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ABSTRACT 

THE DESIGN OF A SINGLE-LEGGED ROBOT 

By 

Shari Eskenas 

Master of Science in Electrical Engineering 

This project involves the design and implementation of a single-legged walking stick robot that 

utilizes a unique locomotion method.  The robot is fully autonomous and can avoid obstacles.  

Forward locomotion is achieved by rotating the back end of the device up and over the front end.  

The robot consists of a long bar that connects two boxes that each house electrical and 

mechanical components.  Wireless RF communication is used between the two boxes to 

coordinate their movements.  As a box is lifted, position sensing is provided by an accelerometer 

and obstacle avoidance is provided by an infrared sensor.  A programmable microcontroller 

manages the control of the components.   
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Chapter 1. Overview 

 
1.1 Introduction 

 

The most common forms of robotic locomotion include wheeled and multi-legged robots. There 

are advantages and disadvantages associated with these conventional locomotion methods.  

Wheeled locomotion has the advantages of good efficiency, balance, and simplicity.  However, 

its disadvantages include difficulties with traction, stability, maneuverability, and control.  The 

robot wheels may not provide enough traction and stability for the desired terrain. Nevertheless, 

wheeled locomotion remains the most common mobility method in robots and vehicles.  

Alternatively, the main advantage of multi-legged locomotion consists of adaptability and 

maneuverability in rough terrain since only a single set of point contacts is required.  

Additionally, a multi-legged robot can cross a hole or gap as long as its reach exceeds the hole 

width. The main disadvantages of legged locomotion include high power consumption and 

mechanical complexity.  The leg must be capable of sustaining the robot’s weight, and may be 

required to lift and lower the robot.  Also, the legs must have a sufficient number of degrees of 

freedom in order to achieve high maneuverability.    

 

1.2 Objective 

The goal of this project was to create a new method of robotic locomotion whose performance 

would be comparable to the performance of conventional locomotion systems.  The system 

consists of a rigid bar connected to servo actuators at both extremes. Each servo actuator is in a 

box that remains in contact with the ground while the robot is at rest.  The robot can be 

envisioned as one rigid leg with a box at each end.    As shown in Figure 1.1, each box houses a 

servo actuator and two motors.  The output shafts of the servo and the motor are orthogonal to 
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each other.  The top and bottom of each box are connected to a platform through a motor shaft.  

The box also contains the electronic components, which include an accelerometer, infrared 

distance sensors, a microcontroller, a motor controller, and battery supplies.  

 

 

 

 

The mechanism by which the robot moves forward consists of one box that is rotated 180 

degrees up and over the other box by the other servo actuator on the opposite end. The servo 

rotates with variable speed based on the feedback of an accelerometer.  An illustration of the 

robot’s locomotion process showing four different positions during the rotation cycle is 

displayed in Figure 1.2.  In step 1, both boxes containing the servos are resting on the ground in 

the zero degree position. In step 2, the servo contained in the first box starts rotating clockwise 

and in turn lifts the opposing box off the ground.  In step 3, the rotating box has reached the 90 

degree position.  In step 4, the rotating box enclosure has returned to the ground after having 

rotated 180 degrees.  To continue moving the robot forward, steps one through four are repeated 

until the robot faces an obstacle.  

Figure 1.1- Diagram of One Box of the Robot  
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If an obstacle is detected by the infrared distance sensor facing the forward direction before the 

rotating box is beyond the 90 degree position, an obstacle avoidance routine will be executed.  If 

an obstacle is detected, the rotating servo shaft becomes neutral when the rotating box is at the 

90 degree position.  The motor attached to the platform that is in contact with the ground then 

rotates the robot around the vertical axis.  An illustration of the robot’s configuration when it 

rotates vertically is shown in Figure 1.3.  The motor rotates the robot vertically until the infrared 

sensor no longer detects an obstacle.  Once an obstacle is no longer detected, the robot completes 

the 180 degree rotation in the new direction.   

 

 

                                          

Figure 1.2- Illustration of Robot’s Positions during One Cycle 
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1.2 Project Outline 

 

In Chapter 2, the system integration of the electrical and mechanical components of the robot 

is outlined.  The algorithm for the robot is also defined. 

In Chapter 3, the mechanical design of the robot is discussed.  The topics include the overall 

physical description of the robot, stability mechanism design, rotational axis design, and 

construction material choices.   

In Chapter 4, the hardware design decisions for each component are described.  The 

components include the microcontroller, servo, motors, infrared proximity sensors, motor 

controller, accelerometer, and power supplies.   

In Chapter 5, the component information is provided.  This information was retrieved from 

the datasheets of the components as well as resources listed in Works Cited. 

In Chapter 6, the C programming environment and the robot’s algorithms are described.   

In Chapter 7, electrical and mechanical testing processes are described.  The construction of 

the prototype is also discussed.   

 

Figure 1.3- Illustration of Robot Rotating Vertically 
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In Chapter 8, the completed robot design is presented.  Photographs of the final robot are 

shown as well as snapshots from videos of the robot in motion.   

Chapter 9 discusses the conclusion and future work.  

The overall circuit schematic is shown in Appendix A.  The C programs used in each 

microcontroller are shown in Appendix B.   
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Chapter 2. System Integration 

 

This chapter describes the roles of the robot’s components within the context of the system.  The 

algorithm for the robot’s forward and rotational movements is also described.   

 

2.1 Components 

 

A microcontroller is a device that contains all computer components including the CPU, the 

memory, the I/O parts, and buses in a single chip.  A microcontroller called the Wixel that is 

programmable in the C language was used in this project to control the operation of the robot.  

There is a Wixel in each box of the robot.  The Wixel has wireless capability, which is used in 

this project to transmit position sensing data back and forth between each box.  The sensors and 

actuators used in the robot were interfaced with the microcontroller in each box through 

input/output (I/O) pins.  These components include a servo, two motors, an accelerometer, two 

infrared distance sensors, and a motor controller.  Sensor data was read by the microcontroller 

through analog input pins.  The actuators were controlled by the microcontroller’s digital output 

pins, which provided speed control through pulse width modulation (PWM) signals.  Pulse width 

modulation works by changing the signal’s average voltage by controlling the amount of time the 

signal is high during a period.   

 

Each box of the robot is attached to the bar by a servo shaft.  A servo contains a motor and 

control circuitry that provides position feedback and controls the speed of rotation.  Servos were 

selected in this project to provide the necessary torque to allow the robot to lift itself over by 180 

degrees.  Servos normally do not have the ability to rotate beyond a certain degree due an 

internal mechanism that provides position feedback.  In this project, the servos were specially 
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ordered to be modified for continuous rotation and consequently position feedback was removed.  

The speed of the servo could still be controlled by a PWM signal.  

 

Motors were used in this project to connect the top and bottom of each box to a platform that 

could rotate the robot around the vertical axis to avoid an obstacle.  The decision to use motors 

instead of servos was reached after considering that additional servos were too large to fit within 

the limited space in each box of the robot.  Furthermore, the torque required to rotate the robot 

around the vertical axis was not as high as the torque required to lift the robot over 180 degrees.  

Therefore, small motors with less torque capability than the servos were chosen for the purpose 

of rotating the robot around the vertical axis.  The motors were interfaced to a dual motor driver 

module that was used to control their operation.  The motor driver has digital outputs that turn 

each motor on and off.  It also contains a PWM input that is used to provide a varied voltage to 

the motor inputs.   

 

An accelerometer was used in each box to indicate the angular position of the box.  The Wixel 

microcontroller controls the movement of the robot by utilizing the values of the accelerometer it 

is connected to as well as the accelerometer values that are wirelessly transmitted to it. 

 

Infrared distance sensors are used to detect and avoid obstacles.  Two infrared distance sensors 

are placed on the robot so that there is always an infrared distance sensor facing the forward 

direction of movement.  Infrared distance sensors were chosen due to their low cost and ability to 

detect an obstacle within the range of 10-80 cm.   
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2.2 The Algorithm  

An algorithm was created to achieve the robot’s forward and rotational movement processes.  

Accelerometer values are constantly being transmitted and received between each box.  There 

are four possible combinations of final box positions including one box being at 0 degrees and 

the other box at 180 degrees (and vice versa), both boxes being at 180 degrees, and both boxes 

being at 0 degrees. This is illustrated in Figure 1.2.  The robot is programmed so that one servo is 

activated based on the box position combination and it will rotate the other box 180 degrees.  

