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Abstract

Implementation of Asynchronous Interface ASIC Flow (RTL-to-GDSII) using Cadence
and Synopsys Tools
By

Tejas Raval

Master of Science in Electrical Engineering

As the technology sizes of semiconductor devices continue to decrease, the effect of
nanometer technologies on congestion, signal integrity, crosstalk etc. are becoming more
significant. These all factors are affecting and forcing various technological
methodologies throughout the design flow to constantly fight and keep updating the EDA
tools to cop-up with these issues.

The aim of this project is to successfully complete ASIC design flow from RTL to GDS-
I1, using the advance industry level tools. This project provides a solid base and practical
hands-on experience of advanced tools like Cadence NC Simulator (Behavioral
Simulation and Post Synthesis Simulation), Synopsys Design Compiler (Logic Synthesis)
, Synopsys DFT Compiler (Logic Scan Insertion and Boundary Scan Insertion), Synopsys
Power Compiler (Power Optimization using clock gating), Synopsys Tetra Max
(Determine Fault Coverage) and Synopsys IC Compiler (Design planning, Power
Network Synthesis, Clock Tree Synthesis, Place and Route and Chip Finishing). Along
with this, the analysis of various design factors affecting the performance of the final chip

such as power, area and timing is also performed.
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CHAPTER 1: ASIC Design Flow

1.1 Introduction to ASIC

An application-specific integrated circuit (ASIC) is an integrated circuit(IC) customized
for a particular use, rather than intended for general-purpose use. In today's world, ASICs
offer many advantages over off-the-shelf devices.

Smaller die size leads to board size reduction

Reduced power consumption, less heat dissipation

Lower costs under mass production

Improved performance

Better radiation tolerance

Improved testability

Enhanced reliability

© N o gk~ w0 NP

Proprietary design implementation

1.2 Standard-Cell-Based ASIC

A cell-based ASIC uses predefined logic cells like AND gates, OR gates, multiplexers,
and flip-flops known as standard cells. The flexible blocks in a CBIC are built of rows of
standard cells. Placement of the standard cells and the interconnect is defined by an ASIC
designer in a CBIC. The advantage of CBICs is that they can be designed in less time
with small amount of money compared to full-custom ASICs, and also the most
important thing is it reduce the risk by using a predesigned, pretested, and pre-
characterized standard-cell library which can be optimized individually. At the same
time, the disadvantages are the time or expense of designing or buying the standard-cell
library and the time needed to fabricate all layers of the ASIC for each new design.
Figure-1.1 shows a CBIC.



DDDDDDDDDDDDDDDDDDE

sandard—cell E
area [m
| :

. ,/")J : H

[m

[=

firad 8
blocks [T | O
[ =]

[=

B

L 4 3 EI
0.0ZiIn [m]
00 [S0000000000000000000C

Figure: 1.1- Cell based ASIC (CBIC) [1]

Each standard cell in the library is constructed using full-custom design methods, but you
can use these predesigned and pre-characterized circuits without having to do any full-
custom design yourself. This design style gives you the same performance and a
flexibility advantage of a full-custom ASIC but reduces design time and reduces risk. ™

1.3 Need for Low Power ASIC

For early digital circuits, high speed and minimum area were the main design constraints.
Most of the EDA tools were designed specifically to meet these criteria. Power
consumption was never highly visible. Nowadays, the area reduction of digital circuits is
no longer a big issue as with the latest sub-micron techniques, many millions of
transistors can be fit in a single IC. Smaller chip size eventually leads to high demand
for portable and handheld devices. More and more applications are battery powered, and
low power IC’s are the key to extend the usage time in between battery recharge, and in
turn increase battery life and reliability of the product. Also in submicron technologies,
there is a limitation on the proper functioning of circuits due to heat generated by power
dissipation. Market forces are demanding low power for not only longer battery life but
also reliability, portability, performance, cost and time to market. This is very true in the
field of personal computing devices, wireless communications systems, home
entertainment systems, which are becoming popular now-a-days. Implantable medical
devices, such as pace maker, deep brain system for Parkinson’s disease, and spinal cord
stimulator for pain management, particularly need to dissipate less power for longer
battery life and improved component reliability and safety.

As process technology reduces into 90nm and below, performance and density are taken
to new levels, yet power loss in both switching and leakage makes designing with these
devices a major challenge. Leakage power reduction is essential in sustaining the scaling
of the CMOS process. Leakage power is now becoming proportional to dynamic or
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switching power loss as shown in Figure below. While lowering of the threshold voltage
leads to significant increase in sub-threshold leakage current, the increase in gate
tunneling leakage current is caused by thinner gate oxides. While scaling improves
transistor density, functionality, and higher performance on chip, it also results in power
dissipation increase. Therefore, it has become necessary to use new techniques to
manage energy at the system level.

NG~
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Device Dumension (nm)

Figure: 1.2- Dynamic and Leakage Power Comparison 1%

Bottom line, low power budget has become one of the most important design parameters
for VLSI (Very Large Scale Integration) systems.

1.3.1 ASIC Flow:
The traditional ASIC design flow contains the steps outlined below:

i. Prepare requirement specification and create a Micro-Architecture document.

ii. RTL design and development of IP’s.

iii. After the previous step DFT memory BIST insertion can also be implemented, if
the design contains any memory element.

iv. Functional verification all the IPS. Check whether the RTL is free from linting
errors and analyze whether the RTL is synthesis friendly.
a. Perform cycle based verification (functional) to verify the protocol behavior of

the RTL.

b. Perform the property checking to verify the RTL implementation and the

specification understanding is matching.
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Vi.

Vii.

viil.

Xi.

Xil.
xiii.

Xiv.

Design environment setting. This includes the technology file to be used along with
other environmental attributes.

Prepare the design constraints file to perform synthesis, usually called as an SDC
synopsys_constraints or dc_synopsys_setup file, specific to synthesis tool (design

compiler).

a. Once the constraints file is set. For performing synthesis inputs to the DC are
the library file (for which the synthesis needs to be targeted for, which has the
functional/timing information available for the standard cell library and the wire
load models for the wires based on the fan-out length of the connectivity), RTL
files and the design constraints files, so that the synthesis tool can perform the
synthesis of the RTL files and map and optimize to meet the design constraints
requirements. After performing the synthesis, scan insertion and JTAG scan
chain insertions are implemented and then synthesis is repeated.

Check whether the design is meeting the requirements after synthesis. Perform

block level static timing analysis using Design compiler’s built-in static timing

analysis engine.

Perform Formal verification between RTL and the synthesized netlist to confirm

that the synthesis tool has not altered the functionality.

Perform the pre-layout STA (static timing analysis) using PrimeTime with the SDF

(standard delay format) file and synthesized netlist file to check whether the design

IS meeting the timing requirements.

Once the synthesis is performed the synthesized netlist file (VHDL/Verilog format)

and the SDC (constraints file) is passed as input files to the Placement and routing

tool to perform the back-end activities. The tool used is IC Compiler. [3]

Initialize the floorplanning with timing driven placement of cells, clock tree

insertion and global routing.

Transfer of clock tree to the original design (netlist) residing in Design Compiler.

In-place optimization of the design in Design Compiler.

Formal verification between the synthesized netlist and clock tree inserted netlist,

using Formality.



xv. Extraction of estimated timing delays from the layout after the global routing step.
xvi. Back annotation of estimated timing data from the global routed design, to
PrimeTime.
xvii. Static timing analysis in PrimeTime, using the estimated delays extracted after
performing global route.
xviii. Detailed routing of the design.
Xix. Extraction of real timing delays from the detailed routed design.
xX. Back annotation of the real extracted timing data to PrimeTime.
xxi. Post-layout static timing analysis using PrimeTime.
xXii. Functional gate-level simulation of the design with post-layout timing (if desired).
xxiii. Tape out after LVS and DRC verification.[4]

CAD tools are involved in all stages of VLSI design flow—Different tools can be used at
different stages due to EDA common data formats. CAD tools provide several

advantages:

e Ability to evaluate complex conditions in which solving one problem creates other
problems

e Use analytical methods to assess the cost of a decision

e Use synthesis methods to help provide a solution

o Allows the process of proposing and analyzing solutions to occur at the same time
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Figure 1.3 Traditional ASIC Design Flow [4]

Figure 1.3 graphically illustrates the typical ASIC design flow discussed above. The
acronyms STA and CT represent static timing analysis and clock tree respectively. DC
represents Design Compiler Synopsys CAD tool for Physical Design is called Integrated
Circuit Compiler (ICC). [4]



CHAPTER 2: Asynchronous Interface Overview

2.1 Introduction: Asynchronous Interface

Asynchronous interface design is the circuitry in which set of signals that comprises the
connection between devices of a computer system where the transfer of information
between devices is organized by the exchange of signals not synchronized to some
controlling clock. A request signal from an initiating device indicates the requirement to
make a transfer; an acknowledging signal from the responding device indicates the
transfer completion. This asynchronous interchange is also widely known as
Handshaking. [5]

Most of the time, asynchronous designs are referred to as the designs with no clocks, but
this project asynchronous FIFO interface circuit incorporates multiple clocks for
transmitting and receiving the data values. The description of the design is explained

below along with the top module diagram of the design.

An asynchronous FIFO refers to a FIFO design where data values are written to a FIFO
buffer (RAM) from one clock domain and the data values are read from the same FIFO
buffer from another clock domain, where the two clock domains are asynchronous to
each other. Asynchronous FIFOs are used to safely pass data from one clock domain to

another clock domain. [6]

There are a lot of different ways to design asynchronous FIFO interface design, the
method used in this project is “FIFO partitioning with synchronized pointer comparison”;
for comparing and synchronizing the design working on two clocks one for transmitting
and one for receiving, uses gray counters for comparison of full and empty registers of

RAM which is FIFO buffer for writing and reading the data values.
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Figure 2.1: Internal Block Diagram of FIFO partitioning with synchronized pointer

comparison [6]

Data words are placed into a FIFO buffer memory array by control signals in one clock
domain, and the data words are removed from another port of the same FIFO buffer
memory array by control signals from a second clock domain. The difficulty associated
with doing FIFO design is related to generating the FIFO pointers and finding a reliable
way to determine full and empty status on the FIFO. [6]

Generally FIFOs are used where write operation is faster than read operation. However,
even with the different speed and access types the average rate of data transfer remains
constant. FIFO pointers keep track of number of FIFO memory locations read and written
and corresponding control logic circuit prevents FIFO from either under flowing or
overflowing. FIFO architectures inherently have a challenge of synchronizing itself with
the pointer logic of other clock domain and control the read and write operation of FIFO

memory locations safely. [7]



2.2 Issues in Designing Asynchronous FIFO

Although the design states that the circuitry is asynchronous and is working in multiclock
environment, it is essential to synchronize the two clocks as the data can be lost due to
setup and hold violations. It is very important to understand the signal stability in multi
clock domains since for a traveling signal the new clock domain appears to be
asynchronous. If the signal is not synchronized to new clock, the first storage element of
the new clock domain may go to metastable state and the worst case is that resolution
time cannot be predicted. It can traverse throughout the new clock domain resulting in
failure of functionality. To prevent such failures setup time and hold time specification
has to be obeyed in the design. Manufacturers provide statistics of probability of failure
of flip-flops due to metastability characters in terms of MTBF (Mean Time before
Failure). Synchronizers are used to prevent the downstream logic from entering into the

metastable state in multiclock domain with multibit data values.

Thus, for efficient working of FIFO architecture designing of FIFO pointers is the key
issue. At this point, deep understandings of the FIFO read and write pointers become
necessary. On reset both read and write pointers are pointing to the starting location of
the FIFO. This location is also the first location where data has to be written at the same
time this first location happens to be first read location. Therefore, in general, read
pointer always points to the word to be read and write pointer always points to the next

location to which data has to be written. [8]

2.3 Operation of the Design

2.3.1 Data write operation:

When both read and write pointers are pointing to first location of FIFO empty flag is
asserted indicating the FIFO status as empty. Now data writing can be performed. Data
will be written to the location where the write pointer is pointing and after the data write
operation write pointer gets incremented pointing to the next location to be written. At

the same time, empty flag is de-asserted which indicates that FIFO is not empty, some

9



data is available. One notable point regarding read pointer is with empty flag active the
data pointed out by the read pointer is always invalid data. When first data written and
empty flag status cleared (i.e. empty flag inactive) read pointer logic immediately drives
the data from the location to which it was pointing to the read port of the dual port RAM,
ready to be read by read logic. With this implementation of read logic the biggest
advantage is that only one clock pulse is required to read from read port since previous
clock cycle has already incremented read pointer and drives the data to read port. This
will help in reducing latency in detecting empty and full pointer flag status. Empty status
flag can be asserted in one more condition. After some n number of data write operations
if same n number of read is performed then both pointers are again equal. Hence, if both

pointers “catch up” each other, then empty flag is asserted. [9].

2.3.2 FIFO full status:

When write pointer reaches the top of the FIFQO, it is pointing towards the location, which
can be written and is the last location to be written. No read operation is performed yet
and read pointer is pointing to first location itself. This is one method is to generate FIFO
full condition. When write pointer reaches the top of the FIFO, if full flag is asserted then
it is not the actual FIFO full condition, this is only ‘almost full’ as there is one location
which can be written. Similarly almost empty condition can exist in FIFO. Now a write
operation causes the location to be written and increment of write pointer. Since the
location was the last one write pointer wraps up to first location. Now both read and write
pointers are equal and hence empty flag is asserted instead of full flag assertion, which is
a fatal mistake. Hence wrap around condition of a full pointer may be a FIFO full

condition.

After writing the data to FIFO (consider write pointer is in top of FIFO) some data has
been read and read pointer is somewhere in between FIFO. One more write operation
causes the write pointer to wrap. Note that even though write pointer is pointing to first
location of FIFO this is NOT FIFO full condition, since read pointer has moved up from
the first location. Further data writing pushes write pointer up. Imagine read pointer

10



wraps around after some more read operation. Present condition is that both pointers have
wrapped around but there is no FIFO full or FIFO empty condition. Data can be written
to FIFO or read from the FIFO. [6]. The disadvantage of a FIFO of this kind is that the
status signals cannot be fully synchronized with the read and write clock. [9].

2.3.3 Asynchronous FIFO pointers:

FIFO is full when the pointers are equal, that is, when the write pointer has wrapped
around and caught up to the read pointer. This is a problem. Considering that point, it is
difficult to decide which condition has occurred; the FIFO is either empty or full when
the pointers are equal.

One design technique used to distinguish between full and empty is to add an extra bit to
each pointer. Whenever the write pointer increments past the final FIFO address, the
write pointer will increment the unused MSB while setting the rest of the bits back to
zero as shown in Figure below (the FIFO has wrapped and toggled the pointer MSB). The
same is done with the read pointer. If the MSBs of the two pointers are different, it means
that the write pointer has wrapped one more time that the read pointer. If the MSBs of the
two pointers are the same, it means that both pointers have wrapped the same number of
times. [6]

11



When

(waddr[3:0]==raddr[3:0])
15 the FIFQ is either full or 15 03 [«
14 empty 14 02 |<«—
13 13 01 |«—
12 12 00 |«—
11 11 80 |«—
10 10 40 | <—
9 p—— 9 20 | <=

raddrpoints If (waddr[4]!=raddr[4
8 to the word 8 10 (waddr4]i=raddr[41)
7 / beingread 7 08 | «—
6 ..the word has
// 6 04 | < wrapped around
5 5 02 | €— | onemoretime
4 waddr points to 1 01 | e— than theraddr

the next word to
3 be written 3 cC | <
2 2 AA | <€—
1 1 FF |

raddr >10 «— waddr raddr —s| 0 00 |«— waddr
On reset, waddr<=0 EMPTY FULL

and raddr<=0 If(waddr==raddr); If{{waddr[4],waddr[3:0]}==raddr);

Figure2.2: FIFO full and empty conditions [6]

Using n-bit pointers where (n-1) is the number of address bits required to access the
entire FIFO memory buffer; the FIFO is empty when both pointers, including the MSBs
are equal. And the FIFO is full when both pointers, except the MSBs are equal. The FIFO
design uses n-bit pointers for a FIFO with 2(n-1) write-able locations to help handle full

and empty conditions.

The counters designed to synchronize the signals are Gray code counters. The reason to
choose gray coder counter and not the binary code counter is that, trying to synchronize a
binary count value from one clock domain to another is problematic because every bit of
an n-bit counter can change simultaneously (example 7->8 in binary numbers is
0111->1000, all bits changed). Gray codes only allow one bit to change for each clock

transition, eliminating the problem associated with trying to synchronize multiple
12



changing signals on the same clock edge. It is desirable to create both an n-bit Gray code
counter and an (n-1)-bit Gray code counter. It would certainly be easy to create the two
counters separately, but it is also easy and efficient to create a common n-bit Gray code
counter and then modify the 2nd MSB to form an (n-1)-bit Gray code counter with shared
LSBs. This will be called a “dual n-bit Gray code counter.” [6].

True 4-bit gray code
Now reversethe count

n-hit gray code ‘\\___)
1 order with MSB=1...

f
0 0000 ..theninvertthe 2" MSB
1 0001 to create a true 3-hit gray
2 0011 code (n-1)-bit Gray-code
1% half of gray-code 3 0010
Sequence, MSB=0 '< 4 0110
5 0111
/ 6 01014 v
\_ 7 0100 —>0100
LSB patterns froma .| Two bits(M5SBs)
mirror image about W &~| changefrom7to 8
the countermid-point | 7~ 8 1100 — 1000
9 1101 —>1001
10 1111 —>1011
2M half of gray-code '< 111110 1010
Sequence, MSB=1 12 1010 —=1110
13 1011 —=1111
14 1001 —=1101
\.15 1000 —>1100
N Two bits(MSBs)
A change from 15to 0
0 0000 —>0000

Figure 2.3: n-bit Gray code converted to an (n-1)-bit Gray code [6]

It is obvious that inverting the second MSB of the second half of the 4-bit Gray code will
produce the desired 3-bit Gray code sequence in the three LSBs of the 4-bit sequence.
The only other problem is that the 3-bit Gray code with extra MSB is no longer a true
Gray code because when the sequence changes from 7 (Gray 0100) to 8 (~Gray 1000)

13



and again from 15 (~Gray 1100) to 0 (Gray 0000), two bits are changing instead of just

one bit. A true Gray code only changes one bit between counts.

2.4 Handling full and empty conditions

Exactly how FIFO full and FIFO empty are implemented is design-dependent. The FIFO
design in this paper assumes that the empty flag will be generated in the read-clock
domain to insure that the empty flag is detected immediately when the FIFO buffer is
empty, that is, the instant that the read pointer catches up to the write pointer (including
the pointer MSBs).The FIFO design in this paper assumes that the full flag will be
generated in the write-clock domain to insure that the full flag is detected immediately
when the FIFO buffer is full, that is, the instant that the write pointer catches up to the
read pointer (except for different pointer MSBSs).

2.4.1 Generating empty flag

The FIFO is empty when the read pointer and the synchronized write pointer are equal.
The empty comparison is simple to do. Pointers that are one bit larger than needed to
address the FIFO memory buffer are used. If the extra bits of both pointers (the MSBs of
the pointers) are equal, the pointers have wrapped the same number of times and if the
rest of the read pointer equals the synchronized write pointer, the FIFO is empty. The
Gray code write pointer must be synchronized into the read-clock domain through a pair
of synchronizer registers found in the sync_w2r module. Since only one bit changes at a
time using a Gray code pointer, there is no problem synchronizing multi-bit transitions
between clock domains. In order to efficiently register the rempty output, the
synchronized write pointer is actually compared against the rgraynext (the next Gray
code that will be registered into the rptr). The empty value testing and the accompanying

sequential always block has been extracted from the rptr_empty.v

14



2.4.2 Generating full flag

Since the full flag is generated in the write-clock domain by running a comparison
between the write and read pointers, one safe technique for doing FIFO design requires
that the read pointer be synchronized into the write clock domain before doing pointer
comparison. The full comparison is not as simple to do as the empty comparison. Pointers
that are one bit larger than needed to address the FIFO memory buffer are still used for
the comparison, but simply using Gray code counters with an extra bit to do the

comparison is not valid to determine the full condition. [6]

2.5 Procedure to Design FIFO Module:

FULL 4— —— EMPTY
Asynchronous
WRITE CLOCK » FIFO [¢— READ CLOCK
INPUT DATA OQUTPUT DATA
—/ )
CLEAR

Figure 2.4: Top Module of asynchronous fifo [9]

In order to perform FIFO full and FIFO empty tests using this FIFO style, the read and
write pointers must be passed to the opposite clock domain for pointer comparison.

e Create a Verilog model fifo_model.v which asserts full_flag and empty_flag if the
fifo memory is full or empty.

e Use parameter for width of the data and keep default to 16 bits.

e Use parameter for width of write and read pointer. We have to keep write pointer
and read pointer width one bit more than width of address for flag comparision.

e Make wr_pointer and rd_pointer 6-bit and wr_address and rd_pointer 5-bit.

e Create an always block where we write data into fifo memory at wr_clk and

increment wr_pointer if wr_enable and full_flag are low.
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Now create an always block where we read data from fifo memory at rd_clk and
increment rd_pointer if rd_enable and empty_flag are low.

