(others=>'0'); 

    else 

    cnt<=cnt+1; 

   

      case S_1 is  

         when "0000" => Z <= D1;  --Detector1 

         when "0001" => Z <= D2; 

   when "0010" => Z <= D3; 

   when "0011" => Z <= D4; 

   when "0100" => Z <= D5; 

   when "0101" => Z <= D6; 

         when "0110" => Z <= D7; 

         when "0111" => Z <= D8; 

         when "1000" => Z <= D9; 

         when "1001" => Z <= D10; 

         when "1010" => Z <= D11; 

         when "1011" => Z <= D12; 

         when "1100" => Z <= D13; 

         when "1101" => Z <= D14; 

         when "1110" => Z <= D15; 

         when "1111" => Z <= D16;          

         when others => null; 

      end case; 

    end if; 

 end if; 

    end process; 

 

end Behavioral; 