Once the other box has rotated 180 degrees, the servo turns off and the other servo rotates and 

repeats the process.  This procedure repeats indefinitely until an infrared sensor detects an 

obstruction.  If the IR sensor detects an obstacle and the robot hasn’t been rotated past 90 

degrees, the servo will hold its position once the rotating box is at 90 degrees.  The motor that is 

attached to the platform contacting the ground will then rotate the entire robot around the vertical 

axis until the infrared sensor value no longer indicates an obstacle.  The motor then turns off and 

the servo completes the rotation of the box to 180 degrees.  Figures 2.1 and 2.2 below show 

flowcharts of the robot’s forward movement and rotational processes, respectively.  Each 

component and sub-process was tested separately before everything was integrated into a final 

program that governed the robot’s behavior. 
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Figure 2.1- Forward Movement Flowchart 
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Figure 2.2- Rotation Movement Flowchart 
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Chapter 3. Mechanical Design 

 
In this chapter, the mechanical design of the robot is discussed.  The topics include the 

overall physical description of the robot, stability mechanism design, rotational axis 

design, and construction material choices.   

 

3.1 Designing for Stability  

 

 

The general physical design of the robot is shown in Figure 3.1.  The servo contained in 

“Box A” rotates the other box 180 degrees.  The robot’s center of gravity is offset from 

the middle of the robot, which would cause it to tip over during rotation.  Therefore, 

stability extensions are attached to the box to avoid the robot tipping over during rotation.  

As long as the center of gravity is located between the two extensions, the robot won’t tip 

over.  Stability extensions and a platform are shown on only one side of a box for clarity.  

If the stability extensions were attached to a platform, then during a rotation cycle they 

might rotate to block the path of the bar that connects the boxes.  Many different stability 

extension designs were attempted in testing.  The simplest and lightest design was found 

to be two “sticks” making contact with the ground at both ends of the box, as shown in 

Figure 3.1.  The stability extensions on each side of the robot were configured slightly 

differently to avoid interference during a rotation cycle. A photo of one stability 

extension set is shown in Figure 3.2.  
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           Figure 3.1- Diagram of forces on the robot showing one set of stability extensions 

 

 

 

 
 

Figure 3.2- One set of stability extensions 

  

 

 

 

 

 

 

Platform 
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3.2 Vertical Axis Rotational Design  
 

 

A motor shaft protrudes from the top and bottom of each box of the robot to connect to a 

platform. The robot is able to rotate in a different direction by rotating vertically on the 

platform that is in contact with the ground. An illustration of the robot’s vertical rotation 

movement configuration is shown in Figure 3.3.  Each 6mm thick platform was cut into 

the shape of a square with the corners cut off to avoid interference with the robot’s bar 

during rotation. A smooth material was needed between the box and the platform to allow 

it to rotate freely without being constrained by friction.  The product “Magic Sliders” 

from Home Depot worked well beneath each platform to overcome this problem.  The 

Magic Sliders have a very smooth surface intended to easily allow furniture to slide.  The 

Magic Slider squares were attached with an adhesive to each corner of the top and bottom 

of the box.  This solution worked well and the platform rotated freely without getting 

stuck.  Also, the mounting hub that connected the platform with the motor shaft needed to 

rotate on a surface without too much friction.  A nylon washer was placed over the motor 

shaft beneath the mounting hub so it could rotate on a smooth surface.  A side of the box 

with and without the platform is shown in Figure 3.4 and Figure 3.5, respectively.   

 
Figure 3.3- Rotational Movement Configuration 
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Figure 3.4- Side of box with platform 

Figure 3.5- Side of box without platform attached 

Platform 

Nylon Washer 

Magic Slider 
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3.3 Construction Material Choices  

 
 

The plastic material Sintra was used for the boxes’ platforms, the bar connecting the 

boxes, and on the stability extensions.  This material was chosen because it is lightweight 

and easy to cut and drill holes in.  The plastic boxes were chosen because they are 

lightweight and their dimensions were suited to compactly store the electronics.  The 

stability extensions were made from erector set pieces because they can be easily bent 

and cut into the desired shape.  It was important that the stability extensions be easily 

modifiable because their ideal shape and configuration was found through meticulous 

experimentation.   
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Chapter 4. Hardware Design 

 

The hardware design decisions for each component are discussed in this section.  The detailed 

component descriptions are presented in Chapter 5. 

 

4.1 Wixel Microcontroller Module 

A small microcontroller module called the Wixel (from Pololu Electronics) was used in this 

project.  It contains a Texas Instruments microcontroller. It was programmed in C in this project.  

This module was chosen because it has built-in wireless capability.  It is the same price as other 

hobby microcontroller modules that would require a separate wireless module. The Wixel is 

small, lightweight, and economical ($20).  The Wixel was placed at the top of the box below the 

removable lid for easy access to program it with the USB cable. 

 

The Wixel’s pins are configured as analog inputs to read data from the accelerometer and 

infrared distance sensors.  The Wixel’s pins are configured as digital outputs to control the 

operation of the motors.  The Wixel also provides the pulse width modulation (PWM) signals to 

control the speed of the motors and servo.   

 

4.2 HS-805BB Hitec Servo 

Digital servos exhibit a higher performance than analog servos, but digital servos are more 

expensive.  The analog HS-805BB Hitec servos were selected for this project because of their 

lower cost.  Each servo occupies the majority of the box space.  If a more expensive, smaller 

servo that supplied sufficient torque were used, the size of each box could be reduced.  The 

servos used in this project are rated for a stall torque of 343 in*oz, which was sufficient for the 
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torque requirements of the robot.  The servo was specially ordered (from SuperDroid Robots) to 

be modified for continuous rotation.  There are many reasons why a continuous rotation servo 

was chosen instead of a motor.  Servos are normally more compact and offer higher torque than 

motors, which usually require external gearboxes to have comparable torque.  In this project, it 

was important to have an actuator that wasn’t too large for the box and also offered significant 

torque.  Also, a servo eliminates the need for an external speed control circuit because a control 

line is built-in for a PWM input that sets the speed and direction of rotation.   

 

4.3 Sharp GP2Y0A21YK Infrared Proximity Sensors 

The infrared distance sensors are used in this project for the purpose of detecting and avoiding 

obstacles. This allows the robot to be completely autonomous without the need for a remote 

control to demonstrate its unique method of turning.  The SHARP GP2Y0A21YK IR distance 

sensors were chosen because of their low cost and range of 10-80 cm.  The sensors must be able 

to detect an obstacle at a distance greater than the length of the robot in order to avoid the robot 

getting stuck once it makes a full forward rotation.  The robot measures 53 cm including the 

stability extensions, which is within the distance sensor’s range.  Two IR distance sensors are 

mounted to each box on the two sides that are parallel to the direction of forward motion.  This is 

because one IR distance sensor needs to be facing the front of the robot, which alternates based 

on the cycle.   
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4.4   298:1 Micro Metal Gearmotors and Motor Driver 1A Dual TB6612FNG 

The gear motors are used to rotate the robot in order to orient it in a different direction of travel.  

They are attached to platforms that make contact with the ground. The torque requirements of the 

gear motors did not have to be as high as the torque required of the servos.  This is because the 

gear motors rotate the robot on their axes rather than lifting up a load along a lever arm. 

Therefore, 298:1 micro metal gearmotors were chosen that have a lower stall torque rating of 40 

in*oz.  They were also chosen because of their small size, which was required in order for the 

motors to fit in the box above and below the wide servo.  The 1A Dual TB6612FNG motor 

driver was chosen to control the two motors because of its low cost and ability to drive two 

motors separately with a PWM signal.  It is also convenient that all components are installed on a 

board and the pins of the TB6612FNG chip are broken out to 0.1" spaced pins.   

 

4.5  MMA7341L 3-Axis Accelerometer ±3/11g 

The accelerometer provides analog values that indicate the angular position of the box it is 

enclosed in.  The accelerometer values are used in the C program to control the movements of 

the robot.  The accelerometer used was chosen because of its small size and low cost at only 

$11.95 from Pololu.  It is also conveniently in the form of a breakout board with ten 0.1" spaced 

pins.  It has more than enough functionality, as only one of its three axes is utilized in this project 

because each box is rotated along one axis. 