Pass rd_pointer through 2 stage synchronizer flip-flops which run on wr_clk. Pass
wr_pointer through 2 stage synchronizer flip-flops which run on rd_clk. Before
passing this pointer through 2 flip flops they have to be converted into gray-code
because only one bit should change at a given point of time between consecutive
pointer values. Rise and fall times are different so 0 to 1 transition and 1 to 0
transition never occur at same time.

After passing through the 2-stage synchronizers read pointer and write pointer are
converted back into binary and their values are compared to generate full flag and
empty flag. Converting back into binary result into slow design than comparing
the pointer values by modifying the gray code. Gray code can be modified by
modifying MSB-1 bit, by using exclusive or gate between the MSB and MSB-1
bit. Keeping only one exclusive or gate can result into faster design.

We convert back into binary and compare the pointers. We following use the
logic for generating flags:

assign depth_rd = modified_rdclk_wrpointer-rd_pointer;
assign depth_wr = wr_pointer-modified_wrclk_rdpointer;
assign empty_flag = (depth_rd == 6'b000000 ) ? 1'b1 : 1'b0;
assign full_flag = (depth_wr == 6'0100000 ) ? 1'b1 :1'b0;

Then we create a test fixture tb_fifo.v to test fifo_model.v. We give values to
wr_data at wr_clk. We use a counter to write data. Data write starts from 0 and
keeps writing 0,1,2,3... if wr_rst is high and wr_enable(put) is low. We keep
rd_rst high and rd_enable(get) low to read data. Fifo buffers all asynchronous data
and data is not lost if both enables are low.

To check for flags generation keep wr_enable high empty flag is asserted after all
data is read. Full flag is asserted if rd_enable is high after some time.
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CHAPTER 3: SYNTHESIS USING SYNOPSYS DESIGN COMPILER
3.1 Synthesis and its Basic Flow

Synthesis is the process that generates a gate-level netlist for an IC design that has been
defined using a Hardware Description Language (HDL). Synthesis includes reading the
HDL source code and optimizing the design from that description. Using the technology
library's cell logical view, the Logic Synthesis tool performs the process of
mathematically transforming the ASIC's register-transfer level (RTL) description into a
technology-dependent netlist. This process is similar to a software compiler converting a
high-level C-program listing into a processor-dependent assembly-language listing. The
netlist is the standard-cell representation of the ASIC design, at the logical view level. It
consists of instances of the standard-cell library gates, and port connectivity between
gates. Proper synthesis techniques ensure mathematical equivalency between the
synthesized netlist and original RTL description. The netlist contains no unmapped RTL

statements and declarations.
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Figure 3.1: The Basic Synthesis flow [10]
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3.2 Synopsys Design Compiler Flow for Synthesis

The Design Compiler is a synthesis tool from Synopsys Inc. In simple terms, synthesis
tool takes a RTL [Register Transfer Logic] hardware description written in either Verilog
or VHDL and standard cell library as input and the resulting output would be a
technology dependent gatelevel-netlist. The gatelevel-netlist is nothing but structural
representation of only standard cells based on the cells in the standard cell library. The

synthesis tool internally performs many steps, which are listed below. Also below is the

flowchart of synthesis process.
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1. Design Compiler reads in technology libraries, DesignWare libraries, and symbol
libraries to implement synthesis. During the synthesis process, Design Compiler [DC]
translates the RTL description to components extracted from the technology library and
DesignWare library. The technology library consists of basic logic gates and flip-flops.
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Figure 3.2: Design Compiler Flow [11]
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The DesignWare library contains more complex cells for example adders and
comparators which can be used for arithmetic building blocks. DC can automatically
determine when to use Design Ware components and it can then efficiently synthesize

these components into gate-level implementations.

2. Design Compiler also needs the RTL designed by the designer. It reads the RTL

hardware description written in either Verilog/\VHDL.

3. The synthesis tool now performs many steps including high-level RTL optimization,
RTL to un-optimized Boolean logic, technology independent optimizations, and finally
technology mapping to the available standard cells in the technology library, known as
target library. This resulting gate-level-netlist also depends on constrains given.
Constraints are the designer’s specification of timing and environmental restrictions
[area, power, process etc] under which synthesis is to be performed. As an RTL designer,
it is good to understand the target standard cell library, so that one can get a better
understanding of how the RTL coded will be synthesized into gates.

4. After the design is optimized, it is ready for DFT [design for test/ test synthesis]. DFT
is test logic; designers can integrate DFT into design during synthesis. This helps the
designer to test for issues early in the design cycle and also can be used for debugging

process after the chip comes back from fabrication.

5. After test synthesis, the design is ready for the place and route tools. The Place and
route tools place and physically interconnect cells in the design. Based on the physical
routing, the designer can back-annotate the design with actual interconnect delays; DC

can be used again to resynthesize the design for more accurate timing analysis. [10]

While running DC, it is important to monitor/check the log files, reports, scripts etc to

identity issues which might affect the area, power and performance of the design.
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3.3 Design Flow
3.3.1 Read Design

Design Compiler reads designs into memory from design files. Many designs can be in
memory at any time. After a design is read in, you can change it in numerous ways, such
as grouping or ungrouping its sub designs or changing sub design references. Design

Compiler provides the following ways to read design files:

* The analyze and elaborate commands

* The read_file command

Using the analyze and elaborate Commands

The analyze command does the following:

* Reads an HDL source file
* Checks it for errors (without building generic logic for the design)
* Creates HDL library objects in an HDL-independent intermediate format

» Stores the intermediate files in a location you define

If the analyze command reports errors, fix them in the HDL source file and run analyze

gain. After a design is analyzed, you must reanalyze it only when you change it.
The elaborate command does the following:

*Translates the design into a technology-independent design (GTECH) from the
intermediate files produced during analysis.

* Allows changing of parameter values defined in the source code.

* Allows VHDL architecture selection.

* Replaces the HDL arithmetic operators in the code with DesignWare components.

 Automatically executes the link command, which resolves design references.
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Resolving the reference means that the design library or file containing the detailed
design data for the sub-block can be found and processed. If any references in the netlist
cannot be resolved, the link command will issue warnings as to which sub-component

designs are not available.

3.3.2 Define Design Environment

In order to obtain optimum results from DC, designers have to methodically constrain
their designs by describing the design environment, target objectives and design rules.
The constraints may contain timing and/or area information, usually derived from design
specifications. DC uses these constraints to perform synthesis and tries to optimize the
design with the aim of meeting target objectives. You define the environment by
specifying operating conditions, wire load models, and system interface characteristics.
Operating conditions include temperature, voltage, and process variations. Wire load
models estimate the effect of wire length on design performance. System interface
characteristics include input drives, input and output loads, and fan-out loads. The
environment model directly affects design synthesis results. [11]

- set_operating_conditions describes the process, voltage and temperature conditions of
the design. The Synopsys library contains the description of these conditions, usually
described as WORST, TYPICAL and BEST case. The names of operating conditions are
library dependent. Users should check with their library vendor for correct setting. By
changing the value of the operating condition command, full ranges of process variations
are covered. The WORST case operating condition is generally used during pre-layout
synthesis phase, thereby optimizing the design for maximum setup-time. The BEST case
condition is commonly used to fix the hold-time violations. The TYPICAL case is mostly

ignored, since analysis at WORST and BEST case also covers the TYPICAL case.
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Figure 3.3: Basic Design Environment [11]

set_operating_conditions <name of operating conditions>
It is possible to optimize the design both with the WORST and the BEST case,
simultaneously. The optimization is achieved by using the —min and —max options in the
above command, as illustrated below. This is very useful for fixing the design for
possible hold-time violations. [4]

dc_shell> set_operating_conditions—min BEST —max WORST
- set_wire_load_model command is used to provide estimated statistical wire-load
information to DC, which in turn, uses the wire-load information to model net delays as a
function of loading. Generally, a number of wire-load models are present in the Synopsys
technology library, each representing a particular size block. In addition, designers may
also choose to create their own custom wire-load models to accurately model the net
loading of their blocks.

set_wire_load_model -name<wire-load model>
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- set_drive and set_driving_cell are used at the input ports of the block. set_drive
command is used to specify the drive strength at the input port. It is typically used to
model the external drive resistance to the ports of the block or chip. The value of 0
signifies highest drive strength and is commonly utilized for clock ports. Conversely,
set_driving_cell is used to model the drive resistance of the driving cell to the input ports.
This command takes the name of the driving cell as its argument and applies all design
rule constraints of the driving cell to the input ports of the block.

set_drive <value> <object list>

set_driving_cell —cell <cell name>

—pin <pin name> <object list>

- Design Rule Constraints or DRCs consist of set_max_transition, set_max_fanout and
set_max_capacitance commands. These rules are generally set in the technology library
and are determined by the process parameters. These rules should not be violated in order
to achieve working silicon. The DRC commands can be applied to input ports, output
ports or on the current_design. Furthermore, if the value set in the technology library is
not adequate or is too optimistic, then these commands may also be used at the command
line, to control the buffering in the design.

set_max_transition <value> <object list>

set_max_capacitance <value> <object list>

set_max_fanout <value> <object list>
3.3.3 Design Constraints

Design constraints describe the goals for the design. They may consist of timing or area
constraints. Depending on how the design is constrained, DC tries to meet the set
objectives. It is imperative that designers specify realistic constraints, since unrealistic
specification results in excess area, increased power and/or degradation in timing. The

basic commands to constrain a design are shown in Figure 3.4. [4]
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Figure 3.4: Design Constraints for synthesis [11]

There are two categories of design constraints:

* Design rule constraints

* Design optimization constraints

Design rule constraints are supplied in the technology library we specify. They are
referred to as the implicit design rules. These rules are established by the library vendor,
and, for the proper functioning of the fabricated circuit, they must not be violated. We
can, however, specify stricter design rules if appropriate. The rules you specify are

referred to as the explicit design rules.

Design optimization constraints define timing and area optimization goals for Design
Compiler. These constraints are user-specified. Design Compiler optimizes the synthesis

of the design, in accordance with these constraints, but not at the expense of the design
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rule constraints. That is, Design Compiler attempts never to violate the higher-priority

design rules. [4]

- create_clock command is used to define a clock object with a particular period and
waveform. The —period option defines the clock period, while the —waveform option
controls the duty cycle and the starting edge of the clock. This command is applied to a

pin or port, object types.

In some cases, a block may only contain combinational logic. To define delay constraints
for this block, one can create a virtual clock and specify the input and output delays in
relation to the virtual clock. To create a virtual clock, designers may replace the port
name (CLK, in the above example) with the —name <virtual clock name>, in the above
command. Alternatively, one can use the set_ max_delay or set_ min_delay commands to

constrain such blocks.

-create_generated_clock command is used for clocks that are generated internal to the
design. This command may be used to describe frequency divided/multiplied clocks as a

function of the primary clock.

create_generated_clock —name <clock name>
—source <clock source>

—divide_by <factor> | -multiply_by <factor>

- set_dont_touch is used to set a dont_touch property on the current_design, cells,
references or nets. This command is frequently used during hierarchical compilation of
the blocks. Also, it can be used for, preventing DC from inferring certain types of cells

present in the technology library.

-set_input_delay specifies the input arrival time of a signal in relation to the clock. It is
used at the input ports to specify the time it takes for the data to be stable after the clock

edge. The timing specification of the design usually contains this information, as the
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setup/hold time requirements for input signals. Given the top-level timing specification of

the design, this information may also be extracted for the sub-blocks of the design.

In Figure 3.5, the maximum input delay constraint of 23ns and the minimum input delay
constraint of Ons is specified for the signal datain with respect to the clock signal CLK,
with a 50% duty cycle and a period of 30ns. In other words the setup-time requirement
for the input signal datain is 7ns, while the hold-time requirement is Ons.

0 15 30
CLK _T ; T_
datain %’alld Data>:<:

—— 28NS ———pg— 7 NS —p,

Figure 3.5: Specification of the Input Delay [11]

- set_output_delay command is used at the output port to define the time it takes for the
data to be available before the clock edge. The timing specification of the design usually
contains this information. Given the top-level timing specification of the design, this

information may also be extracted for the sub-blocks of the design.

In Figure 3.6, the output delay constraint of 19ns is specified for the signal dataout with
respect to the clock signal CLK, with a 50% duty cycle and a period of 30ns. This means
that the data is valid for 11ns after the clock edge.
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Figure 3.6: Specification of the Output Delay [11]

- set_clock_latency command is used to define the estimated clock insertion delay during
synthesis. This is primarily used during the prelayout synthesis and timing analysis. The
estimated delay number is an approximation of the delay produced by the clock tree

network insertion (done during the layout phase).

- set_clock_uncertainty command lets the user define the clock skew information.
Basically this is used to add a certain amount of margin to the clock, both for setup and
hold times. During the pre-layout phase one can add more margin as compared to the

post-layout phase.

- set_false_path is used to instruct ICC to ignore a particular path for timing or
optimization. Identification of false paths in a design is critical. Failure to do so compels
DC to optimize all paths in order to reduce total negative slack. Consequently, the critical
timing paths may be adversely affected due to optimization of all the paths, which also
includes the false paths. The valid start point and endpoint to be used for this command
are the input ports or the clock pins of the sequential elements, and the output ports or the
data pins of the sequential cells.
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- set_max_delay defines the maximum delay required in terms of time units for a
particular path. In general, it is used for the blocks that contain combinational logic only.
However, it may also be used to constrain a block that is driven by multiple clocks, each
with a different frequency.

- set_min_delay is the opposite of the set_max_delay command, and is used to define the

minimum delay required in terms of time units for a particular path.
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CHAPTER 4: Design for Testability: Boundary Scan and Logic Scan Insertion
4.1 What is Design-for-Test?

Testability is a design attribute that measures how easy it is to create a program to
comprehensively test a manufactured design’s quality. Traditionally, design and test
processes were kept separate, with test considered only at the end of the design cycle. But
in contemporary design flows, test merges with design much earlier in the process,
creating what is called a design-for-test (DFT) process flow. Testable circuitry is both
controllable and observable. In a testable design; setting specific values on the primary
inputs results in values on the primary outputs which indicate whether or not the internal

circuitry works properly. [12]

4.2 Understanding Boundary Scan

Boundary scan, sometimes referred to as JTAG (for Joint Test Action Group, the
committee that formulated IEEE standard 1149.1 describing boundary scan), is a DFT
technique that facilitates the testing of printed circuit board interconnect circuitry and, to
a limited extent, the chips on those boards. Boundary scan test structures greatly improve

board-level testing, thus shortening the manufacturing test and diagnostics processes.

4.2.1 Boundary Scan Overview

When used on a board, boundary scan stitches the input and output ports of the chips
together into a long scan path. Data shifts along the scan path, starting at the edge-
connector input TDI (test data in) and ending at the edge-connector output TDO (test data
out). In between, the scan path connects all the devices on the board that contain
boundary scan circuitry. The TDO of one chip feeds the TDI of the next, all the way
around the board. The inputs TCK (test clock) and TMS (test mode select) connect, in
parallel, to each boundary scan device in the scan path. With this configuration one can
test board interconnections, perform a snapshot of normal system data, or test individual
chips. The TAP (test access port) controller is a state machine that controls the operation

of the boundary scan circuitry. Boundary scan circuitry’s primary use is in board-level
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testing, but it can also control circuit-level test structures, such as BIST or internal scan.
By adding boundary scan circuitry to your design, you create a standard interface for

accessing and testing chips at the board level. [12]

Figure 4.1 shows the general configuration of a chip after the addition of boundary scan

logic.
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Figure 4.1 - Boundary Scan Architecture [12]
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A simple boundary scan architecture consists of the following:
e Circuit Prior to Boundary Scan
e Boundary Scan Cells
e Test Access Port (TAP)
e TAP Controller
e Boundary Scan Register
e Bypass register
e Optional Test Data Registers
e Device identification (optional)

e Data-specific (optional)

These registers allow access to the chip’s test support features, such as BIST and internal

scan paths.

e Instruction Register

The instruction register controls the boundary scan circuitry by connecting a specific

test data register between the TDI and TDO pins and controlling the operation affecting

the data in that register, using a predefined set of instructions. Three instructions are

mandatory, and several others are optional.

The mandatory instructions include:

e EXTEST
e SAMPLE/PRELOAD
e BYPASS
The optional instructions include:
o INTEST
e IDCODE
e USERCODE
e CLAMP
e HIGHZ
e RUNBIST

This instruction executes the circuit’s internal BIST procedure. [12]
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4.3 Understanding Scan Design

This section gives an overview of scan design and how it works.

4.3.1 Scan Design Overview

The goal of scan design is to make a difficult-to-test sequential circuit behave (during the
testing process) like an easier-to-test combinational circuit. Achieving this goal involves
replacing sequential elements with scannable sequential elements (scan cells) and then
stitching the scan cells together into scan registers, or scan chains. You can then use these

serially-connected scan cells to shift data in and out when the design is in scan mode.

The design shown in Figure 4.2 contains both combinational and sequential portions.
Before adding scan, the design had three inputs, A, B, and C, and two outputs, OUT1 and
OUT?2. This “Before Scan” version is difficult to initialize to a known state, making it
difficult to both control the internal circuitry and observe its behavior using the primary
inputs and outputs of the design.

After adding scan circuitry, the design has two additional inputs, sc_in and sc_en, and

one additional output, sc_out. Scan memory elements replace the original memory

elements so that when shifting is enabled (the sc_en line is active), scan data is read in

from the sc_in line.

The operating procedure of the scan circuitry is as follows:

1. Enable the scan operation to allow shifting (to initialize scan cells).

2. After loading the scan cells, hold the scan clocks off and then apply stimulus to the
primary inputs.

3. Measure the outputs.

4. Pulse the clock to capture new values into scan cells.

5. Enable the scan operation to unload and measure the captured values while

simultaneously loading in new values via the shifting procedure. [12]
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4.3.2 Full Scan

Full scan is a scan design methodology that replaces all memory elements in the design
with their scannable equivalents and then stitches (connects) them into scan chains. The
idea is to control and observe the values in all the design’s storage elements so you can
make the sequential circuit’s test generation and fault simulation tasks as simple as those

of a combinational circuit. [12]

4.3.3 Full Scan Benefits

The following are benefits of employing a full scan strategy:
¢ Highly automated process

e Highly-effective, predictable method

e Ease of use

e Assured quality

4.3.4 Partial Scan

Because full scan design makes all storage elements scannable, it may not be acceptable
for all designs because of area and timing constraints. Partial scan is a scan design
methodology where only a percentage of the storage elements in the design are replaced
by their scannable equivalents and stitched into scan chains. Using the partial scan
method, one can increase the testability of your design with minimal impact on the
design’s area or timing. In general, the amount of scan required to get an acceptable fault

coverage varies from design to design. [12]

4.3.5.Partial Scan Benefits

The following are benefits of employing a partial scan strategy:
e Reduced impact on area

¢ Reduced impact on timing

e More flexibility between overhead and fault coverage

¢ Re-use of non-scan macros
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CHAPTER 5: Power Optimization: Clock Gating

5.1 Introduction to Power Compiler

This chapter describes the Power Compiler methodology and describes power library
models and power analysis technology. Power Compiler is part of Synopsys's Design
Compiler synthesis family. It performs both RTL and gate-level power optimization and
gate-level power analysis. By applying Power Compiler's various power reduction
techniques, including clock-gating, operand isolation, multivoltage leakage power
optimization, and gate-level power optimization, you can achieve power savings, and

area and timing optimization in the front-end synthesis domain.