 

4.6  Rechargeable Power Supplies and High Current Regulator 
 

A 3.7 V Lithium Ion coin cell rechargeable battery was used as the power source for the Wixel 

module and accelerometer because of their low current draw.  Also, having a separate power 

supply for the microcontroller allows it to be isolated from inductive noise that can be generated 

http://www.pololu.com/catalog/product/1094/specs
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from the servo and motors.  The Wixel has an approximate operating current of up to 30 mA and 

the accelerometer has a current draw of 0.5 mA.  The battery has a current rating of 110 mAh.  

This coin cell battery was chosen because it is small, lightweight, and rechargeable.  Its charger 

is the LiPo Charger Basic Mini-USB (Sparkfun Electronics), which was placed near the 

removable lid of the box for easy recharging access.   

A 7.2 V  

 

A 7.2 V NiMH rechargeable power pack was chosen as the supply for the servo, motors, and IR 

sensors.  It is a custom-made battery pack purchased from Batteries Plus that was chosen because 

of its high current capacity and discharge rate that were needed to accommodate the large current 

draw of the servo.  The batteries were also chosen for the power pack because they were 

lightweight.  The battery pack weighs approximately 4 oz. Each battery pack was placed on the 

outside of each box because of the limited space inside. This power supply was chosen for the IR 

distance sensor, which typically consumes 30 mA, in order to conserve energy in the coin cell 

battery.  

 

A high current voltage regulator was needed to regulate the 7.2 V NiMH power pack to 6 V to 

comply with the voltage ratings of the servo, motors, and IR sensors.  The LT1528 from Linear 

Technology was chosen because of its high current capacity of 3 A.  Two external resistors were 

used with the voltage regulator to obtain the desired 6 V output.    
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Chapter 5. Component Information 

 
This chapter presents a list of all components and their technical information.  The 

information was retrieved from the components’ datasheets in addition to resources listed 

in Works Cited.  A table of all parts, quantities, costs, and suppliers is shown in        

Table 5.1.     

 

Table 5.1: Component Information 

Component Quantity  Individual 

Cost  

Supplier 

HS-805BB Hitec Servo (modified for continuous 

rotation) 

2 $48.40 SuperDroid Robots 

Wixel Programmable USB Wireless Module 2 $20.95 Pololu 

MMA7341L 3-Axis Accelerometer 2 $11.95 Pololu 

Lithium Ion 3.6 V Coin Cell Rechargeable Battery 2 $2.95 Sparkfun 

24.5 mm Coin Cell Breakout 2 $2.95 Sparkfun 

24.5 mm Coin Cell Holder 2 $0.95 Sparkfun 

LiPo Charger Basic- Mini USB 2 $9.95 Sparkfun 

Motor Driver 1A Dual TB6612FNG 2 $8.95 Sparkfun 

298:1 Micro Metal Gearmotor 4 $15.95 Pololu 

Micro Metal Gearmotor Bracket Pair 2 $4.99 Pololu 

Universal Aluminum Mounting Hub for 4mm Shaft 

Pair 

2 $6.95 Pololu 

Infrared Proximity Sensor- Sharp GP2Y0A21YK 4 $11.95 Pololu 

7.2 V NiMH Battery Pack 2 $34.44 Batteries Plus 

LT1528 High Current Voltage Regulator 2 $14.26 Sparkfun 

SPDT Mini Power Switch 4  $1.50 Sparkfun 

ProtoBoard- Wombat 2 $9.95 Sparkfun 

Female header: 1x11 pin 2 $0.74 Pololu 

Female header: 1x5 pin 4 $0.44 Pololu 

Female header: 1x12 pin 2 $0.79 Pololu 

Female header: 1x8 pin 4 $0.59 Pololu 

Female header: 1x3 pin 2 $0.34 Pololu 

Blue LED 3 mm  2 $0.50 Pololu 

Green LED 3 mm 2 $0.19 Pololu 

Sintra- 8” x 12” x 6 mm 3 $5.75 Solarbotics 

Amac Box Turquoise #10022899 2 $3.19  The Container 

Store 

Magic Sliders 15/16 in. Square (8-pack) 2 $6.98 Home Depot 

                           

Total cost: 

 

$505.45 
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5.1 Wixel USB Wireless Microcontroller Module 

The Pololu Wixel module contains the CC2511F32 microcontroller from Texas Instruments, 

which is compatible with the CC2500 transceiver, the CC2510Fx family, and the CC2511Fx 

family of chips from Texas Instruments. The Wixel has a 2.4 GHz integrated radio transceiver, 

32 KB of flash memory, 4 KB of RAM, 2 USARTs (for serial or SPI), 7 timer channels (capable 

of PWM), and a USB interface.  The transceiver consists of a 2.4 GHz PCB trace antenna and 

RF circuitry.  The Wixel has 15 general-purpose I/O lines, including 6 analog inputs connected 

to a 7-12 bit analog-to-digital converter.  The Wixel can be powered from its VIN pin with a 2.7 

– 6.5 V source or from its USB port. It is programmable in C through its built-in USB bootloader 

and the Wixel Software Developer’s Kit.  A labeled photo of the Wixel is shown in Figure 5.1.  

It is a small module with dimensions of 0.7" × 1.5".   

 

 
 

 

 

 

 

Figure 5.1- Pololu Wixel Microcontroller Module
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5.2 HS-805BB Hitec Servo 

 

A servo is different than a dc motor because it uses an external PWM signal to precisely control 

the position of its shaft.  The pulse width of the PWM signal is varied to control the shaft 

position.  The inside of a servo consists of a dc motor, a feedback device, a gearbox, and a 

control circuit.  Externally, there is a drive shaft and three wires for power, ground, and the 

control signal.  The feedback device is usually a potentiometer that has a control dial 

mechanically linked to the motor.  The potentiometer’s control dial is rotated with the rotation of 

the motor shaft.  The motor shaft is usually limited to a rotation of 180 degrees because the 

potentiometer cannot rotate indefinitely.  The potentiometer’s resistance indicates how far the 

shaft has been rotated.   The control circuit uses this resistance and the PWM input signal to 

drive the motor to rotate the servo shaft to a certain position and hold.   

 

The HS-805BB is an analog servo rated for 343 in*oz of torque at 6 V.   It uses a nylon gear 

train and a 10mm 15 tooth output shaft.  Its dimensions are 2.6"x 1.2"x 2.3".  A photo of this 

servo is shown in Figure 5.2.  

 

 

 
 Figure 5.2- HS-805BB Hitec Servo 
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This servo was modified for continuous rotation by SuperDroid Robots.  Continuous rotation 

servos have the advantage over dc motors of containing a gearbox and motor controller.  There is 

a general procedure for modifying a servo for continuous rotation that involves disconnecting the 

potentiometer from the output shaft.  This removes the feedback that normally makes the servo a 

closed-loop system.  Consequently, continuous rotation servos don’t have position control 

capability.  The potentiometer (or a resistor) must still be input to the control circuit as a constant 

resistance.  When the servo’s PWM input signal commands it to go to a certain angle and the 

potentiometer feedback is fixed at a different angle, the control circuit will run the motor 

continually because the feedback will never reach the desired angle.  The motor will only stop if 

the servo is programmed to reach the same angle indicated by the potentiometer value.   

 

5.3 Sharp GP2Y0A21YK Infrared Proximity Sensor 

 

The GP2Y0A21YK0F is an integrated distance measuring sensor unit that consists of a position 

sensitive detector (PSD), infrared emitting diode (IRED), and a signal processing circuit.  It 

performs triangulation to detect distances.  A pulse of light in the wavelength range of 780 nm to 

920 nm is emitted and reflected back by an object.  The angle at which the light returns is 

affected by the distance of the reflective object.  Triangulation detects this reflective angle to 

determine distance.  The IR distance sensor uses a lens to transmit the reflected light onto an 

enclosed linear CCD array that determines the angle.  The IR distance sensor then outputs a 

corresponding analog voltage value. 

 

The distance measuring range is 10-80 cm.  It provides an analog output voltage that is 

proportional to the distance.  Its supply voltage can be from 4.5 to 5.5 V and its typical 
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consumption current is 30 mA.  A photo of this sensor is shown in Figure 5.3.  A graph from the 

data sheet showing the relationship between output voltage and the distance to the detected 

object is shown in Figure 5.4.  