In earlier generations of IC design technologies, the main parameters of concern were
timing and area. EDA tools were designed to maximize the speed while minimizing area.
Power consumption was a lesser concern. CMOS was considered a low-power
technology, with fairly low power consumption at the relatively low clock frequencies

used at the time, and with negligible leakage current.

In recent years, however, device densities and clock frequencies have increased
dramatically in CMOS devices, thereby increasing the power consumption dramatically.
At the same time, supply voltages and transistor threshold voltages have been lowered,
causing leakage current to become a significant problem. As a result, power consumption
levels have reached their acceptable limits, and power has become as important as timing
or area. High power consumption can result in excessively high temperatures during

operation. [13]
5.2 Clock Gating

Power optimization at high levels of abstraction has a significant impact on reduction of
power in the final gate-level design. Clock gating is an important high-level technique for

reducing the power consumption of a design.
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5.2.1 Introduction to Clock Gating

Clock gating applies to synchronous load-enable registers, which are groups of flip-flops
that share the same clock and synchronous control signals and that are inferred from the
same HDL variable. Synchronous control signals include synchronous load-enable,
synchronous set, synchronous reset, and synchronous toggle. The registers are
implemented by Design Compiler by use of feedback loops. However, these registers
maintain the same logic value through multiple cycles and unnecessarily use power.
Clock gating saves power by eliminating the unnecessary activity associated with
reloading register banks. Designs that benefit most from clock gating are those with low-
throughput datapaths. Designs that benefit less from RTL clock gating include designs

with finite state machines or designs with throughput-of-one datapaths.
Power Compiler allows you to perform clock gating with the following techniques:

» RTL-based clock gate insertion on unmapped registers. Clock gating occurs when the

register bank size meets certain minimum width constraints.

* Gate-level clock gate insertion on both unmapped and previously mapped registers. In
this case, clock gating is also applied to objects such as IP cores that are already

mapped.

» Power-driven gate-level clock gate insertion, which allows for further power
optimizations because all aspects of power savings, such as switching activity and the
flip-flop types to which the registers are mapped, are considered.

We can choose the type of clock-gating circuit inserted. Following are some of the

choices:

1) Choose an integrated or nonintegrated cell with latch-based clock gating
2) Choose an integrated or nonintegrated cell with latch-free clock gating
3) Insert logic to increase testability
4) Specify a minimum number of bits below which clock gating is not inserted
5) Explicitly include signals in clock gating
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6) Explicitly exclude signals from clock gating

7) Specify a maximum number for the fanouts of each clock-gating element
8) Move a clock-gated register to another clock-gating cell

9) Resize the clock-gating element

Figure 5.1 shows a latch-based clock-gating style using a 2-input AND gate; however,
depending on the type of register and the gating style, gating can use NAND, OR, and
NOR gates instead.
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Figure 5.1 - Latch Based Clock Gating [14]

At the bottom of Figure 5.1, waveforms of the signals are shown with respect to the clock
signal, CLK. The clock input to the register bank, ENCLK, is gated on or off by the AND
gate. ENL is the enabling signal that controls the gating. The register bank is triggered by
the rising edge of the ENCLK signal.

The latch prevents glitches on the EN signal from propagating to the register’s clock pin.
When the CLK input of the 2-input AND gate is at logic state 1, any glitching of the EN

signal could, without the latch, propagate and corrupt the register clock signal. The latch
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eliminates this possibility because it blocks signal changes when the clock is at logic state
1.

In latch-based clock gating, the AND gate blocks unnecessary clock pulses by
maintaining the clock signal’s value after the trailing edge. For example, for flip-flops
inferred by HDL constructs of rising-edge clocks, the clock gate forces the gated clock to

0 after the falling edge of the clock.

By controlling the clock signal for the register bank, you can eliminate the need for
reloading the same value in the register through multiple clock cycles. Clock gating
inserts clock-gating circuitry into the register bank’s clock network, creating the control

to eliminate unnecessary register activity.

5.2.2 Inserting Clock Gates in RTL Design

Power Compiler inserts clock-gating cells to your design if we compile our design using
the -gate_clock option of the compile or compile_ultra command. We can also insert

clock gates to your design using the insert_clock gating command.

To insert clock gating logic in your RTL design and to synthesize the design with the

clock-gating logic, follow these steps:
1. Read the RTL design.
2. Use the compile_ultra -gate_clock command to compile your design.

During the compilation process clock gate is inserted on the registers qualified for clock-
gating. By default, during the clock-gate insertion the compile_ultra command uses the
default settings of the set_clock gating_style command, and also honors the setup, hold,
and other constraints specified in the technology libraries. To override the setup and hold
values specified in the technology library, use the set clock gating_style command
before compiling your design. You can also use the insert_clock_gating command to
insert the clock-gating cells. Both, compile_ultra and insert_clock gating commands use

the default settings of the set clock gating_style command, during the clock-gate
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insertion. The default of the set clock gating_style command is suitable for most

designs.

If you are using testability in your design, use the insert_dft command to connect the

scan_enable and the test_mode ports or pins of the integrated clock-gating cells.

Use the report_clock _gating command to report the registers and the clock gating cells in
the design. Use the report_power command to get details of the dynamic power utilized

by your design after the clock-gate insertion.
dc_shell> read_verilog design.v

dc_shell> create_clock -period 10 -name CLK
dc_shell> compile_ultra -gate_clock -scan
dc_shell> insert_dft

dc_shell> report_clock_gating

dc_shell> report_power
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CHAPTER 6: Introduction to IC Complier
6.1 Introduction

IC Compiler is a single, convergent netlist-to-GDSII or netlist-to-clock-tree-synthesis
design tool for chip designers developing very deep submicron designs. It takes as input a
gate-level netlist, a detailed floorplan, timing constraints, physical and timing libraries,
and foundry-process data, and it generates as output either a GDSII-format file of the
layout or a Design Exchange Format (DEF) file of placed netlist data ready for a third-
party router. IC Compiler can also output the design at any time as a binary Synopsys
Milkyway database for use with other Synopsys tools based on Milkyway or as ASCII

files (Verilog, DEF, and timing constraints) for use with tools not from Synopsys. [15]
6.2 User Interfaces

IC Compiler uses the tool command language (Tcl), which is used in many applications

in the EDA industry. Using Tcl, you can extend the IC Compiler command language by

writing reusable procedures and scripts.

IC Compiler provides two user interfaces:

¢ Shell interface (icc_shell) — The IC Compiler command-line interface is used for
scripts, batch mode, and push-button operations.

 Graphical user interface (GUI) — The IC Compiler graphical user interface is an
advanced analysis and physical editing tool. IC Compiler can perform certain tasks,
such as very accurately displaying the design and providing visual analysis tools, only
from the GUI.

The IC Compiler design flow is an easy-to-use, single-pass flow that provides convergent

timing closure. Figure 6.1 shows the basic IC Compiler design flow, which is centered

around three core commands that perform placement and optimization (place_opt), clock

tree synthesis and optimization (clock _opt), and routing and postroute optimization

(route_opt). [15]
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Figure 6.1 - IC Compiler Design Flow [15]

For most designs, the place_opt, clock_opt, and route_opt steps are preset for optimal
results. IC Compiler also provides additional placement, clock tree synthesis, and routing

technologies, as well as extended physical synthesis tools, that you can use to further

improve the quality of results for your design.
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To run the IC Compiler design flow,

1. Set up the libraries and prepare the design data.

2. Perform design planning and power planning.
When you perform design planning and power planning, you create a floorplan to
determine the size of the design, create the boundary and core area, create site rows for
the placement of standard cells, set up the 1/O pads, and create a power plan.

3. Perform placement and optimization.
To perform placement and optimization, use the place_opt core command (or choose
Placement > Core Placement and Optimization in the GUI).
IC Compiler placement and optimization addresses and resolves timing closure for
your
design. This iterative process uses enhanced placement and synthesis technologies to
generate a legalized placement for leaf cells and an optimized design. You can
supplement this functionality by optimizing for power, recovering area for placement,
minimizing congestion, and minimizing timing and design rule violations.

4. Perform clock tree synthesis and optimization.
To perform clock tree synthesis and optimization, use the clock_opt core command (or
choose Clock > Core Clock Tree Synthesis and Optimization in the GUI).
IC Compiler clock tree synthesis and embedded optimization solve complicated clock
tree synthesis problems, such as blockage avoidance and the correlation between
preroute and postroute data. Clock tree optimization improves both clock skew and
clock insertion delay by performing buffer sizing, buffer relocation, gate sizing, gate
relocation, level adjustment, reconfiguration, delay insertion, dummy load insertion,
and balancing of interclock delays.

5. Perform routing and postroute optimization.
To perform routing and postroute optimization, use the route_opt core command (or
choose Route > Core Routing and Optimization in the GUI).
As part of routing and postroute optimization, IC Compiler performs global routing,
track assignment, detail routing, search and repair, topological optimization, and

engineering change order (ECO) routing. For most designs, the default routing and
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postroute optimization setup produces optimal results. If necessary, you can
supplement this functionality by optimizing routing patterns and reducing crosstalk or
by customizing the
routing and postroute optimization functions for special needs.

6. Perform chip finishing and design for manufacturing tasks.
IC Compiler provides chip finishing and design for manufacturing and yield
capabilities that you can apply throughout the various stages of the design flow to
address process design issues encountered during chip manufacturing.

7. Save the design.
Save your design in the Milkyway format. This format is the internal database format
used by IC Compiler to store all the logical and physical information about a design.
[15]

6.3 How to Invoke the IC Compiler

1. Log in to the UNIX environment with the user id and password .
2. Start IC Compiler from the UNIX promt:
UNIX$ icc_shell
The xterm unix prompt turns into the IC Compiler shell command prompt.
3. Start the GUI.

icc_shell> start_gui

This window can display schematics and logical browsers, among other things, once a

design is loaded.

6.4 Preparing the Design

IC Compiler uses a Milkyway design library to store design and its associated library
information. This section describes how to set up the libraries, create a Milkyway design
library, read your design, and save the design in Milkyway format.

These steps are explained in the following sections:

* Setting up the Libraries
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« Setting up the Power and Ground Nets

* Reading the Design

 Annotating the Physical Data

* Preparing for Timing Analysis and RC Calculation
* Saving the Design

6.4.1 Setting Up the Libraries

IC Compiler requires both logic libraries and physical libraries. The following sections

describe how to set up and validate these libraries.

* Setting Up the Logic Libraries:

IC Compiler uses logic libraries to provide timing and functionality information for all
standard cells. In addition, logic libraries can provide timing information for hard
macros, such as RAMs.
IC Compiler uses variables to define the logic library settings. In each session, you
must define the values for the following variables (either interactively, in the
.synopsys_dc.setup file, or by restoring the values saved in the Milkyway design
library) so that IC Compiler can access the libraries:

* search_path

Lists the paths where IC Compiler can locate the logic libraries.

« target_library

Lists the logic libraries that IC Compiler can use to perform physical optimization.

* link_library

Lists the logic libraries that IC Compiler can search to resolve references.

* Setting Up the Physical Libraries:
IC Compiler uses Milkyway reference libraries and technology (.tf) files to provide
physical library information. The Milkyway reference libraries contain physical
information about the standard cells and macro cells in your technology library. In

addition, these reference libraries define the placement unit tile. The technology files
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provide technology-specific information such as the names and characteristics (physical
and electrical) for each metal layer.
The physical library information is stored in the Milkyway design library. For each cell,
the Milkyway design library contains several views of the cell, which are used for
different physical design tasks.
If you have not already created a Milkyway library for your design (by using another
tool that uses Milkyway), you need to create one by using the IC Compiler tool. If you
already have a Milkyway design library, you must open it before working on your
design.
This section describes how to perform the following tasks:
* Create a Milkyway design library
To create a Milkyway design library, use the create_mw_lib command (or choose
File > Create Library in the GUI).
* Open a Milkyway design library
To open an existing Milkyway design library, use the open_mw_lib command (or
choose File > Open Library in the GUI).
* Report on a Milkyway design library
To report on the reference libraries attached to the design library, use the -
mw_reference_library option.
icc_shell>report_mw_lib-mw_reference_library\ design_library_name
To report on the units used in the design library, use the report_units command.
icc_shell> report_units
* Change the physical library information
To change the technology file, use the set_ mw_technology file command (or choose
File > Set Technology File in the GUI) to specify the new technology file name and
the name of the design library.
* Save the physical library information
To save the technology or reference control information in a file for later use, use the
write_mw_lib_files command (or choose File > Export > Write Library File in the

GUI). In a single invocation of the command, you can output only one type of file. To
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output both a technology file and a reference control file, you must run the command
twice.
* Verifying Library Consistency:
Consistency between the logic library and the physical library is critical to achieving
good results. Before you process your design, ensure that your libraries are consistent
by running the check_library command. [15]

icc_shell> check_library
6.4.2 Setting Up the Power and Ground Nets

IC Compiler uses variables to define names for the power and ground nets. In each
session, you must define the values for the following variables (either interactively or in
the .synopsys_dc.setup file) so that IC Compiler can identify the power and ground nets:

* mw_logicO_net

By default, IC Compiler VSS as the ground net name. If you are using a different name,

you must specify the name by setting the mw_logicO_net variable.

* mw_logicl net

By default, IC Compiler uses VDD as the power net name. If you are using a different

name, you must specify the name by setting the mw_logicl_net variable.

6.4.3 Reading the Design

IC Compiler can read designs in either Milkyway or ASCII (Verilog, DEF, and SDC
files) format.

* Reading a Design in Milkyway Format

* Reading a Design in ASCII Format

6.4.4 Annotating the Physical Data

IC Compiler provides several methods of annotating physical data on the design:
* Reading the physical data from a DEF file

To read a DEF file, use the read_def command (or choose File > Import > Read DEF in
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the GUI).
icc_shell> read_def -allow_physical design_name.def

* Reading the physical data from a floorplan file
A floorplan file is a file that you previously created by using the write_floorplan
command (or by choosing Floorplan > Write Floorplan in the GUI).
icc_shell> read_floorplan floorplan_file_name

* Copying the physical data from another design
To copy physical data from the layout (CEL) view of one design in the current
Milkyway design library to another, use the copy_floorplan command (or choose
Floorplan > Copy Floorplan in the GUI). [15]
icc_shell> copy_floorplan -from designl

6.4.5 Preparing for Timing Analysis and RC Calculation

IC Compiler provides RC calculation technology and timing analysis capabilities for both
preroute and postroute data. Before you perform RC calculation and timing analysis, you
must complete the following tasks:
* Set up the TLUPlus files
You specify these files by using the set_tlu_plus_files command (or by choosing File
> Set TLU+ in the GUI).
icc_shell> set_tlu_plus_files\
-tech2itf_map ./path/map_file_name.map \
-max_tluplus ./path/worst_settings.tlup \
-min_tluplus ./path/best_settings.tlup
* (Optional) Back-annotate delay or parasitic data
To back-annotate the design with delay information provided in a Standard Delay
Format (SDF) file, use the read_sdf command (or choose File > Import > Read SDF in
the GUI).
To remove annotated data from design, use the remove_annotations command.

* Set the timing constraints
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At a minimum, the timing constraints must contain a clock definition for each clock
signal, as well as input and output arrival times for each 1/0O port. This requirement
ensures that all signal paths are constrained for timing.
To read a timing constraints file, use the read_sdc command (or choose File > Import >
Read SDC in the GUI).
icc_shell> read_sdc -version 1.7 design_name.sdc

* Specify the analysis mode
Semiconductor device parameters can vary with conditions such as fabrication process,
operating temperature, and power supply voltage. The set operating_conditions
command specifies the operating conditions for analysis.

* (Optional) Set the derating factors
If your timing library does not include minimum and maximum timing data, you can
perform simultaneous minimum and maximum timing analysis by specifying derating
factors for your timing library. Use the set timing_derate command to specify the
derating factors.

* Select the delay calculation algorithm

By default, IC Compiler uses EImore delay calculation for both preroute and postroute
delay calculations. For postroute delay calculations, you can choose to use Arnoldi
delay calculation either for clock nets only or for all nets. EImore delay calculation is
faster, but its results do not always correlate with the PrimeTime and PrimeTime Sl
results. The Arnoldi calculation is best used for designs with smaller geometries and

high resistive nets, but it requires more runtime and memory. [15]

6.4.6 Saving the Design

To save the design in Milkyway format, use the save_mw_cel command (or choose File >
Save Design in the GUI). [15]
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CHAPTER 7: Design Planning

7.1 Introduction

Design planning in IC Compiler provides basic floorplanning and prototyping capabilities
such as dirty-netlist handling, automatic die size exploration, performing various
operations with black box modules and cells, fast placement of macros and standard cells,
packing macros into arrays, creating and shaping plan groups, in-place optimization,
prototype global routing analysis, hierarchical clock planning, performing pin assignment
on soft macros and plan groups, performing timing budgeting, converting the hierarchy,

and refining the pin assignment.

Power network synthesis and power network analysis functions, applied during the
feasibility phase of design planning, provide automatic synthesis of local power
structures within voltage areas. Power network analysis validates the power synthesis

results by performing voltage-drop and electromigration analysis. [15]

7.2 Tasks to be performed during Design Planning

* Initializing the Floorplan

* Automating Die Size Exploration

* Handling Black Boxes

* Performing an Initial Virtual Flat Placement
* Creating and Shaping Plan Groups

* Performing Power Planning

* Performing Prototype Global Routing

* Performing Hierarchical Clock Planning

» Performing In-Place Optimization

» Performing Routing-Based Pin Assignment

* Performing RC Extraction
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* Performing Timing Analysis

* Performing Timing Budgeting

* Committing the Physical Hierarchy
* Refining the Pin Assignment

7.3 Initializing the Floorplan

The steps in initializing the floorplan are described below.

* Reading the I/O Constraints:
To load the top-level 1/0O pad and pin constraints, use the read_io_constraints
command.

* Defining the Core and Placing the 1/O Pads:
To define the core and place the 1/0 pads and pins, use the initialize_floorplan
command.

* Creating Rectilinear-Shaped Blocks:
Use the initialize_rectilinear_block command to create a floorplan for rectilinear blocks
from a fixed set of L, T, U, or cross-shaped templates. These templates are used to
determine the cell boundary and shape of the core. To do this, use
initialize_rectilinear_block -shape L|T|U|X.

* Writing I/O Constraint Information:
To write top-level 1/0 pad or pin constraints, use the write_io_constraints command.
Read the Synopsys Design Constraints (SDC) file (read_sdc command) to ensure that
all signal paths are constrained for timing.

* Adding Cell Rows:
To add cell rows, use the add_row command.

* Removing Cell Rows:
To remove cell rows, use the cut_row command.

* Saving the Floorplan Information:
To save the floorplan information, use the write_floorplan command.

*Writing Floorplan Physical Constraints for Design Compiler Topographical Technology:

IC Compiler can now write out the floorplan physical constraints for Design Compiler

50



Topographical Technology (DC-T) in Tcl format. The reason for using floorplan
physical constraints in the Design Compiler topographical technology mode is to
accurately represent the placement area and to improve timing correlation with the
post-place-and-route design. The command syntax is:

write_physical_constraints -output output_file_name -port_side [15]
7.4 Automating Die Size Exploration

This section describes how to use MinChip technology in IC Compiler to automate the

processes exploring and identifying the valid die areas to determine smallest routable, die

size for your design while maintaining the relative placement of hard macros, I/O cells,
and a power structure that meets voltage drop requirements. The technology is integrated
into the Design Planning tool through the estimate fp_area command. The input is a

physically flat Milkyway CEL view.
7.5 Handling Black Boxes

Black boxes can be represented in the physical design as either soft or hard macros. A
black box macro has a fixed height and width. A black box soft macro sized by area and
utilization can be shaped to best fit the floorplan.

To handle the black boxes run the following set of commands.

set_fp_base_gate
estimate_fp_black boxes
flatten_fp_black boxes
create_fp_placement
place_fp_pins

create_qtm_model gtm_bb
set_qtm_technology -lib library_name
create_qtm_port -type clock $port
report_gtm_model
write_qgtm_model -format gtm_bb
report_timing gqtm_bb
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7.6 Performing an Initial Virtual Flat Placement

The initial virtual flat placement is very fast and is optimized for wire length, congestion,

and timing.

The way to perform an initial virtual flat placement is described below.

* Evaluating Initial Hard Macro Placement:
No straightforward criteria exist for evaluating the initial hard macro placement.
Measuring the quality of results (QoR) of the hard macro placement can be very
subjective and often depends on practical design experience.