 

 

 

 

 

 

 

 

 

 
 

 

Figure 5.3- SHARP Infrared Proximity Sensor 

 

Figure 5.4- Output Voltage vs. Distance for IR Sensor 
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 5.4 298:1 Micro Metal Gearmotor 

 
This brushed DC gearmotor from Pololu contains a 298:1 metal gearbox.  Its dimensions 

are 0.94" x 0.39" x 0.47".  At 6 V, the specifications are 45 RPM and 30 mA free-run, 40 

oz-in and 0.36 A stall.  An image of this gearmotor is shown in Figure 5.5. 

 

 

 

 

 

5.5 Motor Driver 1A Dual TB6612FNG 

 

The TB6612FNG motor driver controls up to two DC motors at a constant current of 1.2 

A and peak current of 3.2 A. Two input signals, IN1 and IN2, are used to control the 

motor in one of four function modes that include clockwise, counterclockwise, short-

brake, and stop. The two motor outputs, A and B, are separately controlled and the speed 

of each motor is controlled with a PWM input signal.  An image of the motor driver 

breakout board offered by Sparkfun Electronics is shown in Figure 5.6. 

 

Figure 5.5- 298:1 Micro Metal Gearmotor 

 

http://www.pololu.com/catalog/product/1094/specs
http://www.pololu.com/catalog/product/1094/specs
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The PWM signal varies the speed of the motor by varying the average voltage applied to 

it.  The average voltage is set by multiplying the logic high voltage by the duty cycle of 

the signal, which is the amount of time the signal is high divided by the total period of the 

signal.    An H-bridge circuit controls the motor’s direction of rotation by dynamically 

changing the polarity of the voltage applied to the motor.  A basic illustration of an H-

bridge circuit that models the four transistors as switches is shown in Figure 5.7.   

Figure 5.6- TB6612FNG Motor Driver Breakout Board 
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When switches 1 and 4 are closed, the positive motor terminal is connected to the supply 

voltage and the negative terminal is connected to Ground, which causes the motor to run 

clockwise.  When switches 2 and 3 are closed, the positive motor terminal is connected to 

Ground and the negative terminal is connected to the supply voltage, thereby causing the 

motor to rotate counterclockwise.   

 

The TB6612FNG datasheet provides a table of the function modes resulting from 

different input values, as shown in Figure 5.8.  For this project, the clockwise (CW) 

function mode was used.  The IN2 inputs were directly connected to Ground, the same 

PWM signal was constantly applied to both PWM inputs, and each IN1 input was 

connected to an I/O pin that was set in order to run the motor.  The H-bridge diagram 

from the datasheet that illustrates the CW function mode is shown in Figure 5.9.  The 

Figure 5.7- Basic H-Bridge Configuration 
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diagram shows LD MOS (laterally diffused metal oxide semiconductor) transistors and 

diodes that protect against back EMF from the motor.   

 

 

 

 

 

 

 

Figure 5.8- TB6612FNG Inputs and Outputs 

 

 

Figure 5.9- TB6612FNG Clockwise Operating Mode 
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5.6 MMA7341L 3-Axis Accelerometer ±3/11g 

 

The Freescale MMA7341L accelerometer features signal conditioning, a 1-pole low pass filter, 

temperature compensation, self test, and g-Select that allows for the selection between the 

sensitivities +/- 3g and +/- 11g.  The sensitivity at 3g is 440 mV/g, while the sensitivity at 11g is 

117.5 mV/g.  The accelerometer has a low current consumption of 0.4 mA and a low voltage 

operation of 2.2 V-3.6 V.  An image of the accelerometer next to a US quarter for size 

comparison is shown in Figure 5.10.   

The accelerometer contains a micromachined capacitive sensing cell (g-cell) and a signal 

conditioning ASIC.  The g-cell can be modeled as a set of movable beams attached to a 

moveable central mass that moves between fixed beams.  The movable beams form two back-to-

back capacitors.  When the system accelerates, the central mass moves and the distance between 

the beams changes. This causes each capacitor’s value to change because the capacitance is 

related to distance by   
  

 
 , where A is the area of the beam, ɛ is the dielectric constant, and D 

is the distance between the beams.  The ASIC obtains acceleration data from the difference 

between the two capacitors.  The ASIC also performs signal conditioning and filtering to provide 

an output voltage that is proportional to the acceleration. 
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5.7 Coin Cell Rechargeable Battery and LiPo Charger 

The Lithium Ion 3.6 V coin cell rechargeable battery is rated for 110 mAh.  Its dimensions are 

24.5x5.2mm.   An image of this battery is shown in Figure 5.11.  

 

 

 

This battery is charged with the LiPo Charger Basic that is available from Sparkfun Electronics. 

This charger can charge single cell Lithium Ion or Lithium Polymer batteries.  A mini USB cable 

can be connected to it for charging. Its dimensions are 29.4x10.8mm.  An image of the charger is 

shown in Figure 5.12.   

 

Figure 5.10- MMA7341L accelerometer next to US Quarter 

Figure 5.11- Lithium Ion Coin Cell Battery 
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5.8 NiMH Power Pack 

 

The 7.2 V NiMH Power Pack from Batteries Plus consists of six NiMH batteries that 

each have a current capacity of 1600 mAh and a discharge rate of 10C.  The 10C 

discharge rate indicates that the battery has the ability to draw a maximum of ten times its 

capacity.  At this current draw of 16,000 mAh, the battery would be discharged in six 

minutes.  This is calculated by first determining  
        

          
     

   

   
   Next, this is 

multiplied by the 10C rating to yield     
   

   
.  The battery exhaustion time is then 

calculated by 
        

    
   

   

   6 minutes. 

 

5.9 LT1528 High Current Voltage Regulator 

 

The LT1528 voltage regulator has a high current rating of 3A. The output voltage range 

can be adjusted from 3.3 V to 14 V using two external resistors.  A diagram of the 

regulator is shown in Figure 5.13.  The output voltage is given by the formula       

         
  

  
              An output voltage of 6 V was achieved by using a 220 Ω 

resistor for     and using the series combination of 150 Ω and 33 Ω resistors for    .   

Figure 5.12- LiPo Charger Basic – Mini USB 
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Figure 5.13 – LT1528 High Current Voltage Regulator 
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Chapter 6. Programming 

 

The final programs for each microcontroller were designed through a bottom-up approach.  First, 

each component of the robot was tested separately in its own program for functionality.  Next, 

programs were written to emulate the behavior of the components in the robot.  Once the 

subprograms worked as intended, they were incorporated into the final program.  This chapter 

discusses the development the C program used in the Wixel microcontroller.   

 

6.1 Development Environment  

 

The free, open source Eclipse IDE was used as the text editor for its advanced C/C++ editing 

features.  Eclipse was set up for use with the Wixel SDK.  The Small Device C Compiler 

(SDCC) was used to compile programs.  Programs were compiled and loaded to the Wixel 

microcontroller using a command prompt, as shown in Figure 6.1. 

 

 

 
 

 

Figure 6.1- Downloading wireless_servocontrol program to the Wixel 
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The free terminal program PuTTY is capable of sending and receiving bytes on a virtual COM 

port.  It was used in this project to observe sensor data through printf statements.  The COM port 

name and baud rate are specified in the PuTTY window as shown in Figure 6.2.  

 

 
 

 

 

 

6.2  Pulse Width Modulation 

 

 

Pulse Width Modulation (PWM) was used to control the speed and direction of the servo and 

motors in each box.  Hardware PWM, which involved manipulating registers, was used rather 

than manually implementing PWM through software.  Hardware PWM is more accurate and 

consumes less CPU time than software PWM.  Unlike hardware PWM, software PWM is not 

tied to specific pins of the Wixel and could therefore be used to control many servos using a 

Figure 6.2- PuTTY Configuration to view output in a terminal 

window using COM8 at 9600 baud 
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single timer.  However, only two different PWM signals for the servo and motors are required in 

this project, so hardware PWM was a suitable choice.   