* Specifying Hard Macro Placement Constraints:
Different methods can be use to control the preplacement of hard macros and improve
the QoR of the hard macro placement.
1. Creating a User-Defined Array of Hard Macros
2. Setting Floorplan Placement Constraints On Macro Cells
3. Placing a Macro Cell Relative to an Anchor Object
4. Using a Virtual Flat Placement Strategy
5. Enhancing the Behavior of Virtual Flat Placement With the macros_on_edge

Switch

6. Creating Macro Blockages for Hard Macros
7. Padding the Hard Macros

* Padding the Hard Macros:
To avoid placing standard cells too close to macros, which can cause congestion or
DRC violations, one can set a user-defined padding distance or keepout margin around
the macros. One can set this padding distance on a selected macro’s cell instance
master.During virtual flat placement no other cells will be placed within the specified
distance from the macro’s edges. [15]
To set a padding distance (keepout margin) on a selected macro’s cell instance master,
use the set_keepout_margin command.

* Placing Hard Macros and Standard Cells:
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To place the hard macros and standard cells simultaneously, use the
create_fp_placement command.
* Performing Floorplan Editing:
IC Compiler performs the following floorplan editing operations.
Creating objects
Deleting objects
Undoing and redoing edit changes

1.

2.

3.

4. Moving objects
5. Changing the way objects snap to a grid
6.

Aligning movable objects

7.7 Creating and Shaping Plan Groups

This section describes how to create plan groups for logic modules that need to be
physically implemented. Plan groups restrict the placement of cells to a specific region of
the core area. This section also describes how to automatically place and shape objects in
a design core, add padding around plan group boundaries, and prevent signal leakage and
maintain signal integrity by adding modular block shielding to plan groups and soft
macros.
The following steps are covered for Creating and Shaping Plan Groups.
* Creating Plan Groups:
To create a plan group, create_plan_groups command.
To remove (delete) plan groups from the current design, use the remove_plan_groups
command.
* Automatically Placing and Shaping Objects In a Design Core:
Plan groups are automatically shaped, sized, and placed inside the core area based on
the distribution of cells resulting from the initial virtual flat placement. Blocks (plan
groups, voltage areas, and soft macros) marked fix remain fixed; the other blocks,
whether or not they are inside the core, are subject to being moved or reshaped.
To automatically place and shape objects in the design core, shape fp_blocks

command.
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» Adding Padding to Plan Groups:
To prevent congestion or DRC violations, one can add padding around plan group
boundaries. Plan group padding sets placement blockages on the internal and external
edges of the plan group boundary. Internal padding is equivalent to boundary spacing in
the core area. External padding is equivalent to macro padding.
To add padding to plan groups, create_fp_plan_group_padding command.
To remove both external and internal padding for the plan groups, use the
remove_fp_plan_group_padding command.

» Adding Block Shielding to Plan Groups or Soft Macros:
When two signals are routed parallel to each other, signal leakage can occur between
the signals, leading to an unreliable design. One can protect signal integrity by adding
modular block shielding to plan groups and soft macros. The shielding consists of metal
rectangles that are created around the outside of the soft macro boundary in the top
level of the design, and around the inside boundary of the soft macro.
To add block shielding for plan groups or soft macros, use the
create_fp_block_shielding command.

To remove the signal shielding created by modular block shielding, use the
remove_fp_block_shielding command. [15]

7.8 Performing Power Planning

After completed the design planning process and have a complete floorplan, one can
perform power planning, as explained below.
* Creating Logical Power and Ground Connections:
To define power and ground connections, use the connect_pg_nets command.
* Adding Power and Ground Rings:
After doing floorplanning, one need to add power and ground rings.
To add power and ground rings, use the create_rectangular_rings command.
* Adding Power and Ground Straps:
To add power and ground straps, use the create_power_straps command.
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* Prerouting Standard Cells:
To preroute standard cells, use the preroute_standard_cells command.

* Performing Low-Power Planning for Multithreshold-CMOS Designs:
One can perform floorplanning for low-power designs by employing power gating.
Power gating has the potential to reduce overall power consumption substantially
because it reduces leakage power as well as switching power.

* Performing Power Network Synthesis:
As the design process moves toward creating 65-nm transistors, issues related to power
and signal integrity, such as power grid generation, voltage (IR) drop, and
electromigration, have become more significant and complex. In addition, this complex
technology lengthens the turnaround time needed to identify and fix power and signal
integrity problems.
By performing power network synthesis one can preview an early power plan that
reduces the chances of encountering electromigration and voltage drop problems later
in the detailed power routing.
To perform the PNS, one can run the set of following commands. [15]
synthesize _fp_rail
set_fp_rail_constraints
set_fp_rail_constraints -set_ring
set_fp_block ring_constraints
set_fp_power_pad_constraints
set_fp_rail_region_constraints
set_fp_rail_voltage _area_constraints
set_fp_rail_strategy

* Committing the Power Plan:
Once the IR drop map meets the IR drop constraints, one can run the commit_fp_rail
command to transform the IR drop map into a power plan.

» Handling TLUPlus Models in Power Network Synthesis:
Power network synthesis supports TLUPIus models.
set_fp_rail_strategy -use_tluplus true

* Checking Power Network Synthesis Integrity:
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Initially, when power network synthesis first proposes a power mesh structure, it
assumes that the power pins of the mesh are connected to the hard macros and standard
cells in the design. It then displays a voltage drop map that one can view to determine if
it meets the voltage (IR) drop constraints. After the power mesh is committed, one
might discover “problem” areas in design as a result of automatic or manual cell
placement. These areas are referred to as chimney areas and pin connect areas.

To Check the PNS Integrity one can run the following set of commands.

set_fp_rail_strategy -pns_commit_check_file
set_fp_rail_strategy -pns_check_chimney_file
set_fp_rail_strategy -pns_check_chimney_file pns_chimney_report
set_fp_rail_strategy -pns_check_hor_chimney_layers
set_fp_rail_strategy -pns_check_chimney_min_dist
set_fp_rail_strategy -pns_check_pad_connection file_name
set fp_rail_strategy -pns_report_pad_connection_limit
set_fp_rail_strategy -pns_report_min_pin_width
set_fp_rail_strategy -pns_check _hard_macro_connection file_name
set_fp_rail_strategy -pns_check_hard_macro_connection_limit
set_fp_rail_strategy -pns_report_min_pin_width
* Analyzing the Power Network:
One perform power network analysis to predict IR drop at different floorplan stages on
both complete and incomplete power nets in the design.
To perform power network analysis, use the analyze_fp_rail command.
To add virtual pads, use the create_fp_virtual_pad command.
To ignore the hard macro blockages, use the set_fp_power_plan_constraints command.
* Viewing the Analysis Results:
When power and rail analysis are complete, one can check for the voltage drop and
electromigration violations in the design by using the voltage drop map and the
electromigration map. One can save the results of voltage drop and electromigration
current density values to the database by saving the CEL view that has just been
analyzed.
* Reporting Settings for Power Network Synthesis and Power Network Analysis
Strategies:

To get a report of the current values of the strategies used by power network synthesis
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and power network analysis by using the report_fp_rail_strategy command. [15]

7.9 Performing Prototype Global Routing

One can perform prototype global routing to get an estimate of the routability and
congestion of the design. Global routing is done to detect possible congestion “hot spots”
that might exist in the floorplan due to the placement of the hard macros or inadequate

channel spacing.

To perform global routing, use the route_fp_proto command.

7.10 Performing Hierarchical Clock Planning

This section describes how to reduce timing closure iterations by performing hierarchical
clock planning on a top-level design during the early stages of the virtual flat flow, after
plan groups are created and before the hierarchy is committed. One can perform clock
planning on a specified clock net or on all clock nets in the design.
* Setting Clock Planning Options:
To set clock planning options, use the set_fp_clock_plan_options command.
* Performing Clock Planning Operations:
To perform clock planning operations, use the compile_fp_clock plan command.
* Generating Clock Tree Reports:
To generate clock tree reports, use the report_clock_tree command.
* Using Multivoltage Designs in Clock Planning:
Clock planning supports multivoltage designs. Designs in multivoltage domains operate
at various voltages. Multivoltage domains are connected through level-shifter cells. A
level-shifter cell is a special cell that can carry signals across different voltage areas.
* Performing Plan Group-Aware Clock Tree Synthesis in Clock Planning:
With this feature, clock tree synthesis can generate a clock tree that honors the plan
groups while inserting buffers in the tree and prevent new clock buffers from being

placed on top of a plan group unless they drive the entire subtree inside that particular
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plan group. This results in a minimum of clock feedthroughs, which makes the design

easier to manage during partitioning and budgeting. [15]
7.11 Performing In-Place Optimization

In-place optimization is an iterative process that is based on virtual routing. Three types
of optimizations are performed: timing improvement, area recovery, and fixing DRC
violations. These optimizations preserve the netlist’s logical hierarchy as well as the

physical locations of the cells.
To perform in-place optimization, use the optimize_fp_timing command.
7.12 Performing Routing-Based Pin Assignment

IC Compiler provides two ways to perform pin assignment: on soft macros (traditional
pin assignment) or on plan groups (pin cutting flow).

To assign pin constraints, use the set_fp_pin_constraints command.

To assign soft macros pins, use the place_fp_pins command.

To perform Block Level Pin Assignmentuse, use the place fp_pins -block level
command.

To align soft macro pins, use the align_fp_pins command.

To remove soft macro pin overlaps, use the remove_fp_pin_overlaps command.
7.13 Performing RC Extraction

Perform postroute RC estimation by using the extract_rc command.

7.14 Performing Timing Analysis

Use the report_timing command to generate timing reports for the design. Depending on
the options selected, one can report valid paths for the entire design or for specific paths.
The timing report helps evaluate why some parts of a design might not be optimized.
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7.15 Performing Timing Budgeting

During the design planning stage, timing budgeting is an important step in achieving
timing closure in a physically hierarchical design. The timing budgeting algorithm
determines the corresponding timing boundary constraints for each top-level soft macro
or plan group (block) in a design. If the timing boundary constraints for each block are
met when they are implemented, the top-level timing constraints are satisfied.

Timing budgeting distributes positive and negative slack between blocks and then
generates timing constraints in the Synopsys Design Constraints (SDC) format for block-
level implementation.

To generate a pre-budgeting timing analysis report file, wuse the
check_fp_timing_environment command.

To run the timing budgeter, use the allocate_fp_budgets command.

Immediately after budgeting a design, you can use the check fp_budget_result command

to perform post-budget analysis. [15]

7.16 Committing the Physical Hierarchy

This section describes how to commit the physical hierarchy after finalizing the floorplan
by converting plan groups to soft macros. Committing the hierarchy creates a new level
of physical hierarchy in the virtual flat design by creating CEL views for selected plan
groups. After committing the physical hierarchy, you can also “uncommit” the physical
hierarchy by converting the soft macros back into plan groups.

In addition, this section also describes how to propagate top-level preroutes into soft
macros, recover all pushed-down objects in child cells to the top-level, and uncommit the
physical hierarchy by converting soft macros back into plan groups.

To convert plan groups to soft macros, use the commit_fp_plan_groups command.

To push down physical objects to the soft macro level, use the push_down_fp_objects
command.

To push up physical objects to the soft macro level, use the push_up_fp_objects

command.
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To uncommit the physical hierarchy, use the uncommit_fp_soft_macros command. [15]

7.17 Refining the Pin Assignment

One can analyze and evaluate the quality of the pin assignment results by checking the
placement of soft macros pins in the design and the pin alignment.
To check the placement of soft macro pins, use the check_fp_pin_assignment command.

To check the pin alignment, use the check fp_pin_alignment command. [15]

60



CHAPTER 8: Placement

Placement is an essential step in electronic design automation - the portion of the physical
design flow that assigns exact locations for various circuit components within the chip’s
core area. An inferior placement assignment will not only affect the chip's performance
but might also make it nonmanufacturable by producing excessive wirelength, which is
beyond available routing resources. Consequently, a placer must perform the assignment
while optimizing a number of objectives to ensure that a circuit meets its performance

demands. Typical placement objectives include

« Total wirelength
e Timing
o Power

« A secondary objective is placement runtime minimization

8.1 Tasks to be performed during Placement

* Defining Placement Blockages

* Setting Placement Options

* Inserting Port Protection Diodes

* Preparing for High-Fanout Net Synthesis

* Analyzing Placement and Optimization Feasibility
* Performing Clock Tree Synthesis During Placement
* Performing Placement and Optimization

* Using Physical Optimization

» Performing Layer Optimization

* Performing Preroute RC Estimation

* Analyzing Placement
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* Refining Placement

8.2 Defining Placement Blockages

Placement blockages are areas that leaf cells must avoid during placement and
legalization, including overlapping any part of the placement blockage. Placement
blockages can be hard or soft. A hard blockage prevents cells from being put in the
blockage area. A soft blockage restricts the coarse placer from putting cells in the
blockage area, but optimization and legalization can place cells in a soft blockage area.
To define a hard global keepout margin, specify the width, in microns, of the keepout
margin by setting the physopt_hard_keepout_distance variable.

To define a soft global keepout margin, specify the width, in microns, of the keepout
margin by setting the placer_soft_keepout_channel_width variable.

To define a keepout margin with different widths on each side or to define a keepout
margin for specific cells, use the set_keepout_margin command.

To create placement blockages, use the create_placement_blockage command.

To return a collection of placement blockages in the current design that match certain
criteria, use the get_placement_blockages command.

To remove placement blockages from the design, use the remove_placement_blockage
command.

To create placement blockages that fit in the thin channels to improve the quality of

results at the top level, use the derive_placement_blockages command. [15]

8.3 Setting Placement Options

IC Compiler attempts to minimize congestion during placement and optimization.
Congestion occurs when the number of wires going through a region exceeds the capacity
of that region. This condition is detected by global routing. IC Compiler places and
moves cells in such a manner to avoid congestion and to fix congestion problems when
they occur.

One can set certain options related to congestion avoidance with the

set_congestion_options command.
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To report and remove congestion option settings, use the report_congestion_options and
remove_congestion_options commands respectively.

To report congestion conditions, including DRC violations and routing density, use the
report_congestion command.

For placement that is not set up for congestion removal, one can control how densely
cells can be packed by using the placer_max_cell_density_threshold variable.

To create a move bound in IC Compiler, use the create_bounds command.

To report the move bounds in your design, use the report_bounds command.

To return a collection of move bounds in the current design that match certain criteria,
use the get_bounds command.

To remove move bounds from your design, use the remove_bounds command.

To define the intercell spacing rules, using the set_lib_cell_spacing_label command.
Define the spacing requirements between the labels by using the set_spacing_label rule
command.

To report both the intercell and boundary spacing rules, use the report_spacing_rules
command with the -all option. To report the intercell spacing rules for a specific
collection of library cells, use the report spacing_rules command with the -
of library_cells option.

To remove all spacing rules, use the remove_all_spacing_rules command.

One can specify a list of preferred buffers to fix hold violations during preroute
optimization by using the set_prefer and set_fix_hold_options commands.

To enable multithreading, use the set_host _options command with the —max_cores
option.

The set_auto_disable_drc_nets command enables DRC fixing on constant nets.

One can also insert tie cells manually with the connect_tie_cells command.

To preserv dont_touch Nets during optimization, use the set_dont_touch_network
command. [15]
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8.4 Inserting Port Protection Diodes

IC Compiler can automatically insert protection diodes on subdesign ports to prevent

antenna violations at the top level.

Use the insert_port_protection_diodes command to add diodes to the specified ports to

your netlist, one diode per port.

To report the port protection diodes that are inserted in your design, use the

report_port_protection_diodes command.

8.5 Preparing for High-Fanout Net Synthesis

During placement and optimization, IC Compiler does not buffer clock nets as defined by
the create_clock command, but it does, by default, buffer other high-fanout nets, such as
resets or scan enables, using a built-in high-fanout synthesis engine.

Before running high-fanout net synthesis during the place_opt step, define the buffering

options by using the set_ahfs_options command.

During high-fanout net synthesis, IC Compiler automatically analyzes the buffer trees to
determine the fanout thresholds by default, and then it removes and builds buffer trees.To
get information about the buffer trees in your design, use the report_buffer_tree
command.To remove buffer trees from your design, use the remove buffer_tree
command.To perform statistical analysis, specify the -design_statistics option with the

check_physical_design command. [15]

8.6 Analyzing Placement and Optimization Feasibility

During placement and optimization, one might need to run the place_opt command
multiple times to obtain optimal results. To improve runtime and to reduce iterations of
placement and optimization during early design stages, one can use the

place_opt_feasibility command to analyze placement and optimization feasibility.
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Running the feasibility flow can minimize the number of iterations, validate timing

constraints, and report all paths that are not feasible.

8.7 Performing Clock Tree Synthesis During Placement

If the design contains simple clock tree structures and uses the same design rule
constraints for placement and clock tree synthesis, one can simplify the design flow by

performing clock tree synthesis and optimization during placement.

To perform clock tree synthesis and optimization during placement, use the

set_place_opt_cts_strategy command.

8.8 Performing Placement and Optimization

To perform placement and optimization, use the place_opt command.

The place_opt command performs coarse placement, high-fanout net synthesis, physical
optimization, and legalization.During placement and optimization, the place_opt

command does not touch the clock networks in the design.

For most designs, using the default setting for the placer_enable _enhanced router

variable should meet the congestion optimization requirements during placement.

To improve congestion for a complex floorplan or to improve timing for the design, one
can use magnet placement to specify fixed objects as magnets and have IC Compiler
move their connected standard cells close to them.To perform magnet placement, use the
magnet_placement command.To return a collection of cells that can be moved with

magnet placement, use the get_magnet_cells command. [15]
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8.9 Using Physical Optimization

One can run incremental placement-based optimization that supports area recovery,
design rule fixing, sizing, and route-based optimization by using the psynopt command.
By default, this command performs timing optimization and design rule fixing, based on
the maximum capacitance and maximum transition settings while keeping the clock
networks untouched. It can also perform power optimizations. The psynopt command
continues to optimize until no more optimizations can be performed. When done, it

completes the optimizations with a legalized placement of the design. [15]

8.10 Performing Layer Optimization

One can use the preroute focal opt command to perform preroute optimization to fix
high-fanout nets, setup, hold, and logical DRC violations after the place_opt or clock _opt
stage but before the route_opt stage. One can also use the command to perform layer
optimization to control the tradeoff between buffering and layer assignment by specifying

the -layer_optimization option. Layer optimization works only in the current scenario.

To change the default settings of layer optimization, use the

set_preroute_focal opt_strategy command. [15]

8.11 Performing Preroute RC Estimation

IC Compiler automatically performs preroute RC estimation when running the following
commands: place_opt, clock_opt, create_placement, legalize_placement, and psynopt. In
addition, one can explicitly perform preroute RC estimation by running the extract_rc
command.
To report the delay estimation coefficients, use the report_delay estimation_options
command.

To set net-based layer constraints, use the set_net_routing_layer_constraints command.
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To report and remove routing layer constraints, use the
report_net_routing_layer_constraints and remove_net_routing_layer_constraints

commands. [15]

8.12 Analyzing Placement

After placement, one can view and analyze the results. One can report the area utilization
with the report_placement_utilization command, the design timing with the
report_timing command, the power consumption characteristics with the report_power
command, and the QoR with the create_qgor_snapshot command.

After setting the timing constraints such as clocks, input delays, and output delays, it is a
good idea to use the check timing command to check for timing setup problems and
timing conditions such as incorrectly specified generated clocks and combinational
feedback loops. The command checks the timing attributes of the current design and
issues warning messages about any unusual conditions found.

Use the report_timing command to report the worst-case timing paths in the design.

To get a detailed report on the delay calculation at a given point along a timing path, use

the report_delay_calculation command.

The report_power command calculates and reports power for a design. The command
uses the user-annotated switching activity to calculate the net switching power, cell
internal power, and cell leakage power, and it displays the calculated values in a power
report. [15]

8.13 Refining Placement

If the design shows large timing or violations after running the place_opt command,
adjust the place_opt options and rerun place_opt, as described in “Performing Placement
and Optimization”.

If the design shows small timing or violations after running place_opt, running psynopt to

fix these violations, as described in “Using Physical Optimization™.
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If the design has congestion violations after running place_opt, rerun place_opt with
high-effort congestion reduction (-congestion option). If the design still has congestion

violations, one can refine the placement to fix these violations.
To refine the placement, use the refine_placement command. The refine_placement

command performs incremental placement and legalization.[15]
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CHAPTER 9: Clock Tree Synthesis

Introduction

A clock (buffer) tree is built to balance the output loads and minimize the clock skew a
delay line can be added to the network to meet the minimum insertion delay (clock
balancing), buffers are used to speed up the clock signals.

Effects of CTS:

e Several (Hundreds/Thousands) of clock buffers added to the design

e Placement / Routing congestion may increase

e Non-clock cells may have been moved to less ideal locations

e Timing violations can be introduced
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Figure 9.1 - Clock tree Synthesis [18]

This chapter provides detailed information about the IC Compiler clock tree synthesis

capability. This chapter contains the following sections:

e Prerequisites for Clock Tree Synthesis
¢ Analyzing the Clock Trees

e Defining the Clock Trees

e Specifying Clock Tree Exceptions

o Specifying the Clock Tree References
e Defining Clock Cell Spacing Rules
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o Specifying Clock Tree Synthesis Options

e Specifying Clock Tree Optimization Options
¢ Inserting User-Specified Clock Trees

e Handling Specific Design Characteristics

e Verifying the Clock Trees

e Implementing the Clock Trees

e Implementing Clock Meshes

¢ Using Batch Mode to Reduce Runtime

e Analyzing the Clock Tree Results

e Fine-Tuning the Clock Tree Synthesis Results
e Analyzing and Refining the Design

9.1 Prerequisites for Clock Tree Synthesis

9.1.1 Design Prerequisites

Before running clock tree synthesis, the design should meet the following requirements:

e The design is placed and optimized.

Use the check_legality -verbose command to verify that the placement is legal. The
estimated QoR for the design should meet your requirements before you start clock tree

synthesis. This includes acceptable results for:

e Congestion
If congestion issues are not resolved before clock tree synthesis, the addition of clock
trees can increase congestion. If the design is congested, you can rerun place_opt with
the -congestion and -effort high options, but the runtime can be long.

e Timing

e Maximum capacitance

e Maximum transition time
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To ensure that the clock tree can be routed, verify that the placement is such that the
clock sinks are not in narrow channels and that there are no large blockages between
the clock root and its sinks. If these conditions occur, fix the placement before running
clock tree synthesis.

e The power and ground nets are prerouted.

e High-fanout nets, such as scan enables, are synthesized with buffers. [15]
9.1.2 Library Prerequisites

Also libraries must meet the following requirements:

e Any cell in the logic library that you want to use as a clock tree reference (a buffer or
inverter cell that can be used to build a clock tree) or for sizing of gates on the clock
network must be usable by clock tree synthesis and optimization. By default, clock tree
synthesis and optimization cannot use buffers and inverters that have the dont_use
attribute to build the clock tree.

e The physical library should include
All clock tree references (the buffer and inverter cells that can be used to build the
clock trees). Routing information, which includes layer information and non-default
routing rules.

e Tuples models must exist.

Extraction requires these models to estimate the net resistance and capacitance. [15]

9.2 Analyzing the Clock Trees

Before running clock tree synthesis, analyze each clock tree to determine its
characteristics and its relationship to other clock trees in the design. For each clock tree,

determine

¢ What the clock root is?
e What the desired clock sinks and clock tree exceptions are?

e Whether the clock tree contains preexisting cells, such as clock-gating cells.
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e Whether the clock tree converges, either with itself (a convergent clock path) or with
another clock tree (an overlapping clock path).

o Whether the clock tree has timing relationships with other clock trees in the design,
such as interclock skew requirements.

e What the logical design rule constraints (maximum fanout, maximum transition time,
and maximum capacitance) are?

e What the routing constraints (routing rules and metal layers) are?

9.3 Defining the Clock Trees

IC Compiler uses the clock sources defined by the create_clock command as the clock
roots and derives the default set of clock sinks by tracing through all cells in the transitive
fanout of the clock roots. To disallow clock sources defined on a hierarchical pin, set the
cts_enable_clock at_hierarchical_pin variable to false before using the create clock

command. This variable is true by default. [15]

9.3.1 Cascaded Clocks

If a nested clock tree has its own source, IC Compiler considers the source pin of the
driven clock to be an implicit exclude pin of the driving clock. Sinks of the driven clock
are not considered sinks of the driving clock. To verify that the clock sources are

correctly defined, use the check_clock_tree command. [15]

9.3.2 Cascaded Generated Clocks

If a nested clock tree has a generated source, IC Compiler traces back to the master-clock
source from which the generated clock is derived and considers the sinks of the generated
clock to be the sinks of the driving clock tree. Incorrectly defining the master-clock

source, results in poor skew and timing QoR.

If IC Compiler cannot trace back to the master-clock source, the tool cannot balance the
sinks of the generated clock with the sinks of its source. If the master-clock source is not
a clock source defined by the create_clock or create_generated_clock command, IC

Compiler cannot synthesize a clock tree for the generated clock or its source. Use the
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check_clock tree command to verify that your master-clock sources are correctly
defined. [15]

9.3.3 Identifying the Clock Tree Endpoints

Clock paths have two types of endpoints:

e Stop pins: Stop pins are the endpoints of the clock tree that are used for delay
balancing. During clock tree synthesis, IC Compiler uses stop pins in calculations and
optimizations for both design rule constraints and clock tree timing (skew and insertion
delay). Stop pins are also referred to as sink pins.

e Exclude pins: Exclude pins are clock tree endpoints that are excluded from clock tree
timing calculations and optimizations. IC Compiler uses exclude pins only in

calculations and optimizations for design rule constraints.

Verify that the default sink pins (implicit stop pins), implicit nonstop pins, and implicit
exclude pins are accurate by generating a clock tree exceptions report. If the default sink
pins, implicit nonstop pins, and implicit exclude pins are correct, you are done with the
clock tree exception definition. Otherwise, first identify any timing settings, such as
disabled timing arcs and case analysis settings, that affect the clock tree traversal. To
identify disabled timing arcs in your design, use the report_disable_timing command. To
identify case analysis settings in your design, use the report_case_analysis command.

Remove any timing settings that cause an incorrect clock tree definition. [15]

9.3.4 Analyzing Clock Sink Groups

A clock sink group is a group of clock sinks driven directly by a single net. The sink
group assumes the net name. Sink groups can have timing relationships when an endpoint
in a sink group has one or more startpoints or endpoints in another sink group. Each

startpoint-and-endpoint pair forms one timing relationship path.

To report sink groups and their timing relationships, specify the -sink_group option with
the report_clock tree command. Sink groups can overlap because each sink group can be
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in more than one clock domain. When sink group overlapping occurs, the
report_clock tree -sink_group command issues a warning message by default. To
suppress the warning message, set the timing_enable_multiple_clocks_per_reg variable
to true, changing it from its default of false.

9.3.5 Ignoring Clock Tree Exceptions

By default, the report_clock tree -sink_group command respects the clock tree
exceptions when traversing the clock tree network. To ignore the clock tree exceptions,

specify the -sink_group_ignore_cts_exceptions option. The following restrictions apply:

e When an explicit stop pin or a float pin is not an endpoint of a timing relationship, the
tool does not count the timing relationship.

e The tool does not support per-clock exceptions on sinks.

9.3.6 Ignoring Buffers and Inverters

e By default, the report_clock _tree -sink_group command does not allow the driving

nets to pass through preexisting buffers and inverters.

9.3.7 Defining the Clock Root Attributes

If the clock root is an input port (without an I/O pad cell), must accurately specify the
driving cell of the input port. A weak driving cell does not affect logic synthesis, because
logic synthesis uses ideal clocks. However, during clock tree synthesis, a weak driving
cell can cause IC Compiler to insert extra buffers as the tool tries to meet the clock tree
design rule constraints, such as maximum transition time and maximum capacitance. If
not specified a driving cell (or drive strength), IC Compiler assumes that the port has
infinite drive strength. If the clock root is an input port with an 1/O pad cell, must

accurately specify the input transition time of the input port. [15]
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9.4 Specifying Clock Tree Exceptions

To define clock tree exceptions, use the set_clock_tree_exceptions command. You can
set clock tree exceptions on pins or hierarchical pins. If a pin is on paths in multiple clock
domains, you can define different clock tree exceptions for each clock domain. By
default, while using the set_clock_tree_exceptions command, the clock tree exceptions
apply to all clocks for all multicorner-multimode scenarios. When you use the

set_clock_tree_exceptions command without the -clocks option, the tool

e Applies the clock tree exceptions to all clocks for all multicorner-multimode scenarios.
To specify clock tree exceptions for the current scenario only, use the -
current_scenario option. Do not use the -current_scenario option with the -clocks
option.

o Defines the clock tree exceptions for all master clocks that contain the paths of the pin,

including the paths of the generated clocks.

To see the clock tree exceptions defined in your design, generate a clock tree exceptions
report by running the report_clock_tree -exceptions command. One can remove clock
tree exceptions based on how they are defined, If a clock tree exception is defined
without the -clocks option, use the remove_clock_tree_exceptions command without the -
clocks option. If a clock tree exception is defined with the -clocks option, use the

remove_clock_tree_exceptions -clocks command. [15]
9.4.1 Precedence of Clock Tree Exceptions

Issue the set_clock tree_exceptions command multiple times for the same pin, the pin
keeps the highest-priority exception. IC Compiler prioritizes the clock tree pin exceptions
in the following order:

e Nonstop pins:
To specify a nonstop pin, use the set_clock_tree_exceptions -non_stop_pins command.

e Exclude pins:
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To specify an exclude pin, use the set_clock_tree_exceptions -exclude_pins command.
e Float pins:
To specify a float pin and its timing characteristics, use the following
set_clock_tree_exceptions options:
« -float_pins [get_pins pin_list]
« -float_pin_max_delay_fall max_delay fall_value
« -float_pin_max_delay_rise max_delay_rise_value
« -float_pin_min_delay_fall min_delay_fall_value
« -float_pin_min_delay_rise min_delay_rise_value
« -float_pin_logic_level logic_level value
e Stop pins:

To specify a stop pin, use the set_clock_tree_exceptions -stop_pins command.

When multiple exceptions are defined on the same pin, the set_clock tree_exceptions
command with the -clocks option always overrides the command without the -clocks
option. The same rule applies even when the command without the -clocks option sets a

higher-priority exception than the command with the -clocks option. [15]
9.5 Specifying the Clock Tree References
IC Compiler uses four clock tree reference lists:

e One for clock tree synthesis.
e One for boundary cell insertion.
e One for sizing.

e One for delay insertion

By default, each clock tree reference list contains all the buffers and inverters in your
technology library. To fine-tune the results, one can restrict the set of buffers and
inverters used for one or more of these operations. To define a clock tree reference list,

use the set_clock tree references command. When a clock tree reference list is defined,
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ensure that the buffers and inverters are specified with a wide range of drive strengths, so
that clock tree synthesis can select the appropriate buffer or inverter for each cluster. [15]
9.6 Defining Clock Cell Spacing Rules

Clock cells consume more power than cells that are not in the clock network. Clock cells
that are clustered together in a small area increase current densities for the power and
ground rails, where a potential electromigration problem might occur. One way to avoid
the problem is to set spacing requirements between clock cells. Set the spacing
requirements by defining clock cell spacing rules for inverters, buffers, and integrated
clock-gating cells in the clock network. Thus, one can prevent local clumping of the

clock cells along a standard cell power rail between the perpendicular straps.

To define clock cell spacing rules, use the set_clock_cell_spacing command.

To report clock cell spacing rules, use the report_clock cell_spacing command.

To remove clock cell spacing rules, use the remove_clock_cell_spacing command. [15]

9.7 Specifying Clock Tree Synthesis Options

To define clock tree synthesis options, use the set_clock_tree options command.

9.7.1 Specifying the Clock Tree Synthesis Goals

The optimization goals used for synthesizing the design and the optimization goals used
for synthesizing the clock trees might differ. Perform the following steps to ensure the

proper constraints usage:

¢ Set the clock tree design rule constraints.

e Set the clock tree timing goals.

IC Compiler prioritizes the clock tree synthesis optimization goals as follows:

¢ Design rule constraints.
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a. Meet maximum capacitance constraint
b. Meet maximum transition time constraint
¢. Meet maximum fanout constraint.

e Clock tree timing goals
a. Meet maximum skew target

b. Meet minimum insertion delay target
9.7.2 Setting Clock Tree Design Rule Constraints
IC Compiler supports the following design rule constraints for clock tree synthesis:

e Maximum capacitance (set_clock_tree_options -max_capacitance)

If this constraint is not specified, the clock tree synthesis default is 0.6 pF.
e Maximum transition time (set_clock_tree_options -max_transition)

If this constraint is not specified, the clock tree synthesis default is 0.5 ns.
e Maximum fanout (set_clock_tree_options -max_fanout)

If this constraint is not defined, the clock tree synthesis default is 2000.

9.7.3 Setting Clock Tree Timing Goals

During clock tree synthesis, IC Compiler considers only the clock tree timing goals. It
does not consider the latency (as specified by the set_clock latency command) or

uncertainty (as specified by the set_clock _uncertainty command).

One can specify the following clock tree timing goals for a clock tree:

e Maximum skew (set_clock_tree_options -target_skew)

e Minimum insertion delay (set_clock_tree_options -target_early_delay).

9.7.4 Setting Clock Tree Routing Options

IC Compiler allows to specify the following options to guide the clock tree routing:
¢ Which routing rule (type of wire) to use.

Specifying Routing Rules:
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If not specified which routing rule to use for clock tree synthesis, IC Compiler uses the
default routing rule (default wires) to route the clock trees.
To see the current routing rule definitions, run the report_routing_rules command. To
set the clock tree routing rule, use the set_clock_tree_options -routing_rule command.
e Which clock shielding methodology to use.
Shielding Clock Nets:
IC Compiler implements clock shielding using nondefault routing rules. One can
choose either to shield clock nets before routing signal nets or vice versa.
To define nondefault routing rules for clock shielding, use the define_routing_rule
command. The syntax is define_routing_rule rule_name
[-snap_to_track]
[-shield_spacings shield_spacings]
[-shield_widths shield_widths]
e Which routing layers to use.
Specifying Routing Layers
If not specified which routing layers to use for clock tree synthesis, IC Compiler can
use any routing layers. For more control of the clock tree routing, one can specify
preferred routing layers by using the set_clock_tree_options -layer_list command.
e Which nondefault routing rules to use with which cell types.
Association of Nondefault Routing Rules With Reference Cells
Electromigration problems result from an increase in current densities, which often
occurs when strong cells drive thin nets. Electromigration can lead to opens and
shorts due to metal ion displacement caused by the flow of electrons and can lead to
the functional failure of the IC device. To prevent these problems in clock networks,
associate reference cells with compatible nondefault routing rules by using the

set_reference_cell_routing_rule command. [15]
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9.8 Specifying Clock Tree Optimization Options

IC Compiler can perform several optimization tasks, which can be enabled or disabled by

setting the appropriate options.
9.8.1 Controlling Embedded Clock Tree Optimization

To set the optimization options for embedded clock tree optimization, use the

set_clock_tree_options command.
9.8.2 Controlling Preroute Clock Tree Optimization

During clock_opt, the clock tree optimization phase performs all the optimization tasks:
-buffer_relocation: Optimizes the placement of the buffers and inverters in the
synthesized clock trees.

-buffer_sizing: Optimizes the sizing of the buffers and inverters in the synthesized clock
trees.

-delay_insertion: Inserts delays on clock paths to reduce the clock skew, while at the
same time ensuring that the longest clock path does not change.

-gate_relocation: Optimizes the placement of the preexisting gates in the clock trees by
moving them closer to the clock sinks. Gates marked as fixed are not moved.
-gate_sizing: Optimizes the sizing of the preexisting gates in the clock trees

One cannot independently control these tasks for clock opt. To set the optimization
options for standalone preroute clock tree optimization, specify the options when running

the optimize_clock_tree command. [15]
9.8.3 Controlling Postroute Clock Tree Optimization

To set the optimization options for postroute clock tree optimization, specify the options

when you run the optimize_clock_tree command.
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9.9 Inserting User-Specified Clock Trees

IC Compiler supports the use of a clock configuration file to enable user specification of

the clock tree structure. The following sections describe how to:

e Read a clock configuration file before clock tree synthesis.
If one have a configuration file that describes the desired clock tree structure, run the
set_clock_tree_options -config_file_read config_file command before running clock
tree synthesis.

e Reduce skew variation by using RC constraint-based clustering.
To enable this capability, set the cts_enable_rc_constraints variable to true before
running clock tree synthesis.

e Save a clock configuration file after clock tree synthesis.
To save the generated clock tree structure in a clock configuration file after clock tree
synthesis, run the set clock tree options -config file_write config_file command
before running clock tree synthesis.

e Describe clock tree structure in a clock configuration file.
Use the following syntax to define the structure for each user-specified clock tree in
design:

begin_clock_tree number_of levels

clock_net net_name [routing_rule rule_name]
[routing_layer_constraints min_layer max_layer]
{buffer_level reference_cell number_of buffers
[buffer_level_pin instance/pin]
[routing_rule rule_name]
[routing_layer_constraints min_layer max_layer]
o}
... end_clock_tree

begin_clock_tree number_of levels

9.10 Handling Specific Design Characteristics

Several design styles might require special considerations during clock tree synthesis.
These design styles include:

e Multicorner-multimode designs.
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e Hard macro cells.

e Preexisting clock trees.

e Non-unate gated clocks.

e Integrated clock-gating (ICG) cells.

e Multiple clocks (with balanced skew).
e Hierarchical designs.

e Extracted timing models.

e Multivoltage designs.

The following sections describe how to use IC Compiler clock tree synthesis with these

design styles.

9.11 Verifying the Clock Trees

Before you synthesize the clock trees, use the check clock tree command to verify that
the clock trees are properly defined. If not specified the -clocks option, IC Compiler
checks all clocks in the current design. The check clock tree command checks for the

following issues:

e Hierarchical pin defined as a clock source

e Generated clock without a valid master clock source.

For multicorner-multimode designs, the check_clock tree command checks all scenarios

automatically for the following issues:

e Conflicting per-clock exception settings for each scenario
¢ Conflicting balancing settings in merged scenarios

e Conflicting multicorner-multimode interclock delay balancing settings
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9.12 Implementing the Clock Trees

The recommended process for implementing the clock trees in design is to use the
clock_opt command, which performs clock tree synthesis and incremental physical
optimization. This process results in a timing optimized design with fully implemented

clock trees.

9.12.1 Optimizing Clock Tree Synthesis Only and Clock Tree Synthesis Hold Only

Scenarios

e To enable the clock tree synthesis only scenarios, run the set scenario_options
command with the following settings before running the clock_opt command:
icc_shell> set_scenario_options —cts mode true —setup false —hold false \ -
cts_corner value -scenarios cts_scenario

Here, value could be any of max, min, or min_max.

e To enable the clock tree synthesis hold only scenarios, run the set _scenario_options
command before running the clock_opt command: icc_shell> set_scenario_options —
cts_mode true —setup false —hold true \ -cts_corner value -scenarios cts_scenario

Here, value could be any of max, min, or min_max.

9.12.2 Analyzing Optimization Feasibility After Clock Tree Synthesis

After you finish implementing the clock trees, evaluate the design constraints for setup
and hold time by analyzing optimization feasibility. Perform the feasibility analysis at an
early design stage to fine-tune the design constraints for optimization. To perform the
feasibility analysis, use the clock opt_feasibility command with the -only_psyn option.

Running optimization feasibility provides the following benefits:

e Improves timing QoR by resolving setup time violations and performing hold time
fixing analysis.