 

The output compare feature of the microcontroller was used to generate the PWM signals for the 

motors and servo.  Timer 1 Channel 1 was used as the PWM source for the servo control line, 

although Timer 3 Channel 0 had been used for a large duration of the project time.  Timer 1 was 

used instead of Timer 3 because Timer 3 is an 8-bit timer, while Timer 1 is a 16-bit timer.  Finer 

speed control is allowed with a 16-bit timer because of the better pulse width resolution.   The 

Timer 1 Channel 1 Compare Control (T1CCTL1) register settings include compare mode enable, 

interrupt mask disabled, and an output compare mode of  “clear output on compare-up, set on 0”.  

The settings of the Timer 1 control register (T1CTL) include a counter prescaler divider value of 

128, disabled interrupts, and a modulo operating mode.  The modulo mode causes the counter to 

repeatedly count from zero to the value stored in register T1CC0.  The T1CC0 register stores the 

16-bit Timer 1 Channel 0 compare value, which affects the PWM frequency.  The T1CC1 

register stores a 16-bit compare value that sets the pulse width.  The output compare mode 

method used in this project is illustrated in Figure 6.3.  

 

 
Figure 6.3- Output Compare Modulo Mode 4: Clear Output on Compare-Up, Set on 0 
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The T1CC1 and T1CC0 register values were calculated for the desired PWM frequency and 

pulse width. The system timer operates at 24 MHz, and with a prescaler divider of 128, the timer 

frequency is 0.1875 MHz.  For a 50 Hz PWM signal, the T1CC0 value is calculated from the 

number of cycles as follows:  

      
          

     
                         

This indicates that 3,750 cycles of the timer clock are contained in one cycle of the PWM signal.  

This result is converted into hexadecimal $0EA6 because the registers are programmed in this 

format.  The servo data sheet lists the neutral pulse width as 1.5 ms.  To set the pulse width to 1.5 

ms, the T1CC1 register value was calculated as follows: 

                                        = $0119  

It was determined through testing that pulse widths from $0118 to $0120 were approximately 

neutral.  The frequency had to be decreased to below 50 Hz in order for the servo to be 

completely stopped.  To make the servo run clockwise, the T1CC1 value is increased beyond the 

approximate neutral value.  To make the servo run counterclockwise, the T1CC1 value is 

decreased below the neutral value.   

 

Timer 1 Channel 2 (T1CC2) was used as the PWM source for the two motors.   The Timer 1 

Channel 2 Compare Control (T1CCTL2) register was configured with the same settings as the 

T1CCTL1 register used for the servo PWM.  The frequency was set by the T1CC0 register in the 

same manner. The T1CC2 register stores a 16-bit compare value that sets the pulse width.  The 

duty cycle of the PWM signal is defined as the high time of the signal divided by the period of 

the signal.  By increasing the pulse width, the duty cycle increases, and a greater average voltage 
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is applied to the motor.  In this project, a 100% duty cycle was used for the motors to achieve 

maximum torque.  For a 50 Hz PWM signal set by the T1CC0 register, the period is 20 ms and 

the T1CC2 register value is calculated as follows for 100% duty cycle: 

                                         = $0EA6 (hexadecimal) 

 

6.3 Accelerometer Readings 

 

The accelerometer values were significantly fluctuating only while the servo was operating.  This 

was attributed to the vibration of the box due to the force of the servo’s movements.  Accurate 

accelerometer values are critical to the correct functioning of the robot.  If an accelerometer 

value is significantly out of range, the program won’t execute the correct loop for servo control.  

To overcome this problem, every 15 accelerometer values were averaged before an average 

value was transmitted to the other Wixel.  It was found through experimentation that averaging 

15 values was sufficient to remove inconsistency in the accelerometer readings.   

 
6.4 Forward Movement Logic 

 

The robot moves in the forward direction by default when it is turned on.  Accelerometer values 

are constantly being transmitted back and forth between the two boxes by the receive and 

transmit function calls in Main.  There are four possible position combinations of the two box 

positions: both Box #1 and Box #2 are at 180 degrees, Box #1 is at 180 degrees and Box #2 is at 

0 degrees, Box #2 is at 180 degrees and Box #1 is at 0 degrees, and Box #1 is at 0 degrees and 

Box #2 is at 0 degrees.  Each of these possibilities is tested in the program through an if…else if 

statement.  Within each if statement, the servo is either turned on or off.  The servo control is 

coordinated between the two boxes so if the servo in one box is turned on, the servo is turned off 

in the other box. The servos are programmed to only rotate clockwise, so the sequence of box 
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position combinations is predetermined.   Therefore, the if statements are used to run the servos 

in an alternating manner.  The servo is turned off by setting the pulse width to a neutral value and 

lowering the frequency to 20 Hz so less power is applied.  The servo isn’t turned completely off 

in order to have it hold its position on the bar as it rotates.  The servo is turned on by calling a 

position control function that controls the speed of the servo.  The speed of the servo is 

dynamically changed based on the accelerometer value received from the rotating box. The 

highest torque must be applied at the start of the rotation for the servo to be able to lift the box 

off the ground. The torque must be decreased significantly as the box is lifted to 90 degrees in 

order to allow the robot to pause at 90 degrees to check if an obstacle is detected.  A pulse width 

of 1.62 ms applied at the beginning of the rotation applies sufficient torque to lift the box.  Once 

the box is at approximately 30 degrees, the pulse width is decreased to 1.54 ms.  This causes the 

box to slowly approach 90 degrees.  If no obstacle is detected when the box is within the 90 

degree range, the servo pulse width is set to 1.58 ms to complete the 180 degree rotation.  Once 

the box has been rotated 180 degrees, the next if statement is executed in each program, and the 

two servos reverse their on and off roles.  This process repeats indefinitely and the robot is able 

to move forward through repetitive 180 degree rotations.   

 

6.5 Vertical Axis Rotation Logic 

 

The top and bottom of a box each correspond with one accelerometer value because the robot 

only rotates clockwise in the forward direction.  For the box whose servo is running, its own 

accelerometer value indicates which IR distance sensor is facing the forward direction and which 

motor is attached to the platform currently on the ground. This allows the program to only take 

into account the values of the IR distance sensor facing the forward direction to detect obstacles.  
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It also allows each platform motor to correspond to a particular IR distance sensor so the 

program will run the appropriate motor based on the forward-facing sensor.   

 

When the received accelerometer value indicates the box is in the 90 degree range, a nested if 

statement tests whether the IR distance sensor facing the forward direction detects an obstacle.  If 

the accelerometer value is below the 90 degree range, it will eventually reach the 90 degree 

range so it isn’t necessary to provide a special command when the IR sensor detects an obstacle.  

If the accelerometer value is beyond 90 degrees, the 180 degree forward rotation will be 

completed.  This was decided because if rotating box is beyond 90 degrees, it could be in the 

field of view of the IR distance sensor.  If an obstacle is detected by an IR sensor reading that 

exceeds a threshold, the appropriate motor runs and a neutral pulse width of 1.49 ms is applied to 

the servo.  The whole robot will then rotate vertically until the condition is no longer true and the 

IR sensor value is below the threshold.  The else  statement will then be executed and the 180 

degree rotation will be completed by turning the platform motor off and applying a pulse width 

of 1.58 ms to the servo.  This process allows the robot to resume forward motion in a different 

direction that is free of obstacles.   
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Chapter 7. Testing and Construction 

This chapter discusses the electrical and mechanical testing involved with the development of the 

robot.  The construction of the prototype following testing is also discussed. 

 

7.1 Electronics and Logic Testing 

 

Before the circuits were soldered, two test boards were created with the circuits on breadboards.   

Each test board has the configuration of components that would be replicated on each box of the 

robot.  The test boards are shown in Figures 7.1 and 7.2.  The test board circuits are identical to 

those implemented in the actual robot, although there are some hardware differences.   One 

difference is that the test board uses a 3.7 V Lithium Polymer battery as opposed to the NiMH 

power pack used on the robot.  Also, the motors and servo on the test board are cheaper and have 

less torque capability than those on the robot.  This is because the purpose of this test setup was 

to test the programming logic, and not the torque output of the servo and motors.  As described 

in the Software Design section, each component was separately tested for correct operation with 

a different program before the final program was tested. 