¢ Reduces the runtime relative to the comparable clock_opt flow for optimization.
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9.12.3 Standalone Clock Tree Synthesis Capabilities

Using the clock_opt command is the recommended method for performing clock tree
synthesis and optimization with IC Compiler. However, in cases where finer control is
required, IC Compiler also provides the following standalone clock tree synthesis

capabilities:

e Clock tree power optimization
e Clock tree synthesis

e High-fanout net synthesis

e Clock tree optimization

e Interclock delay balancing

e 1/O timing adjustment

e Clock Tree Routing

9.12.4 Performing Clock Tree Synthesis

Clock tree synthesis is performed during the clock_opt process and can also be run as a
standalone process. IC Compiler clock tree synthesis is blockage-aware by default. The
blockage-aware capability avoids routing and placement blockages to reduce DRC
violations in designs with complex floorplans. Furthermore, it implements clock trees
with minimum clock insertion delay, small clock skew, low buffer count, and small clock
cell area to produce the best quality of results (QoR). During clock tree synthesis, IC

Compiler:

e Upsizes and moves the existing clock gates, which can improve the QoR and reduce the
number of clock tree levels. To prevent upsizing of specific cells during this process,
use the set_clock_tree_exceptions -dont_size_cells command.

e Inserts buffers and inverters to build clock trees that meet the clock tree design rule
constraints, while balancing the loads and minimizing the clock skew.

e Fixes DRC violations beyond clock exceptions without balancing the skew if the

cts_fix_drc_beyond_exceptions variable is set to true (the default).
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¢ Builds a blockage map infrastructure per voltage area to identify whether a location is
blocked for routing or placement, so the legalizer can move buffers to the nearest
unblocked locations toward clock sources.

e Locates the shortest blockage-avoiding route path from a startpoint to an endpoint with

minimum delay to prevent DRC violations.

If design has logical hierarchy, IC Compiler uses the lowest common parent of a buffer’s

fanout pins to determine where to insert the buffers.

e |f the lowest common parent is not the top level of the design, the buffer is inserted in
the lowest common parent.
e If the lowest common parent is the top level of the design, the buffer is inserted in the

block that contains the driving pin of the buffer.

To perform standalone clock tree synthesis, use the compile_clock _tree command. [15]

9.12.5 Performing Clock Tree Optimization

Clock tree optimization improves the clock skew and clock insertion delay by applying
additional optimization iterations. Clock tree optimization is performed during the
clock_opt process and can also be run as a standalone process before clock routing, after

clock tree routing, or after detail routing.

To perform standalone clock tree optimization, use the optimize_clock tree command. IC

Compiler provides the following incremental optimization capabilities:

e Buffer relocation by using the -buffer_relocation option.
e Buffer sizing by using the -buffer_sizing option.

e Delay insertion by using the -delay_insertion option

e Gate relocation by using the -gate_relocation option.

e Gate sizing by using the -gate_sizing option.

85



9.12.6 Performing Clock Routing

After you finish clock tree optimization, you can perform clock routing using either the
default router, Zroute, or the classic router. Both Zroute and the classic router support the
integrated clock global router and balanced-mode routing. To achieve the best correlation
results, IC Compiler uses the integrated clock global router and saves clock global
routing information. When using Zroute (the default router), use the route_zrt group -
all_clock nets command to perform clock routing. Must also use the -
reuse_existing_global_route option so that Zroute detects the clock global routing
information in the Milkyway database and performs incremental global routing. [15]

9.13 Implementing Clock Meshes

Clock meshes are homogeneous shorted grids of metal that are driven by many clock
drivers. The purpose of a clock mesh is to reduce clock skew in both nominal designs and
designs across variations such as on-chip variation (OCV), chip-to-chip variation, and
local power fluctuations. A clock mesh reduces skew variation mainly by shorting the

outputs of many clock drivers. [15]

9.13.1 Prerequisites for Creating Clock Meshes

Before running clock mesh commands, design should meet the following requirements:

e The design should be mesh-conducive. A basic mesh-conducive design contains at least
one high-fanout clock net that has no more than two levels below the proposed mesh. If
necessary, use the remove_clock gating command in Power Compiler or the
flatten_clock_gating command in IC Compiler to flatten the circuitry under the
proposed mesh.

e The design should have enough room to place mesh drivers near the mesh loads for
driving the mesh optimally.

e To analyze clock mesh circuits, you must have the NanoSim or HSIM transistor models
for all the clock mesh gates. A circuit simulator is needed because static timing tools

cannot handle clock meshes.
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e One should be able to run NanoSim from the shell where you invoke the IC Compiler.
[15]

9.13.2 Implementing Hierarchical Clock Meshes

Compiler clock mesh technology supports hierarchical designs by using ILMs. During
the block-level flow for your hierarchical design, you can also create a clock mesh for the
clocks inside a block. The timing information of the block is available at the top level
with the use of ILMs. Block abstraction models are not supported by the hierarchical

clock mesh flow.

9.13.3 Prerequisites for the Hierarchical Clock Mesh Flow

The IC before to start creating a clock mesh in a block, make sure to complete the

following steps.

e Complete the hierarchical design planning of the design, and create the Milkyway
design libraries for the top-level and lower-level block.

e Select a block that is clock mesh conducive.

9.13.4 Procedures to Create Hierarchical Clock Mesh
To create a clock mesh for the clocks inside a block:

e Complete the hierarchical design planning, open the block, and complete the placement
process.

e Create the clock mesh by using the clock mesh flow.

¢ Run the analyze_subcircuit command to analyze the clock mesh.

e Use the create_ilm command to generate the ILM for the block. The timing information
is saved in the ILM view.

e Create the FRAM view for the block to be used at the top level.
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e Return to the top level of the design and include the block with its FRAM and ILM
views.
¢ Propagate block-level timing to the top level and then proceed to complete the top-level

flow. This is a required step in the hierarchical clock mesh flow. [15]

9.14 Using Batch Mode to Reduce Runtime

While running multiple compile_clock _tree commands on your design, the overhead of
repeated clock tree synthesis preprocessing and postprocessing increases runtime. To
reduce the compile_clock_tree runtime, you can enable the clock tree synthesis batch
mode by using the set_cts_batch_mode command. The reset_cts_batch_mode command
disables batch mode and invokes the postprocessing cleanup of excess clock trees that
were inserted. The report_cts_batch_mode command displays whether the flow is in
batch mode or normal mode. Using batch mode for the compile_clock_tree command
saves an average of 15 percent in runtime with a minimum impact on QoR.To use batch
mode with the clock_opt command, set the cts_clock_opt_batch_mode variable to true.
[15]

9.15 Analyzing the Clock Tree Results

After synthesizing the clock trees, analyze the results to verify that they meet your

requirements. Typically the analysis process consists of the following tasks:

e Analyzing the clock tree reports
e Analyzing the clock tree timing
e Reporting QoR

e Verifying the placement of the clock instances,

If the clock trees meet the requirements, then its ready to analyze the entire design for
quality of results. If the synthesis results do not meet your requirements, IC Compiler can
help you debug the results by outputting additional information during clock tree

synthesis.
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9.16 Fine-Tuning the Clock Tree Synthesis Results

IC Compiler supports the following methods for fine-tuning the clock tree synthesis

results:

e Using the Useful Skew Technique

e Balancing the Skew Using Skew Groups
e Resynthesizing the Clock Trees

e Modifying the Nondefault Routing Rule
e Modifying Clock Trees in the GUI

9.17 Analyzing and Refining the Design

After getting the satisfied results with the clock tree synthesis results, analyze the QoR of
the entire design by reporting on constraints (use the report_constraint command) and
timing (use the report timing command). Use the reports to check the following

parameters:

e Worst negative slack (WNS)
e Total negative slack (TNS)

e Design rule constraint violations [15]
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CHAPTER 10: Routing Using Zroute

Introduction

This chapter describes the routing capabilities of Zroute, which is the default router for
all IC Compiler packages, with the exception of the ICC-XP package. Zroute is
architected for multicore hardware and efficiently handles advanced design rules for 45

nm and below technologies and design-for-manufacturing (DFM) tasks. [15]

10.1 Tasks to be performed during Routing

 Zroute Features

* Basic Zroute Flow

* Prerequisites for Routing

* Checking Routability

» Setting Up for Routing

* Routing Clock Nets

* Routing Critical Nets

* Routing Signal Nets

* Performing ECO Routing

* Cleaning Up Routed Nets

* Saving the Routing Information
* Analyzing the Routing Results
* Routing Nets and Buses in the GUI

* Postroute RC Extraction

10.2 Zroute Features

Zroute has five routing engines: global routing, track assignment, detail routing, ECO
routing, and routing verification. You can invoke global routing, track assignment, and
detail routing by using the route_opt core command; by using task-specific commands; or

by using an automatic routing command.
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Zroute includes the following main features.

» Multithreading on multicore hardware for all routing steps, including global routing,
track assignment, and detail routing.

* A realistic connectivity model where Zroute recognizes electrical connectivity if the
rectangles touch; it does not require the center lines of wires to connect.

A dynamic maze grid that permits Zroute to go off-grid to connect pins, while retaining
the speed advantages of gridded routers.

* A polygon manager, which allows Zroute to recognize polygons and to understand that
design rule checks (DRCs) are aimed at polygons.

» Concurrent optimization of design rules, antenna rules, wire optimization, and via
optimization during detail routing.

* Concurrent redundant via insertion during detail routing.

* Support for soft rules built into global routing, track assignment, and detail routing.

» Timing- and crosstalk-driven global routing, track assignment, detail routing, and ECO
routing.

* Intelligent design rule handling, including merging of redundant design rule violations
and intelligent convergence.

* Net group routing with layer constraints and nondefault routing rules.

* Clock routing.

* Route verification.

* Optimization for DFM and design-for-yield (DFY) using a soft rule approach. [15]
10.3 Basic Zroute Flow

Figure 10-1 shows the basic Zroute flow, which includes clock routing, signal routing,

DFM optimizations, and route verification.
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Figure 10.1 - Basic Zroute Flow [15]
10.4 Prerequisites for Routing

Before running Zroute, one must ensure that the design and physical library meet the

following requirements

* Library requirements:
Zroute gets all of the design rule information from the Milkyway technology file;
therefore, one must ensure that all design rules are defined in the technology file before

starting routing.
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In addition, Zroute uses only default vias for nonpin access. Make sure that all vias that
one want Zroute to use are defined as default vias (isDefaultContact attribute is 1) in the
technology file.
* Design requirements:

1. Before performing routing, the design must meet the following conditions.

2. Power and ground nets have been routed after design planning and before
placement.
Clock tree synthesis and optimization have been performed.
Estimated congestion is acceptable.

Estimated timing is acceptable (about 0 ns of slack).

o g ~ w

Estimated maximum capacitance and transition have no violations.

10.5 Checking Routability

After placement is completed, one can have IC Compiler check whether the design is
ready for detail routing. The tool checks pin access points, cell instance wire tracks, pins
out of boundaries, minimum grid and pin design rules, and blockages to make sure they
meet design requirements. It creates an error file named after the top-level design
(top_design_name.err), with a list of violations that you should correct before performing
detail routing.

To verify that the design is ready for detail routing, use the check_routeability command.
[15]

10.6 Setting Up for Routing

The following steps describe how to specify general routing setups for Zroute to use
whenever perform routing.

* Enabling Multicore Processing

* Creating Route Guides

* Setting the Preferred Routing Direction

« Controlling Pin Connections

* Using Nondefault Routing Rules
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* Specifying the Routing Layers
* Setting Zroute Options
* Setting Signal Integrity Options

« Setting Multivoltage Options

10.7 Routing Clock Nets

One can use Zroute for initial routing of clock nets, redundant via insertion on clock nets,
shielding of clock nets, and ECO routing of clock nets, using following sets of
commands.

route_zrt_group -all_clock _nets

create_zrt_shield

optimize_clock_tree

10.8 Routing Critical Nets

To route a group of critical nets before routing the rest of the nets in the design, use the

route_zrt_group command.

10.9 Routing Signal Nets

Before route the signal nets, all clock nets must be routed without violations, using
following set of commands.

route_zrt_global

route_zrt track

route_zrt_detail

route_zrt_auto

set_route_opt_strategy

focal_opt
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10.10 Performing ECO Routing

Whenever modify the nets in the design, one need to run engineering change order (ECO)

routing to reconnect the routing.
To run ECO routing, use the route_zrt_eco command.
10.11 Cleaning Up Routed Nets

After routing is complete, one can clean up the routed nets by running the

remove_zrt_redundant_shapes command.
10.12 Saving the Routing Information

To save the routing information, use the the write_route command. This command

generates a script file that contains the Tcl commands to generate the current routing.
10.13 Analyzing the Routing Results

One can analyze the routing results by reporting on the cell placement and routing
statistics. The following steps describe how to perform these tasks.

* Reporting Cell Placement and Routing Statistics:
To view the place and route summary report, run the report_design_physical -verbose
command.

* Analyzing Congestion:
To generate a congestion report, run the report_congestion command.

* Performing Design Rule Checking Using IC Compiler:
To use the IC Compiler DRC engine to check the routing design rules defined in the
Milkyway technology file, run the verify_zrt_route command.

* Performing Signoff Design Rule Checking:
To perform signoff design rule checking, run the signoff_drc command.

* Analyzing DRC Violations:
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After having generated a Milkyway error view, either by running one of the Synopsys
design rule checking commands, by reading a route guidance file, or by converting the
Calibre results to an error view, one can analyze the DRC violations by, using the DRC
query command get_drc_errors or using the error browser. [15]

10.14 Routing Nets and Buses in the GUI

The layout editor in the IC Compiler GUI provides the following routing capabilities.

* Routing Single Nets

* Creating Physical Buses

* Modifying Buses

* Routing Buses or Multiple Nets

* Creating Custom Wires

10.15 Postroute RC Extraction

IC Compiler automatically performs postroute RC estimation when running the route_opt
command and when running any of the following timing analysis commands on a routed
but not extracted design: report_timing, report_gor, report_constraint,
report_delay calculation,  report_net,  report_clock, report_clock timing, or
report_clock tree. In addition, one an explicitly perform postroute RC extraction by

running the extract_rc command.
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Chapter 11: Chip Finishing and Design For Manufacturing
11.1 Overview:
Figure 11.1 shows the design for manufacturing and chip finishing tasks supported by

IC Compiler and how these tasks fit into the overall IC Compiler design flow. The
following sections describe how to perform these tasks.

Design Planning and Power
Planning

v

Insert tap cell array

Placement and optimization
(place_opt)

\

Clock tree synthesis
(clock oot

Insert tap cells
Insert standard cell fillers
Insert end cap cells

Routing and postroute optimizaiton
(route opt)

\

Fix antenna violations
Reduce critical areas
Insert redundant vias

Insert well fillers

Insert pad fillers

Insert metal fill
Detect and fix LCC hotspots

Figurell.1: Design for Manufacturing and Chip Finishing Tasks in the Design Flow
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11.2 Inserting Tap Cells

Tap cells are a special non logic cell with well and substrate ties. These cells are typically
used when most or all of the standard cells in the library contain no substrate or well taps.
Generally, the design rules specify the maximum distance allowed between every

transistor in a standard cell and a well or the substrate ties.

« Tap cell arrays can be inserted before placement to ensure that the placement complies
with the maximum diffusion-to-tap limit.

« Tap cells can be inserted after placement to fix maximum diffusion-to-tap violations.

11.2.1 Adding Tap Cell Arrays

Before global placement (during the floorplanning stage), you can add tap cells to the
design that form a two-dimensional array structure to ensure that all standard cells placed

subsequently will comply with the maximum diffusion-to-tap distance limit.
To add a tap cell array, use the add_tap_cell_array command.
11.2.2 Fixing Tap Spacing Violations

You can add tap cells to comply with the diffusion-to-substrate or -well-contact
maximum spacing design rule. After global placement (typically), you can insert tap cells
“by rules” so that all existing standard cells comply with the maximum diffusion-to-tap

distance limit.

To insert tap cells to satisfy to the diffusion-to-tap design rules, use the

insert_tap_cells_by rules command.
11.2.3 Removing Tap Cells

To remove tap cells, use the remove_stdcell_filler -tap command.
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11.3 Finding and Fixing Antenna Violations

In chip manufacturing, gate oxide can be easily damaged by electrostatic discharge. The
static charge that is collected on wires during the multilevel metallization process can
damage the device or lead to a total chip failure. The phenomenon of an electrostatic
charge being discharged into the device is referred to as either antenna or charge-

collecting antenna problems.
The antenna flow consists of the following steps:

e Define the antenna rules
Define the global metal layer antenna rules by using the define_antenna_rule command.
e Specify the antenna properties of the pins and ports
Specify the pin and port antenna properties either in a cell library format (CLF) file or
by using the set route zrt detail _options command to set the following detail route
options:
e default diode protection
e default gate size
* default_port _external gate size
* default_port _external antenna area
* port_antenna_mode

e Analyze and fix the antenna violations [15]

11.4 Inserting Redundant Vias

Redundant via insertion can be performed in the following ways:

¢ Postroute redundant via insertion
o Concurrent soft-rule-based redundant via insertion

o Concurrent hard-rule-based redundant via insertion
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In general, postroute redundant via insertion should be started. If doing so provides good
results, one of the concurrent redundant via insertion methods can be used to improve the
redundant via rate. If postroute redundant via insertion results in a redundant via rate of at
least 80 percent, the redundant via rate can be improved by using concurrent soft-rule-
based redundant via insertion. If postroute redundant via insertion results in a redundant
via rate of at least 90 percent, the redundant via rate can be improved by using concurrent

hard-rule-based redundant via insertion. [15]
11.5 Reducing Critical Areas

A critical area is a region of the design where, if the center of a random particle defect
falls there, the defect causes circuit failure, thereby reducing yield. A conductive defect

causes a short fault, and a nonconductive defect causes an open fault.

The following sections describe how to

« Report critical areas
« Display critical area maps
 Reduce critical area short faults by performing wire spreading

« Reduce critical area open faults by performing wire widening

11.6 Shielding Nets

The router shields routed nets by generating shielding wires that are based on the
shielding widths and spacing defined in the shielding rules. In addition to shielding nets
on the same layer, there is also an option to shield one layer above or one layer below or
the layer above and the layer below. Shielding above or below the layer is called coaxial
shielding. Coaxial shielding provides even better signal insulation than same-layer
shielding, but it uses more routing resources. Shielding can be performed either before or
after signal routing. Shielding before signal routing, which is referred to as preroute
shielding, provides better shielding coverage but can result in congestion issues during
signal routing. Preroute shielding is typically used to shield critical clock nets. Shielding
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after signal routing, which is referred to as post-route shielding, has a very minimal

impact on routability, but provides less protection to the shielded nets. [15]

11.7 Inserting Filler Cells

Filler cells fill gaps in the design to ensure that all power nets are connected and the

spacing requirements are met.

« Before routing, these can be performed
o Insert standard cell fillers
o Insert end cap cells

« After routing, these operations can be performed
o Insert well fillers

o Insert pad fillers

11.8 Inserting Metal Fill

After routing, empty spaces in the design can be filled with metal wires to meet the metal
density rules required by most fabrication processes. Before inserting metal fill, the

design should be close to meeting timing and have only a very few or no DRC violations.

Metal fill can be inserted by running the signoff _metal fill command. This command

requires a Hercules license.

11.9 Signal Integrity

Signal integrity is the ability of an electrical signal to carry information reliably and to
resist the effects of high-frequency electromagnetic interference from nearby signals. The

following conditions can impact signal integrity:
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e Crosstalk

Crosstalk is the undesirable electrical interaction between two or more physically
adjacent nets due to capacitive coupling. Crosstalk can lead to crosstalk-induced delay

changes or static noise.

« Signal electromigration

Electromigration is the permanent physical movement of metal in thin wire connections
resulting from the displacement of metal ions by flowing electrons. Electromigration
can lead to shorts and opens in wire connections, causing functional failure of the IC
device. The problem is more severe in modern technologies due to smaller wire widths
and increased current densities.

IC Compiler supports signal integrity analysis and optimization in either a flat flow or a
hierarchical flow (using interface logic models). When creating an interface logic
model for use in a hierarchical signal integrity flow, one must use the -include_xtalk

option while using run the create_ilm command.

IC Compiler signal integrity analysis and optimization supports multivoltage and

multimode-multicorner designs. [15]
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Chapter 12: Analysis and Conclusion

Using Verilog HDL An asynchronous interface for 16-bit wide (parameter
default) data is designed using Verilog HDL.

We have to keep write pointer and read pointer width one bit more than width of
address for flag comparison.

We pass rd_pointer through 2 stage synchronizer flip-flops which run on wr_clk,
pass wr_pointer through 2 stage synchronizer flip-flops which run on rd_clk.
Before passing this pointer through 2 flip flops they have to be converted into
gray-code because only one bit should change at a given point of time between
consecutive pointer values. Rise and fall times are different so 0 to 1 transitions
and 1 to O transitions never occur at same time.

After passing through the 2-stage synchronizers read pointer and write pointer are
converted back into binary and their values are compared to generate full flag and
empty flag.