 

The final goal was to use these boards to simulate the movement of the robot’s boxes based on 

accelerometer and IR distance sensor threshold values.  The terminal program PuTTY was used 

to display the sensor values.  Threshold values that would correspond to the box’s 0 degree and 

180 degree positions were formulated by holding the boards at these positions relative to the 

accelerometer’s x-axis.  These threshold values were incorporated in the program to run each 

servo in an alternating manner based on the accelerometer values.  The rotation of the robot in a 

different direction was also simulated on the test board.  A threshold value for the IR distance 
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sensor was chosen, and each motor was programmed to run based on which IR distance sensor 

value exceeded the threshold.  Each motor corresponds to a motor on the box that is attached to a 

platform.   

 

 
 
  

Figure 7.1- Test Board #1 



42 
 

 
 

7.2 Torque Testing 

The servo is rated by the manufacturer for a stall torque of 343 in*oz, which is the maximum 

torque that the servo is capable of providing.  After attaching a weight to the end of the bar that 

was ten inches away from the servo shaft, it was found that the servo had only 140 in*oz torque 

capability. The torque was calculated by multiplying the weight of the load by the distance from 

the load to the servo.  However, after increasing the PWM signal frequency, the servo’s torque 

capability increased and it was able to lift the weight.  The PWM frequency affected the servo’s 

torque capability because power is proportional to frequency.   

 

A torque test was performed to determine the stall torque.  After attaching more weights to the 

end of the bar, the stall torque was determined to be approximately 259 in*oz as opposed to 343 

in*oz listed in the servo’s specification.  Subsequently, one of the completed robot boxes was 

attached to the end of the bar, and the servo was able to rotate the box 180 degrees.   

Figure 7.2- Test Board #2 
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7.3 Stability Testing 

A big challenge in this robot design was the issue of stability.  The robot is required to lift itself 

up and not tip over in the process.  Testing the robot for stability and modifying the stability 

extensions was a tedious process.  The stability extensions were fine-tuned to fit the dynamics of 

the robot. The extensions had to be strategically designed and placed in order to avoid 

interference with other extensions or the box. Each configuration of the four different rotation 

cycles had to be considered in the stability extension design. 

 

It was an even more difficult task to obtain stability for the robot being held at 90 degrees.  As 

described previously, in order to turn in a different direction, the robot must lift itself up to 90 

degrees before it rotates on the platform.   The servo cannot be simply turned off once the 

rotating box reaches 90 degrees because the box can easily fall back down.  The torque required 

to lift the other box off the ground is much higher that the torque required to lift the box at a 

higher angle such as 45 degrees. If the box rotates too fast, the momentum will cause it to 

overshoot 90 degrees and fall over.  On the other hand, if the servo doesn’t supply enough 

torque, the box will be stalled before it reaches 90 degrees and will fall back down in the 

direction it lifted from. It was therefore necessary to program the servo to run at different speeds 

based on the received accelerometer value from the rotating box. This task was difficult because 

it required both mechanical fine-tuning and meticulous refinement to the servo’s PWM 

frequency and pulse width.   
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The strategy to rotate the box to 90 degrees and hold it there was to have the servo run with a 

high torque setting at the beginning of the rotation, and to make the servo run at a low torque 

setting at about a quarter of the way up so the box would glide to 90 degrees.  Ideal pulse width 

values were determined through testing that prevented the rotating box from overshooting or 

undershooting the vertical position.   

7.4  Prototype Construction 

After the final breadboard tests were successful, the circuits were replicated and soldered on a 

single board.  The only additional component that was used on the final board that wasn’t on the 

test board was the LT1528 high current voltage regulator.  Resistor values of 220 Ω and 150 Ω in 

series with 33 Ω that yielded an output voltage of 6 V were determined through experimentation.  

This test setup is shown in Figure 7.3.  This photo shows the voltage regulator soldered to the 

board and wired to the breadboard.  The resistors and NiMH power pack are connected to the 

breadboard circuit.   

 

Figure 7.3- Testing Output Voltages of the LT1528 Voltage Regulator  
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The prototype was designed to be as compact as possible using the best hobby electronics 

components available at a reasonable cost. The two boxes containing the electronics were 

assembled in the same manner so both sides of the robot are symmetrical.  The robot was 

constructed by hand and the components were soldered on the boards by hand.  
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Chapter 8. Completed Design 

 

An overall perspective of the completed design is shown in Figure 8.1.  The circuit schematic for 

the electronics inside of each of the robot’s two boxes is shown in Appendix A.  The programs 

used in each Wixel microcontroller module are shown in Appendix B.  Three snapshots from a 

video of the robot moving in the forward direction is shown in Figure 8.2.  These images 

compose a 180 degree rotation.  Three video snapshots of the robot detecting an obstacle and 

rotating away from it are shown in Figure 8.3.  The circuit board that is contained in each box is 

shown in Figure 8.4.  The Wixel module, the accelerometer, voltage regulator, coin cell battery, 

and the motor controller IC can be seen in this photo.  The wires protruding from the circuit 

board are connected to the coin cell battery charger, IR sensors, the power supply, the motors, 

and the servo.   

 

 

 

 

Figure 8.1- Completed Robot 
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Figure 8.2- Video Snapshots of 180 degree rotation 

1. 

2. 

3. 
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Figure 8.3- Video Snapshots of Obstacle Avoidance 

1. 

3. 

2. 
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Four sides of a box are shown in Figures 8.5, 8.6, 8.7, and 8.8.  The two boxes of the robot are 

identical in construction and layout.  

 

 

 

 

 

 

 

Figure 8.4- Completed Circuit Board 
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Figure 8.5- Side of Box with NiMH Power Pack and IR Distance Sensor 
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Figure 8.6- Side of Box with Servo Shaft Connected to the Main Bar 
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 Figure 8.7- Side of Box with Power Switch and Charging Switch 
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Figure 8.8- Side of Box with IR Distance Sensor 
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Chapter 9. Conclusion 

9.1 Proof of Concept 

In this project, a single-legged walking stick robot that utilizes a unique locomotion method has 

been designed and built. The robot is fully autonomous and can avoid obstacles. The robot was 

able to perform two cycles of forward rotation with the stability extensions mounted to two sides 

of the robot.  The robot’s ability to detect an obstacle and rotate in a different direction was 

successfully demonstrated.  A paper bag was placed in front of the robot, which was detected by 

the IR sensor facing the forward direction.  Once the rotating box reached 90 degrees, the servo 

rotating the box stopped running and the motor attached to the ground platform rotated the robot 

vertically.  The motor stopped running once the paper bag was out of the field of view of the IR 

sensor.  The 180 degree rotation was then completed by the servo and the rotating box landed in 

a position that avoided the obstacle.  

 

9.2 Future Work 

 

The robot currently has stability mechanisms on two of the four sides of the boxes that make contact with 

the ground.  This limitation was applied to avoid interference between the stability mechanisms during 

rotation.  In the future, it could be determined how to place stability mechanisms on all sides of the robot 

without interference.  Furthermore, the stability mechanisms could be attached to additional motors that 

would rotate them out when needed and rotate them inward when they are not in use to avoid 

interference.  This would enable the robot to move forward indefinitely.   

 

The configuration of this robot could be modified to have the capability to traverse stairs.  A 

basic illustration of this possibility is shown in Figure 9.1.  The robot currently has a rigid bar 



55 
 

that connects the two boxes on either end.  The connection between the two boxes could be 

modified to allow the robot to climb stairs.  One general idea is that the bar could be cut into two 

parts that are connected with a motor.  This motor would rotate to create an angle between the 

bars.  The required electronics would be mounted near the junction of the two bars and could 

wirelessly communicate with each box.    

 

  

Figure 9.1- Illustration of Robot Climbing Stairs 
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Appendix A: Circuit Schematic 
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Appendix B: Programs 

 

Final Program for Wixel #1 

/* Filename: FinalDemo1.c 
This is the final program used on one Wixel module of the single-legged robot. 
The forward motion routine operates normally unless the appropriate IR distance 
sensor indicates an obstacle. The IR sensor reading is taken from one of two IR 
distance sensors based on the accelerometer value.  If an obstacle is detected, the 
appropriate platform motor is run to rotate the robot in a different direction.  This 
program is to be run simultaneously with the FinalDemo2.c program on the other Wixel 
module. 
*/ 
 
#include <wixel.h> 
#include <usb.h> 
#include <usb_com.h> 
#include <stdio.h> 
#include <radio_queue.h> 
 
/* VARIABLES ******************************************************************/ 
 
int a_value = 1100; 
int my_value = 2100; 
PDATA uint16 ir_value1; 
PDATA uint16 ir_value2; 
int32 CODE param_report_period_ms = 20; 
PDATA uint16 loopNumber; 
PDATA uint16 ir_sensor; 
 
/* FUNCTIONS ******************************************************************/ 
 
//initialize PWM for the motors and servo 
void PwmInit(){ 
 
//sets the frequency to 48 Hz 
  T1CC0L = 0x42; 
  T1CC0H = 0x0F; 
 
  T1CC2L = 0xA6; 
  T1CC2H = 0x0E; 
 
// Timer 1 channel 1 (for servo PWM) set compare mode 4 
    T1CCTL1 = 0x24; 
 
// Timer 1 channel 2 (for motor PWM) set compare mode 4 
     T1CCTL2 = 0x24; 
 
// Timer 1 set to Alternate 2 location 
    PERCFG = 0x40; 
 
// P1_1 set peripheral function which associated with Timer 1 Ch.0 and Ch.1 outputs 
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 P1SEL = 0x03; 
 
// set modulo mode prescaler to Tick Freq / 128 
    T1CTL = 0x0E; 
} 
 
 
void analogInputsInit() 
 { 
   //Disable pull-ups and pull-downs for all pins on Port 0. 
  P0INP = 0x3F; 
 
} 
 
void adcToRadioService()  
{ 
 static uint16 lastTx = 0; 
 
 uint8 XDATA * txPacket; 
 
 //Check to see if it's time to send a report and if there's a radio TX buffer 
available. 
 if ((uint16) (getMs() - lastTx) >= param_report_period_ms && (txPacket 
   = radioQueueTxCurrentPacket())) { 
 
  //Both of those conditions are true, so send a report. 
 
  uint8 i; 
  uint16 XDATA * ptr = (uint16 XDATA *) &txPacket[5]; 
  uint16 sum; 
  //This should be done before all the ADC readings, which take about   
  // 3 ms. 
  lastTx = getMs(); 
 
  //Byte 0 is the length. 
  txPacket[0] = 16; 
 
  //Bytes 1-4 are the serial number. 
  txPacket[1] = serialNumber[0]; 
  txPacket[2] = serialNumber[1]; 
  txPacket[3] = serialNumber[2]; 
  txPacket[4] = serialNumber[3]; 
 
  adcSetMillivoltCalibration(adcReadVddMillivolts()); 
 
    //average 15 accelerometer values 
    sum = 0; 
    for(i = 0; i < 15; i++){ 
 
    sum = sum + adcConvertToMillivolts(adcRead(5));  
    } 
    my_value = sum/15; //store accelerometer average 
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  //Transmit accelerometer average value 
  for (i = 0; i < 6; i++) { 
   *(ptr++) = my_value; 
  } 
 
  radioQueueTxSendPacket(); 
 
 } 
} 
 
 
 
 void updateLeds()  
{ 
 usbShowStatusWithGreenLed(); 
} 
 
 
typedef struct adcReport  
{ 
 uint8 length; 
 uint8 serialNumber[4]; 
 uint16 readings[6]; 
} adcReport; 
 
void putchar(char c)  
{ 
 usbComTxSendByte(c); 
} 
 
void radioToUsbService()  
{ 
 adcReport XDATA * rxPacket; 
 
 //Check if there is a radio packet to report and space in the USB TX buffers 
 // to report it. 
 if ((rxPacket = (adcReport XDATA *) radioQueueRxCurrentPacket())) 
 { 
  //We received a packet from a Wixel 
 
  a_value = rxPacket->readings[5]; //store received accelerometer value 
 
 
  radioQueueRxDoneWithPacket(); 
 } 
 
} 
 
void ServoService() 
{ 
 
 T1CC0L = 0x42; //48 Hz frequency 
 T1CC0H = 0x0F; 
 
 if (a_value <= 2500 && a_value >= 1920) 
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 { 
 
  T1CC1L = 0x30; //1.62 ms PWM pulse width 
  T1CC1H = 0x01; 
 } 
 
 
  if (a_value < 1920 && a_value >= 1800) 
  { 
  T1CC1L = 0x20; //1.54 ms PWM pulse width 
  T1CC1H = 0x01; 
  } 
 
 if (a_value < 1800) 
 { 
  adcSetMillivoltCalibration(adcReadVddMillivolts()); 
 
  if (my_value < 1400) //if this box is at zero degree position 
  { 
   //test if obstacle is detected by reading appropriate IR sensor 
   if (adcConvertToMillivolts(adcRead(1)) > 900 && a_value > 1600)  
   { 
 
     setDigitalOutput(3, LOW);      
    setDigitalOutput(4, HIGH); //run appropriate motor  
    T1CC1L = 0x18; //put servo in neutral 
    T1CC1H = 0x01; 
   } 
 
   else 
   { 
 
    setDigitalOutput(3, LOW); //turn motors off 
    setDigitalOutput(4, LOW); 
    T1CC1L = 0x28; //complete 180 degree rotation 
    T1CC1H = 0x01; //with 1.58 ms pulse width 
   } 
 
  } 
 
 
  else //if this box is at 180 degree position 
  { 
   //test if obstacle is detected by reading appropriate IR sensor 
   if (adcConvertToMillivolts(adcRead(2)) > 900 && a_value > 1600) 
   { 
     setDigitalOutput(3, HIGH); //run appropriate motor 
     setDigitalOutput(4, LOW); 
     T1CC1L = 0x18; //put servo in neutral 
     T1CC1H = 0x01; 
   } 
 
   else 
   { 
    setDigitalOutput(3, LOW); //turn motors off 
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    setDigitalOutput(4, LOW); 
    T1CC1L = 0x28; //complete 180 degree rotation 
    T1CC1H = 0x01; //with 1.58 ms pulse width 
      } 
 
  } 
 } 
} 
 
 
 
void PositionControl() 
{ 
 //test if this board is in between 0 and 180 degrees 
  if (my_value < 1970 && my_value > 1200 && loopNumber != 4 && loopNumber != 2) 
  {  
  T1CC0L = 0x9F; //20 Hz frequency 
   T1CC0H = 0x24; 
 
   T1CC1L = 0x18; //put servo in neutral 
  T1CC1H = 0x01; 
  } 
  
 //other board is in between 0 and 180 degrees 
 else if (a_value < 1950 && a_value > 1200 && loopNumber != 3 && loopNumber != 
1) 
 {  
 
  ServoService(); //call servo control function 
 
 } 
 
 //starting position: both boxes at 0 degrees 
 else if (my_value < 1200 && a_value < 1200) 
 { 
 
   loopNumber = 1; 
 
   T1CC0L = 0x9F; 
   T1CC0H = 0x24; 
 
   T1CC1L = 0x18; 
   T1CC1H = 0x01; 
 } 
  
 //starting position: this box is at 180 degrees and other box is at 0 degrees  
  else if (my_value > 1970 && a_value < 1200) 
  { 
   loopNumber = 2; 
 
    ServoService(); 
 } 
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 //starting position: both boxes are at 180 degrees  
 else if (my_value > 1970 && a_value > 1950) 
 {  
 
   loopNumber = 3; 
 
   T1CC0L = 0x9F; 
   T1CC0H = 0x24; 
 
  T1CC1L = 0x18; 
   T1CC1H = 0x01; 
 } 
  
 //starting position: this box is at 0 degrees and other box is at 180 degrees  
 else if (my_value < 1200 && a_value > 1950) 
 { 
   
  loopNumber = 4; 
 
  ServoService(); 
 } 
 
} 
 
 
void main() 
{ 
 systemInit(); 
 usbInit(); 
 PwmInit(); 
 analogInputsInit(); 
 radioQueueInit(); 
 
 while (1)  
 { 
  boardService(); 
  updateLeds(); 
  usbComService(); 
 
  radioToUsbService(); //receive accelerometer values 
  adcToRadioService(); //transmit accelerometer values 
 
  PositionControl(); //control operation of servos 
 } 
} 
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Final Program for Wixel #2 