Using Synopsys Design Compiler, we synthesized top-down. Area and timing
reports are shown. We further do post-synthesis simulation and verify the netlist
using the previous testbench using NC Verilog simulator.

We can see discrepancies in post-synthesis simulation like few glitches, can be
seen in simulation waveform 4. Flag assertion is verified using NC Verilog
simulator.

In long term we can see some loss of data so frequency drift is an issue in long

term. It is not self-corrected. Only thing we can do is by generating signals

indicating loss of data or data is not correctly buffered.
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e Following are the results obtained for Timing, Area and Power during front-end

and back-end design:

Timing (ns) Area Power(uw) Slack (MET)

Front- | Write Clock: 5, Dynamic: 65.2868 Write Clock:0,

6334.464145
end Read Clock: 25 Leakage: 29.4684 Read Clock: 3.59
Dynamic: . )
Write Clock: 5, 854.0466 Write Clock:0.7,
Back-end 6444.726117

Read Clock: 25 Leakage: 30.7003 | Read Clock: 3.42

Table 12.1 Table showing the result for timing, area and power.

In DC Complier and IC Compiler, Cbh13fs120_tsmc_max 90nm library is used to
optimize the design for smallest area, fastest speed and lowest power. It is clear from the
above results that the design meets the required setup-time with a slack value of 0.7ns

and 3.42ns for write clock and read clock respectively.

Clock gating and other power optimization methods like LPP (Low Power Placement)
and GLPO (Gate Level Power Optimization) are implemented in design to reduce
dynamic power to 656.779 pw and leakage power to 36.20 pw.

The main objectives of this project were to implement RTL to GDSII flow using Cadence
and Synopsys tools. Complete ASIC design is successfully implemented using Cadence
NC Verilog Simulator, Synopsys Design Compiler, Synopsys Tetra-Max and Synopsys
IC Compiler. Also power optimization and DFT methodologies like logic scan, JTAG
boundary scan were implemented using Power Compiler and DFT Compiler respectively.
Also, main emphasis is given to physical implementation of standard cell based ASICs
using IC Compiler. This part covers the detailed back-end design flow including

analyzing and fixing of congestion issues, timing closure and DRC and LVS violations.
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This project provided the strong foundation to excel career as an ASIC designer, backed-
up with sufficient knowledge and exposure to complete ASIC design flow, with hands on

experience of the above mentioned EDA tools.
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1. Simulation Waveforms:

APPENDIX

a) Behavioral Simulation Waveform showing empty flag asserted, when wr_enable

is high after some time:
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Figure A.1. Waveform showing empty flag asserted, when wr enable is high after

some time
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b) Behavioral Simulation Waveform showing full flag remaining high, when
rd_enable is high after some time:
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Figure A.2. Waveform showing full flag remaining high, when rd enable is high
after some time
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¢) Behavioral Simulation Waveform showing fifo memory buffers all the data if
wr_enable(put) and rd_enable(get) are high all the time:
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Figure A.3. Waveform showing showing fifo memory buffers all the data if
wr enable(put) and rd enable(get) are high all the time
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d) Post-Synthesis Simulation Waveform showing empty flag asserted, when
wr_enable is high after some time:
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Figure A.4. Post-synthesis simulation waveform showing Post-Synthesis Simulation
Waveform showing empty flag asserted, when wr enable is high after some time
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e) Post-Synthesis Simulation Waveform showing full flag remaining high, when
rd_enable is high after some time:
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Figure A.5. Post-synthesis simulationwaveform showing full flag remaining high,
when rd enable is high after some time
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) Post-synthesis simulation waveform showing fifo memory buffers all the data if
wr_enable(put) and rd_enable(get) are high all the time
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Figure A.6. Post-synthesis simulation waveform showing fifo memory buffer
all the data if wr enable(put) and rd enable(get) are high all the time
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2. Boundary Scan and Logic Scan Insertion Script:

##tscan chain insertion

set_svf dmx_svffile.svf ;

### setup the scan style

set test_default_scan_style multiplexed_flip_flop ;
set_scan_configuration -create_dedicated_scan_out_ports true ;

#set scan cell dtrsp_2;
#set_scan_register_type -type dtrsp_2 ;

### setup the view
create_port -direction "in" {Scan_I Scan_E} ;
create_port -direction "out" {Scan_O} ;

set_dft_signal -view spec -type ScanDataln -port Scan_I ;
set_dft_signal -view spec -type ScanDataOut -port Scan_O ;
set_dft_signal -view spec -type ScanEnable -port Scan_E -active_state 1 ;

# set_dft_signal -view spec -type RST -port RST -active_state 1 ;

### RTL-LEVEL DRC (DESIGN RULE CHECK)
HHHH

set_dft_signal -view existing_dft -type ScanClock -port CLK -timing [list 45 55] ;
#set_dft_signal -view existing_dft -type Reset -port RST -active_state O ;

#boundary scan insertion

set_bsd_instruction {EXTEST} -code {1100} -reg BOUNDARY
set_bsd_instruction {SAMPLE} -code {1110} -reg BOUNDARY
set_bsd_instruction {PRELOAD} -code {1110} -reg BOUNDARY
set_bsd_instruction {BYPASS} -code {1111} -reg BYPASS
#set_bsd_--#Fields for Version, Part Number and Manufacturer Identity
set_bsd_instruction {IDCODE} -code {1010} -capture_value \
{32'h55555555}

set_bsd_configuration -style synchronous -asynchronous_reset true

set test_default_period 100
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set_dft_signal -type tck -port CLK

set_dft_signal -type trst -port RST -active_state O
set_dft_signal -type tms -port TMS
set_dft_signal -type tdi -port TDI

set_dft_signal -type tdo -port TDO

# create_test_protocol ;
create_test_protocol -infer_clock -infer_async ;

### rtl-level drc
dft_drc -verbose ;

check_design;

### SCAN SYNTHESIS
HiH

### one-pass scan synthesis (insert scan-ffs, but not yet routed)

#compile_ultra -incremental -scan ;
#compile_ultra -scan ;

compile -scan ;

#report_constraint -all_violators ;
#compile;

### scan insertion

preview_dft ;

# preview_dft -show all ;

insert_dft;

#insert_dft -physical ;

#insert_dft -ignore_compile_design_rules ;
#insert_dft -no_scan ;
set_scan_configuration -replace false ;

insert_dft ;
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### post-scan drc
dft_drc;

### SCAN EXTRACTION AND REPORT
HiHH

write_scan_def -output dmx_scandeffile.scandef ;
write_test_protocol -o test_protocol_file.0.stil ;

#check_scan_def > [report/scan.$timestamp ;
#dft_drc -coverage_estimate >> [report/scan.$timestamp ;
#report_dft_configuration >> [report/scan.$timestamp ;
#report_scan_configuration >> [report/scan.$timestamp ;
#report_dft_signal >> [report/scan.$timestamp ;
#report_autofix_configuration >> [report/scan.$timestamp ;

#report_scan_path -view existing_dft -chain all >> ./report/scan.$timestamp ;
#report_scan_path -view existing_dft -cell all >> ./report/scan.$timestamp ;

report_area > area_report.rpt ;
report_timing > timing_report.rpt ;

3. Power optimization Script:

# Power Optimization Section

set power_driven_clock_gating true

# The following setting can be used to enable global clock gating.

# With global clock gating, common enables are extracted across hierarchies
# which results in fewer redundant clock gates.

#set compile_clock_gating_through_hierarchy true

# clock_gating_style

set_clock_gating_style -sequential_cell latch -control_point before -control_signal
scan_enable

# Apply Power Optimization Constraints

set_max_dynamic_power 0

set_max_leakage_power 0

compile_ultra -scan -gate_clock
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4. This is the front-end timing report , Write clock runs at 5ns and Read clock runs
at 25ns.

Information: Updating graph... (UID-83)
Information: Updating design information... (UID-85)

*hhkkkhkhkkkhkhkhkkhkhkhkkhkhkhkkhhkkhkhhkkhkikkhhikkhikkhikhihkiik

Report : timing
-path full
-delay max
-max_paths 1
Design : fifo_model
Version: E-2010.12-SP4
Date : Fri Mar 16 18:34:11 2012

*hkkkhkhkkkhkhkhkkhhkhkkikhkkhhkkihkhkkihkkhkhkkhkikkhihkkiihkiik

Operating Conditions: ch13fs120_tsmc_max Library: cb13fs120_tsmc_max
Wire Load Model Mode: enclosed

Startpoint: fifo_mem_reg[14][8]
(rising edge-triggered flip-flop clocked by wr_clk)
Endpoint: rd_data_reg[8]
(rising edge-triggered flip-flop clocked by rd_clk)
Path Group: rd_clk
Path Type: max

Des/Clust/Port  Wire Load Model Library

fifo_model 8000 cb13fs120_tsmc_max
Point Incr  Path

clock wr_clk (rise edge) 20.00 20.00
clock network delay (ideal) 0.00 20.00

fifo_mem_reg[14][8]/CP (dfcrgl) 0.00 20.00r
fifo_mem_reg[14][8]/Q (dfcrql) 032 20.32f

U1599/Z (aor22d1l) 0.20 20.52f
U1600/ZN (nr04d0) 019 20.71r
U1601/ZN (0ai2222d1) 043 21.14f
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rd_data_reg[8]/U4/Z (mx02d0) 0.17 21.31f

rd_data_reg[8]/D (dfcrbl) 0.00 2131f
data arrival time 21.31

clock rd_clk (rise edge) 25.00 25.00
clock network delay (ideal) 0.00 25.00
rd_data_reg[8]/CP (dfcrbl) 0.00 25.00r
library setup time -0.10 24.90

data required time 24.90

data required time 24.90

data arrival time -21.31

slack (MET) 3.59

Startpoint: wrclk_rdpointer_reg[4]
(rising edge-triggered flip-flop clocked by wr_clk)
Endpoint: fifo_mem_reg[31][0]
(rising edge-triggered flip-flop clocked by wr_clk)
Path Group: wr_clk
Path Type: max

Des/Clust/Port  Wire Load Model Library

fifo_model 8000 cb13fs120_tsmc_max
Point Incr  Path

clock wr_clk (rise edge) 0.00 0.00

clock network delay (ideal) 0.00 0.00

wrclk_rdpointer_reg[4]/CP (dfcrgl) 0.00 0.00r
wrclk_rdpointer_reg[4]/Q (dfcrgl) 031 0.31f

U1386/Z (mx02d2) 028 058f
U1397/ZN (xn02d2) 033 091f
U1396/ZN (xn02d2) 029 1.21f
U1395/ZN (xn02d2) 033 154f
U1699/ZN (xn02d1) 030 184f
U1700/ZN (nr02d0) 008 191r
U1406/CO (cg01d1) 021 2127
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U1405/ZN (inv0d1) 005 217f

U1407/CO (cg01dl) 0.18 2.35f
U1337/ZN (nd12d0) 0.10 245r
U1336/ZN (nd02d1) 011 256f
U1403/Z (ora31dl) 024 280f
U1702/Z (aor311d1) 025 3.04f
U1704/Z (aor211d1) 021 3.26f
U1394/ZN (nr04d0) 0.19 345t
U1393/Z (or02d2) 026  3.71r
U1709/ZN (nr02d0) 020 391f
U759/ZN (nd03d2) 0.27  4.18r
U695/ZN (nr02d2) 041  459f
U1101/Z (mx02d0) 030 4.89r
fifo_mem_reg[31][0]/D (dfcrql) 0.00 4.89r
data arrival time 4.89

clock wr_clk (rise edge) 500 5.00
clock network delay (ideal) 0.00 5.00
fifo_mem_reg[31][0]/CP (dfcrql) 0.00 5.00r
library setup time -0.10  4.90
data required time 4.90

data required time 4.90

data arrival time -4.89

slack (MET) 0.00
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5. This is the back-end timing report , Write clock runs at 5ns and Read clock runs
at 25ns.

Loading db file '/usr/synopsys/E-2010.12-SP4-1CC/libraries/syn/gtech.db’
Information: linking reference library : /usr/synopsys/E-2010.12-SP2/ref/mw_lib/io.
(PSYN-878)

Information: linking reference library : /usr/synopsys/E-2010.12-SP2/ref/mw_lib/sc.
(PSYN-878)

Information: linking reference library : /usr/synopsys/E-2010.12-
SP2/ref/mw_lib/ram16x128. (PSYN-878)

Linking design ‘fifo_model’

Using the following designs and libraries:

fifo_model chip_finish_final.CEL

cb13fs120_tsmc_max (library) /usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db

cb13fs120_tsmc_max (library) /usr/synopsys/E-2010.12-SP2/ref/db/sc_pg_max.db

cb13i0320_tsmc_max (library) /usr/synopsys/E-2010.12-SP2/ref/db/io_max.db

cb13special_max (library) /usr/synopsys/E-2010.12-SP2/ref/db/special_max.db

ram16x128_max (library)  /usr/synopsys/E-2010.12-
SP2/ref/db/ram16x128 max.db

ram32x64_max (library)  /usr/synopsys/E-2010.12-SP2/ref/db/ram32x64_max.db

Load global CTS reference options from NID to stack

Information: The design has horizontal rows, and Y-symmetry has been used for
sites. (MWDC-217)

Floorplan loading succeeded.

Loading design ‘fifo_model’
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Information: Library Manufacturing Grid(GridResolution) : 5

Information: Time Unit from Milkyway design library: 'ns'

Information: Design Library and main library timing units are matched - 1.000 ns.
Information: Resistance Unit from Milkyway design library: 'kohm’

Information: Design Library and main library resistance units are matched - 1.000
kohm.

Information: Capacitance Unit from Milkyway design library: 'pf'

Information: Design Library and main library capacitance units are matched - 1.000

pf.
Warning: Inconsistent library data found for layer CP. (RCEX-018)

TLU+ File = /usr/synopsys/E-2010.12-SP2/ref/tlup/cb13_6m_max.tluplus
TLU+ File = /usr/synopsys/E-2010.12-SP2/ref/tlup/cb13_6m_min.tluplus

--------- Sanity Check on TLUPIus Files -------------

1. Checking the conducting layer names in ITF and mapping file ...

[ Passed! ]

2. Checking the via layer names in ITF and mapping file ...

[ Passed! ]

3. Checking the consistency of Min Width and Min Spacing between MW-tech and
ITF ...

[ Passed! ]

----------------- Check Ends ------------------
Information: The distance unit in Capacitance and Resistance is 1 micron. (RCEX-
007)

Information: The RC model used is detail route TLU+. (RCEX-015)
Information: Start mixed mode parasitic extraction. (RCEX-023)
Information: Start rc extraction...

Information: Parasitic source is LPE. (RCEX-040)

Information: Parasitic mode is RealRC. (RCEX-041)

Information: Using virtual shield extraction. (RCEX-081)

Information: Extraction mode is MIN_MAX. (RCEX-042)
Information: Extraction derate is 125/125/125. (RCEX-043)
Information: Coupling capacitances are lumped to ground. (RCEX-044)
Information: Start back annotation for parasitic extraction. (RCEX-023)
Information: End back annotation for parasitic extraction. (RCEX-023)
Information: Start timing update for parasitic extraction. (RCEX-023)
Information: End timing update for parasitic extraction. (RCEX-023)
Information: End parasitic extraction. (RCEX-023)

Information: Updating graph... (UID-83)
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Information: Updating design information... (UID-85)

Information: Input delay (‘rise’) on clock port ‘wr_clk' will be added to the clock's
propagated skew. (TIM-112)

Information: Input delay (‘fall’) on clock port ‘wr_clk’ will be added to the clock's
propagated skew. (TIM-112)

Information: Input delay (‘rise’) on clock port 'rd_clk' will be added to the clock’s
propagated skew. (TIM-112)

Information: Input delay (‘fall’) on clock port 'rd_clk’ will be added to the clock’s
propagated skew. (TIM-112)

*hkkhkkhkkkhkkkhkkhkkkhkkhkhkkhkkhkhkkhkhhkkihkhkhkkhikhkkihkhihkiihiixk
Report : timing
-path full
-delay max
-max_paths 1
Design : fifo_model
Version: E-2010.12-ICC-SP4
Date : Sat Apr 14 02:31:06 2012

Fhhhhkhkhkhkkkhkhkhkhrhhhkhkhkhkkhkhhkhrrhhihhkhhkhiiiiix

* Some/all delay information is back-annotated.
Operating Conditions: ch13fs120_tsmc_max Library: cb13fs120_tsmc_max
Information: Percent of Arnoldi-based delays = 0.00%

Startpoint: wrclk_rdpointer_reg[4]

(rising edge-triggered flip-flop clocked by wr_clk)

Endpoint: full_flag (output port clocked by rd_clk)

Path Group: OUTPUTS

Path Type: max

Point Incr Path

clock wr_clk (rise edge) 20.00 20.00

clock network delay (propagated) 0.38 20.38
wrclk_rdpointer_reg[4]/CP (dfcrg2)  0.00 20.38r
wrclk_rdpointer_reg[4]/Q (dfcrg2) 036 20.74r
U31/ZN (inv0d2) 0.04& 20.77f

U70/ZN (nd02d1) 0.06 & 20.83r
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U72/ZN (nd02d2) 0.10& 20.93f

U12/ZN (invbd2) 0.04& 2097r
U79/ZN (nd02d2) 0.06 & 21.03f
U80/ZN (nd02d2) 0.07& 21.09r
U49/ZN (inv0d2) 0.05& 21.14f
U96/ZN (nd02d2) 004 & 21.19r
U50/ZN (nd02d2) 006 & 21.25f
U90/ZN (invbd2) 0.04& 21.28r
U30/ZN (nd02d2) 0.06 & 21.34f
U45/ZN (nd02d2) 0.06 & 21.40r
U60/ZN (nd02d1) 0.06 & 21.47f
U52/ZN (nd03d0) 0.08& 21.55r
U32/CO (cg01d1) 021 & 21.75r
U1407/CO (cg01dl) 019& 21.9r
U1337/ZN (nd12d1) 0.06 & 22.01f
U1336/ZN (nd02d1) 0.04& 22.05r
U1404/CO (cg01dl) 019& 22.24r
U1701/ZN (nr02d0) 007 & 2231f
U1702/Z (aor311d2) 024 & 2255f
U105/ZN (aoim211d1) 020& 22.75r
U109/ZN (nd02d2) 007 & 2281f
U112/ZN (inv0d4) 0.05& 2286
U38/ZN (invbd7) 0.06 & 2292f
U23/ZN (invbdk) 031& 23.23r
full_flag (out) 0.16 & 23.39r

data arrival time 23.39

clock rd_clk (rise edge) 25.00 25.00
clock network delay (ideal) 1.00 26.00
output external delay -2.00 24.00
data required time 24.00

data required time 24.00

data arrival time -23.39

slack (MET) 0.61

Startpoint: fifo_mem_reg[14][10]
(rising edge-triggered flip-flop clocked by wr_clk)
122



Endpoint: rd_data_reg[10]

(rising edge-triggered flip-flop clocked by rd_clk)
Path Group: rd_clk
Path Type: max

Point Incr Path

clock wr_clk (rise edge) 20.00 20.00

clock network delay (propagated) 0.39 20.39
fifo_mem_reg[14][10]/CP (dfcrgl) 0.00 20.39r
fifo_mem_reg[14][10]/Q (dfcrql) 037 20.76f

U1641/Z (aor22d1) 0.19& 20.95f
U1642/ZN (nr04d0) 0.18 & 21.13r
U1643/ZN (0ai2222d1) 042 & 21.55f
rd_data_reg[10]/U4/Z (mx02d0) 016 & 21.71f
rd_data_reg[10]/D (dfcrbl) 000& 21.71f
data arrival time 21.71

clock rd_clk (rise edge) 25.00 25.00
clock network delay (propagated) 0.20 25.20
rd_data_reg[10]/CP (dfcrbl) 0.00 25.20r
library setup time -0.07 25.14

data required time 25.14

data required time 25.14

data arrival time -21.71

slack (MET) 3.42

Startpoint: wrclk_rdpointer_reg[4]
(rising edge-triggered flip-flop clocked by wr_clk)
Endpoint: fifo_mem_reg[6][3]
(rising edge-triggered flip-flop clocked by wr_clk)
Path Group: wr_clk
Path Type: max

Point Incr Path

clock wr_clk (rise edge) 0.00 0.00



clock network delay (propagated)

038 0.38

wrclk_rdpointer_reg[4]/CP (dfcrg2)  0.00  0.38r
wrclk_rdpointer_reg[4]/Q (dfcrg2) 036 0.74r

U31/ZN (inv0d2)
U70/ZN (nd02d1)
U72/ZN (nd02d2)
U12/ZN (invbd2)
U79/ZN (nd02d2)
U80/ZN (nd02d2)
U49/ZN (inv0d2)
U96/ZN (nd02d2)
U50/ZN (nd02d2)
U90/ZN (invbd2)
U30/ZN (nd02d2)
U45/ZN (nd02d2)
U60/ZN (nd02d1)
U52/ZN (nd03d0)
U32/CO (cg01d1)
U1407/CO (cg01d1)
U1337/ZN (nd12d1)
U1336/ZN (nd02d1)
U1404/CO (cg01dl)
U1701/ZN (nr02d0)
U1702/Z (aor311d2)
U111/Z (aor211d1)
U1394/ZN (nr04d0)
U1393/Z (or02d2)
U1709/ZN (nr02d0)
U793/ZN (nd03d0)
U783/ZN (nr02d0)
U1194/Z (mx02d0)

fifo_mem_reg[6][3]/D (dfcrql)

data arrival time

clock wr_clk (rise edge)

clock network delay (propagated)
fifo_mem_reg[6][3]/CP (dfcrgl)
-0.06  5.29

library setup time
data required time

004& 0.77f
0.06 & 0.83r
010& 0.93f
0.04& 0097r
0.06& 1.03f
007& 1.09r
005& 1.14f
004& 119r
006& 125f
004& 1.28r
006& 1.34f
006& 140r
006 & 147f
008& 1.55r
021& 1.75r
019& 194r
006& 201f
0.04& 205r
019& 224r
007& 231f
024& 255f
020& 275f
009& 285r
024& 3.08r
015& 3.24f
029& 3.53r
0.70& 4.23f
036& 4.59r
0.00& 459r
4.59

5.00 5.00
036 5.36
0.00 5.36r

5.29




data required time
data arrival time

slack (MET)
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6. Area Report for Front-end design.