 
/* Filename: FinalDemo2.c 
This is the final program used on one Wixel module of the single-legged robot. 
The forward motion routine operates normally unless the appropriate IR distance 
sensor indicates an obstacle. The IR sensor reading is taken from one of two IR 
distance sensors based on the accelerometer value.  If an obstacle is detected, the 
appropriate platform motor is run to rotate the robot in a different direction.  This 
program is to be run simultaneously with the FinalDemo1.c program on the other Wixel 
module. 
*/ 
 
#include <wixel.h> 
#include <usb.h> 
#include <usb_com.h> 
#include <stdio.h> 
#include <radio_queue.h> 
 
/* VARIABLES ******************************************************************/ 
 
int a_value = 1100; 
int my_value = 2100; 
PDATA uint16 ir_value1; 
PDATA uint16 ir_value2; 
int32 CODE param_report_period_ms = 20; 
PDATA uint16 loopNumber; 
PDATA uint16 ir_sensor; 
 
/* FUNCTIONS ******************************************************************/ 
 
//initialize PWM for the motors and servo 
void PwmInit(){ 
 
//sets the frequency to 48 Hz 
  T1CC0L = 0x42; 
  T1CC0H = 0x0F; 
 
  T1CC2L = 0xA6; 
  T1CC2H = 0x0E; 
 
// Timer 1 channel 1 (for servo PWM) set compare mode 4 
    T1CCTL1 = 0x24; 
 
// Timer 1 channel 2 (for motor PWM) set compare mode 4 
     T1CCTL2 = 0x24; 
 
// Timer 1 set to Alternate 2 location 
    PERCFG = 0x40; 
 
// P1_1 set peripheral function which associated with Timer 1 Ch.0 and Ch.1 outputs 
 P1SEL = 0x03; 
 
// set modulo mode prescaler to Tick Freq / 128 
    T1CTL = 0x0E; 
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} 
 
 
void analogInputsInit() 
 { 
   //Disable pull-ups and pull-downs for all pins on Port 0. 
  P0INP = 0x3F; 
 
} 
 
void adcToRadioService()  
{ 
 static uint16 lastTx = 0; 
 
 uint8 XDATA * txPacket; 
 
 //Check to see if it's time to send a report and if there's a radio TX buffer 
 // available. 
 if ((uint16) (getMs() - lastTx) >= param_report_period_ms && (txPacket 
   = radioQueueTxCurrentPacket())) { 
 
  //Both of those conditions are true, so send a report. 
 
  uint8 i; 
  uint16 XDATA * ptr = (uint16 XDATA *) &txPacket[5]; 
  uint16 sum; 
  //This should be done before all the ADC readings, which take about   
  // 3 ms. 
  lastTx = getMs(); 
 
  //Byte 0 is the length. 
  txPacket[0] = 16; 
 
  //Bytes 1-4 are the serial number. 
  txPacket[1] = serialNumber[0]; 
  txPacket[2] = serialNumber[1]; 
  txPacket[3] = serialNumber[2]; 
  txPacket[4] = serialNumber[3]; 
 
  adcSetMillivoltCalibration(adcReadVddMillivolts()); 
 
    //average 15 accelerometer values 
    sum = 0; 
    for(i = 0; i < 15; i++){ 
 
    sum = sum + adcConvertToMillivolts(adcRead(5));  
    } 
    my_value = sum/15; //store accelerometer average 
 
 
 
  //Transmit accelerometer average value 
  for (i = 0; i < 6; i++) { 
   *(ptr++) = my_value; 
  } 
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  radioQueueTxSendPacket(); 
 
 } 
} 
 
 
 
 void updateLeds()  
{ 
 usbShowStatusWithGreenLed(); 
} 
 
 
typedef struct adcReport  
{ 
 uint8 length; 
 uint8 serialNumber[4]; 
 uint16 readings[6]; 
} adcReport; 
 
void putchar(char c)  
{ 
 usbComTxSendByte(c); 
} 
 
void radioToUsbService()  
{ 
 adcReport XDATA * rxPacket; 
 
 //Check if there is a radio packet to report and space in the USB TX buffers 
 // to report it. 
 if ((rxPacket = (adcReport XDATA *) radioQueueRxCurrentPacket())) 
 { 
  //We received a packet from a Wixel 
 
  a_value = rxPacket->readings[5]; //store received accelerometer value 
 
 
  radioQueueRxDoneWithPacket(); 
 } 
 
} 
 
void ServoService() 
{ 
 
 T1CC0L = 0x42; //48 Hz frequency 
 T1CC0H = 0x0F; 
 
 if (a_value <= 2500 && a_value >= 1920) 
 { 
 
  T1CC1L = 0x30; //1.62 ms PWM pulse width 
  T1CC1H = 0x01; 
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 } 
 
 
  if (a_value < 1920 && a_value >= 1800) 
  { 
  T1CC1L = 0x20; //1.54 ms PWM pulse width 
  T1CC1H = 0x01; 
  } 
 
 if (a_value < 1800) 
 { 
  adcSetMillivoltCalibration(adcReadVddMillivolts()); 
 
  if (my_value > 1600) //if this box is at 180 degree position 
  { 
   //test if obstacle is detected by reading appropriate IR sensor 
   if (adcConvertToMillivolts(adcRead(2)) > 900 && a_value > 1400)  
   { 
 
     setDigitalOutput(3, HIGH);      
    setDigitalOutput(4, LOW); //run appropriate motor  
    T1CC1L = 0x18; //put servo in neutral 
    T1CC1H = 0x01; 
   } 
 
   else 
   { 
 
    setDigitalOutput(3, LOW); //turn motors off 
    setDigitalOutput(4, LOW); 
    T1CC1L = 0x28; //complete 180 degree rotation 
    T1CC1H = 0x01; //with 1.58 ms pulse width 
   } 
 
  } 
 
 
  else //if this box is at 0 degree position 
  { 
   //test if obstacle is detected by reading appropriate IR sensor 
   if (adcConvertToMillivolts(adcRead(1)) > 900 && a_value > 1400) 
   { 
     setDigitalOutput(3, LOW); //run appropriate motor 
     setDigitalOutput(4, HIGH); 
     T1CC1L = 0x18; //put servo in neutral 
     T1CC1H = 0x01; 
   } 
 
   else 
   { 
    setDigitalOutput(3, LOW); //turn motors off 
    setDigitalOutput(4, LOW); 
    T1CC1L = 0x28; //complete 180 degree rotation 
    T1CC1H = 0x01; //with 1.58 ms pulse width 
      } 
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  } 
 } 
} 
 
 
 
void PositionControl() 
{ 
 //this board is in between 0 and 180 degrees 
 if (my_value < 1950 && my_value > 1200 && loopNumber != 3 && loopNumber != 1) 
 {  
 
  T1CC0L = 0x9F; //20 Hz frequency 
  T1CC0H = 0x24; 
 
   T1CC1L = 0x18; //put servo in neutral 
  T1CC1H = 0x01; 
 } 
 
 //other board is in between 0 and 180 degrees 
 else if (a_value < 1970 && a_value > 1200 && loopNumber != 2 && loopNumber != 
4) 
 {  
 
  ServoService(); //call servo control function 
       } 
 
 
  else if (my_value < 1200 && a_value < 1200) 
  { 
 
   loopNumber = 1; 
 
   ServoService(); 
  } 
 
  else if (my_value > 1950 && a_value < 1200) 
 { 
   loopNumber = 2; 
 
    T1CC0L = 0x9F; 
    T1CC0H = 0x24; 
 
    T1CC1L = 0x18; 
    T1CC1H = 0x01; 
 
  } 
 
   
  else if (my_value > 1950 && a_value > 1970) 
      {  
 
    loopNumber = 3; 
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   ServoService(); 
 
  } 
 
 else if (my_value < 1200 && a_value > 1970) 
  { 
   loopNumber = 4; 
 
    T1CC0L = 0x9F; 
   T1CC0H = 0x24; 
 
     T1CC1L = 0x18; 
     T1CC1H = 0x01; 
  } 
} 
 
 
void main() 
{ 
 systemInit(); 
 usbInit(); 
 PwmInit(); 
 analogInputsInit(); 
 radioQueueInit(); 
 
 while (1)  
 { 
  boardService(); 
  updateLeds(); 
  usbComService(); 
 
  radioToUsbService(); //receive accelerometer values 
  adcToRadioService(); //transmit accelerometer values 
 
  PositionControl(); //control operation of servos 
 } 
} 
 

 

 

 

 

 