B R R R R R R R AR AR R R R R R R R S S S

Report : area

Design : fifo_model

Version: E-2010.12-SP4

Date : Fri Mar 16 18:34:11 2012

*hhkkkhkhkkkhkhkhkkhkhkhkkikhkhkkhhkkhkhhkkhhihkkhihkkihihkkhikkiihkiik

Library(s) Used:

cb13fs120_tsmc_max (File: /usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db)

Number of ports: 40
Number of nets: 1635
Number of cells: 1603
Number of combinational cells: 1035
Number of sequential cells: 568
Number of macros: 0
Number of buf/inv: 28
Number of references: 36

Combinational area: 2115.750000
Noncombinational area;: 3151.000000
Net Interconnect area: 1067.714145

Total cell area: 5266.750000

Total area: 6334.464145
1
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7. This is Area Report for Back-end design.

*hhkkhkkhkhkhkkhkhkhkkhkhkhkkikhkhkkhkhkkhkhhkkhhkkhkikkhkihkkhikkihihkiik

Report : area

Design : fifo_model

Version: E-2010.12-ICC-SP4
Date : Sat Apr 14 02:37:12 2012

B R R R R R R R AR AR R R R R R R R S S S

Library(s) Used:

cb13fs120_tsmc_max (File: /usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db)

Number of ports: 40
Number of nets: 1712
Number of cells: 1680
Number of combinational cells: 1112
Number of sequential cells: 568
Number of macros: 0
Number of buf/inv: 68
Number of references: 41

Combinational area: 2216.250000
Noncombinational area; 3151.000000
Net Interconnect area: 1077.476117

Total cell area: 5367.250000

Total area: 6444.726117
1
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8. This is the Fault Summary Report (ATPG fault coverage report) for Front-end;
Showing the Test Coverage of 100%.

In mode: Internal_scan...
Design has scan chains in this mode
Design is scan routed
Post-DFT DRC enabled

Information: Starting test design rule checking. (TEST-222)
Loading test protocol

.basic checks...
.basic sequential cell checks...
.checking vector rules...
.checking clock rules...
.checking scan chain rules...
.checking scan compression rules...
.checking X-state rules...
.checking tristate rules...
.extracting scan details...

DRC Report
Total violations: ©

Sequential Cell Report
32 out of 592 sequential cells have violations

SEQUENTIAL CELLS WITH VIOLATIONS
* 32 cells are clock gating cells
SEQUENTIAL CELLS WITHOUT VIOLATIONS
* 548 cells are valid scan cells
* 12 cells are non-scan shift-register cells

Information: Test design rule checking completed. (TEST-123)

Running test coverage estimation...

14224 faults were added to fault list.

ATPG performed for stuck fault model using internal pattern source.
#patterns #faults #ATPG faults test process

stored detect/active red/au/abort coverage CPU time

Begin deterministic ATPG: #uncollapsed_faults=10125, abort_limit=1l0...

0 6331 3794 0/0/0 73.33% 0.02
0 1617 2177 0/0/0 84.69% 0.02
0 770 1407 0/0/0 90.11% 0.03
0 648 758 1/0/0 94.67% 0.03
0 266 492 1/0/0 96.54% 0.04
0 128 364 1/0/0 97 .44% 0.04
0 83 281 1/0/0 98.02% 0.05
0 106 174 2/0/0 98.78% 0.05
0 63 111 2/0/0 99.22% 0.05
0 103 8 2/0/0 99.94% 0.06
0 8 o 2/0/0 100.00% 0.06
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Pattern Summary Report

fault class code #faults
Detected DT 14222
Possibly detected PT o)
Undetectable ubD 2
ATPG untestable AU (5]
Not detected ND (0]
total faults 14224
test coverage 100.00%

Information: The test coverage above may be inferior
than the real test coverage with customized
protocol and test simulation library.
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9. Power report for Front-end from Design compiler:

Loading db file ‘/usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db’

Information: Propagating switching activity (low effort zero delay simulation). (PWR-6)
Warning: Design has unannotated primary inputs. (PWR-414)

Warning: Design has unannotated sequential cell outputs. (PWR-415)

*hhkkkhkhkkkhkhkhkkhkhkhkkikhkhkkhhkkhkhhkkhhihkkhihkkihihkkhikkiihkiik

Report : power
-analysis_effort low
Design : fifo_model
Version: E-2010.12-SP4
Date : Sun Apr 15 21:43:09 2012

*hkhkhkhkhkhkhkhkhkhkhkhkhhkhkhhkhhhkhhhkhhhkhhhhhikhiihiik
Library(s) Used:

cb13fs120_tsmc_max (File: /usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db)
Operating Conditions: cb13fs120 _tsmc_max Library: cb13fs120 tsmc_max
Wire Load Model Mode: enclosed
Design Wire Load Model Library

fifo_model 8000 cb13fs120 tsmc_max

Global Operating Voltage = 1.08
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units = ImW (derived from V,C, T units)
Leakage Power Units = 1pW

Cell Internal Power = 36.8412 uW (56%)
Net Switching Power = 28.4456 uW (44%)
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Total Dynamic Power = 65.2868 uW (100%)
Cell Leakage Power = 29.4684 uwW

1
10. Power report for Backend Design from IC Compiler:
*hkkhkkkkhkkkhkkhkkhkkhkhkkhkhkkhkhkkhhhkkihkhhhkkhikhkkihkkhkihkiikhkiixk
Report : power
-analysis_effort low
Design : fifo_model
Version: E-2010.12-1CC-SP4
Date : Sat Apr 14 02:49:17 2012

KAEEEEEIEIIEAAAAAAAAAAAAAAAAAAAAAAAAAAAAXX K
Library(s) Used:

cb13fs120_tsmc_max (File: /usr/synopsys/E-2010.12-SP2/ref/db/sc_max.db)
Operating Conditions: cbh13fs120_tsmc_max Library: cb13fs120_tsmc_max
Wire Load Model Mode: enclosed
Design Wire Load Model Library

fifo_model 8000 cb13fs120 tsmc_max

Global Operating Voltage = 1.08
Power-specific unit information :
Voltage Units = 1V
Capacitance Units = 1.000000pf
Time Units = 1ns
Dynamic Power Units = ImW (derived from V,C,T units)
Leakage Power Units = 1pW

Cell Internal Power = 358.4537 uW (42%)

Net Switching Power =495.5928 uW (58%)
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Total Dynamic Power = 854.0466 uW (100%)

Cell Leakage Power = 30.7003 uwW
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11. This is the Back-end Quality Of Results (QoR) report after performing routing.

B R R R R R R o o R R R R AR AR R R R R R R R S S S

Report : gor

Design : fifo_model

Version: E-2010.12-ICC-SP4
Date : Sat Apr 14 02:55:43 2012

B R R R R R R o o R R R R AR AR R R R R R R R S S S

Timing Path Group 'OUTPUTS'

Levels of Logic: 26.00
Critical Path Length: 3.03
Critical Path Slack: 0.61
Critical Path Clk Period:  25.00
Total Negative Slack: 0.00
No. of Violating Paths: 0.00
Worst Hold Violation: 0.00
Total Hold Violation: 0.00

No. of Hold Violations: 0.00

Levels of Logic: 4.00
Critical Path Length: 1.34
Critical Path Slack: 3.42
Critical Path Clk Period:  25.00
Total Negative Slack: 0.00
No. of Violating Paths: 0.00
Worst Hold Violation: 0.00
Total Hold Violation: 0.00

No. of Hold Violations: 0.00

Levels of Logic: 28.00
Critical Path Length: 4.23



Critical Path Slack: 0.70
Critical Path Clk Period:  5.00

Total Negative Slack: 0.00
No. of Violating Paths: 0.00
Worst Hold Violation: 0.00
Total Hold Violation: 0.00

No. of Hold Violations: 0.00

Cell Count

Hierarchical Cell Count: 0
Hierarchical Port Count: 0
Leaf Cell Count: 1680
Buf/Inv Cell Count: 68

CT Buf/Inv Cell Count: 10
Combinational Cell Count: 1112
Sequential Cell Count: 568
Macro Count: 0

Area

Combinational Area: 2216.250000
Noncombinational Area: 3151.000000

Net Area: 1077.476117
Net XLength : 53642.67
Net YLength : 53238.28
Cell Area: 5367.250000
Design Area: 6444.726117
Net Length : 106880.95

Design Rules
Total Number of Nets: 1712

Nets With Violations: 0
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Hostname: dcd157.ecs.csun.edu

Compile CPU Statistics

Resource Sharing: 0.00
Logic Optimization: 0.00
Mapping Optimization: 10.26
Overall Compile Time: 10.46

Overall Compile Wall Clock Time: 10.53

12. This is the Back-end LVS report after fixing Short and Open Nets.
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-- LVS START : --
WARNING : The boundary ((-0.8660,0.000),(217.520,216.640)) of metal Layer3 is out of top
cell boundary ((0.000,0.000),(217.460,216.640)).

Total area error in layer @ is 6. Elapsed =  0:00:00, CPU =  ©0:00:00
Total area error in layer 1 is 6. FElapsed =  9:00:00, CPU =  0:008:00
Total area error in layer 2 is 6. Elapsed =  9:00:00, CPU =  0:00:00
ERROR : area [(0.000,49.385), (0.430,49.585)] 0.0860 um sqr.

ERROR : area [(217.115,72.755), (217.460,72.955)] 0.0690 um sqr.
ERROR : area [(0.0008,143.685), (0.360,143.885)] 0.6720 um sqr.

ERROR : area [(217.030,167.055), (217.460,167.255)] 0.0860 um sgr

Total area error in layer 3 is 4. Elapsed =  0:00:00, CPU =  ©0:00:00
Total area error in layer 4 is 6. Elapsed =  0:00:00, CPU =  ©0:00:00
Total area error in layer 5 is 6. FElapsed =  9:00:00, CPU =  0:008:00
Total area error in layer 6 is 6. Elapsed =  9:00:00, CPU =  0:00:00
Total area error in layer 7 is 6. Elapsed =  0:00:00, CPU =  ©0:00:00
Total area error in layer 8 is 6. Elapsed =  0:00:00, CPU =  ©0:00:00
Total area error in layer 9 is 6. Elapsed =  9:00:00, CPU =  0:00:00
Total area error in layer 10 is 8. FElapsed =  0:00:00, CPU =  0:00:00
Total area error in layer 11 is 0. Elapsed =  0:00:00, CPU =  0:00:00
Total area error in layer 12 is 0. Elapsed =  0:00:00, CPU =  0:00:00
Total area error in layer 13 is 0. FElapsed =  0:00:00, CPU =  0:00:00
Total area error in layer 14 is 0. FElapsed =  0:00:00, CPU =  0:00:00
Total area error in layer 15 is 0. Elapsed =  0:00:00, CPU =  0:00:00

#+ Total Floating ports are 0.

** Tptal Floating Nets are 0.

#+ Total SHORT Nets are 0.

*#+ Total OPEN Nets are 0.

#+ Total Electrical Equivalent Error are 0.
** Tptal Must Joint Error are 0.

LVS END : --

Elapsed =  9:00:00, CPU = 0:00:00
Update error cell ...
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13. Layout showing Standard Cells and 10s Placed on top of each other at the
bottom left corner.

R X Compler - Layoutiindow.1 - Biock Implementation - anyncifo CELT fwrite]  Lindéo oo frite] - flayout 1] - =218 X}
.l_lq ESt View Select Mghight Floorphan Preroute Macemert Jock Poute SignoM Finshing ECO Verficabion Power Rpd Timng Window Melp
<H 20 Nm vZZEBRE ZIQAAQ gl B-E-B2E i C 0 s
l— Inpet mode © FOCANGI0 | Mectangle Intersect Setacuioe
. Smat C Une I™ Enable [Feciace = __] T

Figure A.7: Layout showing Standard Cells and 10s Placed on top of each other
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14. Layout clearly showing Standard Cell palced outside the Core Area (INITIAL
FLOORPLAN)

I IC Compiler - LayoutWindow.2  Block Implementation - fioorplan_init CEL1 [write] _ Libemw_fifo_niew [write] - [Layout2] e i T T (el o

I8 rile Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verffication Power Rail Timing Window Help REE|
lzallzsoeenmk| 2265 aa@-cBaaeE-E- BB F]o- o bR

“IT Input mode ¢~ Rectangle | Rectangle Intersect | Selection
b

@ Smart " Line ™ Enable Replace | Clear || 2
—

I
[B
e
]

=] Apply Options: 7|
100% = Level|0 3:

Objects | Layers | Set..

elr.FRAM
pfrelr.FRAM

cornerul

pfr

cornerur

‘XH."%‘

Eil=

I™ Only select highlighted
0 |[.0biect f[vi. [sel [or. [
=2 i-Die Area O
-Core A O
Port - = ~ =
+Terminal O E % ‘a: %
+-Cell f - u - e
#Fin O - ] = =
t-swts Row [ [] 8 E 8 E
tBound [ Q Q
c Plan Gr.
#Placem..
“Routin.. [
Limpgro. 1 1] AR
Click objects or drag a box to select (Hold Ctrl to add, Shift to remove) ‘ ‘839 349, 1025, 507‘ Er

Figure A.8: Initial Floorplan
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15. Layout showing Standard Cell Placed Inside the Core Area.

B IC Compiler - LayoutWindow.3 - Block Implementation - floorplan_placed.CEL:L fwrite] _Libmw_fifo_new [writel - layout3__ . I N D ool e
B Fle Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail Timing Window Help -[8] ]
lzallts0aanmx] -2 E@ @@ a0caa|E-E-ME]* * F|o-c-us
HIT Rectangle Intersect | Selection

W

[~ Enable Replace x| Clear|| 2

Inputmode { Rectangle
& Smart " Line

cornerul
pfrelr.FRAM
cornerur
pfrelr.FRAM

Apply Options: x|
0:[100% | Level[o 3:
i Objects | Layers | Set...
™ Only select highlighted

Dbie(tTyp‘V\s |Se\ ‘C\r el
~Die Area
~Core A

O

0
Port = ) ] =
el Terminal O E % 'a é
# Cell = c . c u;
+Pin O E T ‘6 ]
#SiteRow [ [ O &= O =
Bound [] o o
+ Plan Gr.
+Placem
Routin...
RP Gro..

Click objects or drag a box to select (Hold Ctrl to add, Shift to remove) |

1311.729, 974.151 | Er

Figure A.9: Placement
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16. Layout showing Power Network Synthesis (Power Rings and Power Straps).

& IC Compiler - L Window.4 - Block fion - floorplan_complete.CEL L [write]  Libimw_fifo_new [wnle]-[LayDut.d_ _ ‘_-:L«EII —
B fle Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verffication Power Rail Timing Window Help MEE|

[zgl: s@eaqmx] ~22EEEleaa@-cablacalB-B-ag]: * fla- -0
=

=

7" I\“II IHI\‘I‘I ‘HI‘\I‘I‘I[ ‘H ‘H‘ﬂl \ |

:‘:EE‘%ﬂXHJ% ‘a

[ Apply Options j
0 of100% v]  Levello =
=Y Objects | Layers | Set..

™ only select highlighted
0 | [obiect fyp]vis.[sel. [cr: =]
Die Area

Core A..

o Part

B +Terminal

pcell (DRI RN LY s NN TRTI Y 4 TIN5 EON IHI 1T

e : im.m....' o

A O

o A R
+ Site Row [} E ] i IE I | El NS

+Bound
+-Plan Gr. |
+ Placem.

Specify zoom in box (Click opposite corners or drag) | |516.078, 436.459 || | 2

Figure A.10: Layout showing Power Network Synthesis.
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17. Layout Showing Clock Tree Synthesis.

2 - Block - clock_opt_route.CEL;1 [write]

:final.mw [write] - [Layout.2] -

if}le Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail Timing Window Help 8%

[zRlli20aanmx ~22E@Eleaa@ccnlecaE-E-RBl* * F]o- -0
Replace \zzw

H Input mode  Rectangle | Rectangle Intersect | Selection

& Smart € Line I” Enable

shape: HWIRE#56457
owner_net: wclk_G1B1I9
net_type: Clock
net_route_rule: 2X_SPACING

length: 5.550
endcap: square_ends_by_half_width
172 (FI=cycle;?=query)

Figure A.11: Layout Showing CTS
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18. Layout showing Routing.

& L€ Compiler - LayoutWindow.t - Block lmp\emeniﬂn - chip_fimsh_final CELT [wnite]  Libimw_ :mo_new [wnite] - [Layout.b] (W0 L2 |
B Fle Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verification Power Rail Timing Window Help - ﬁﬂ

IzRL 20RO -22ER Q@ B |QRe/E-E-RE|* ¢ Fo-a-uE

——————————————

Apply Options: ¥
= ofoon o] Levello =

# 7| Objects | Layers | set..

I™ Only select highlighted

[ Object Typ Vis. ‘Se\ ‘i;

[ || -Die Area 0

= || rCoreA.. O

o

2 - Terminal O

0 = Cell
Stan.. ]
Har..
#Soft. ]
-Blac.. ]
M -
10 B
~Elin [

specify zoom in box (Click opposite corners or drag) |

—— T — T THT N — E——

‘623 918, 546.718 ‘ Er

Figure A.12: Routing.
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19. Final Layout after chip finishing steps:

# L Compiler - LayoutWindow:b - Block Implementation - chip_inish_tinal.CEL:Y |write]  Lib:mw_tito_new [write] - {Layout.t| 3 (L= o)
B file Edit View Select Highlight Floorplan Preroute Placement Clock Route Signoff Finishing ECO Verfiication Power Rail Timing Window Help -[8[%]
IRl zcaanmx| ~22EEElae@cal|cceE-E- BB E|a-c-us

IT Inputmode  Rectangle |Rectangle Intersect

TF smart ¢ Line [~ Enable
=

Selection

Replace x| Clear

(]

cornerul
cornerur

Apply Options: |
=% 100% 7| Levello =

= Objects | Layers | Set.

I™ Only select highlighted
B Object Tvp‘ws |5el. | cr 2
=2 Die Area m]
— || -Core A O
. = -
Port - -
~Terminal QU ]
- Cell " C C
f-Pin ] 6 \5
=Site Row [ [ J v}
-Bound  []
#+Plan Gr.
#+-Placem
-Routin.
-RD rn hd
Click objects or drag a box to select (Hold Ctrl to add, Shift to remove) ‘ ‘1315 023, 890.168 B

Figure A.13: Final Layout of the chip
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