
i

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

Title Page

AIRCRAFT ARTIFICIAL HORIZON

WITH

 INTERFACE TO 3D ANDROID APPLICATION

A graduate project submitted in partial fulfilment of the requirements

for the Degree of Master of Science

in Electrical Engineering

By

Robert Zdunski

May 2012

ii

Signature Page

The graduate project of Robert Zdunski is approved:

____________________________________ _______________________

Ramin Roosta, Ph. D. Date

____________________________________ _______________________

Xiaojun Geng, Ph. D. Date

____________________________________ _______________________

Ronald W. Mehler, Ph. D., Chair Date

California State University, Northridge

iii

Dedication

To Ting,

My dearest wife, thank you for your love and support.

iv

Acknowledgements

 I would like to give special thanks to Professor Ronald Mehler for agreeing on

supervising this project, his dedication and contribution in providing quality education in

Electrical Engineering program as well as for his patience and help in shaping this project

throughout its course.

 I would like to thank Professor Ramin Roosta and Professor Xiaojun Geng for agreeing

on serving as a Graduate Project Committee Members and their support.

 Thanks to the Department of Electrical and Computer Engineering for an excellence in

providing a quality program and creating great environment that encourages pursuing an

engineering degree.

v

Table of Contents

Title Page ... i

Signature Page .. ii

Dedication .. iii

Acknowledgements .. iv

Table of Contents .. v

List of Figures ... vii

Abstract .. xi

Chapter 1 ... 1

Introduction ... 1

Overview. .. 1

Chapter 2 ... 3

Design Overview .. 3

Design elements .. 3

Android device .. 3

Gyroscope/accelerometer board.. 6

Chapter 3 ... 10

Aircraft Attitude Indicator Implementation .. 10

Introduction to Attitude Indicator and its features .. 10

Motion and coordinate systems fundamentals .. 12

Android platform .. 14

Gyroscopic chip description ... 18

Embedded implementation ... 20

Gyroscope/Accelerometer readings processing .. 23

Chapter 4 ... 29

Android Application.. 29

Overview of Android platform and related application development process and tools 29

3D graphics development ... 31

Features of Inflexion UI .. 32

Inflexion UI installation .. 33

Chapter 5 ... 52

Development of 3D Objects and their integration with Inflexion UI 52

3D Format ... 52

3D IDE .. 53

vi

Using 3D objects within Inflexion UI environment ... 59

Chapter 6 ... 65

USB Interface.. 65

Overview ... 65

ADB (Android Debug Bridge) .. 70

Debugging feature of the Android device ... 72

Main components of the Android implementation of the USB device ADB server 72

Embedded implementation of the USB host / ADB client ... 73

Chapter 7 ... 75

Conclusions ... 75

References ... 77

Appendix A ... 79

Development Software Installation Guide .. 79

Appendix B ... 95

Schematic & PCB ... 95

Appendix C ... 97

Bill of Materials .. 97

Appendix D ... 99

Android Application Source Code .. 99

Appendix E ... 100

Inflexion Source .. 100

Appendix F.. 101

Firmware Source Code ... 101

vii

List of Figures

Fig. 1) The screen depicting some of aircraft’s control instruments (pitch=0̊; bank=15̊) [1] 2

Fig. 2) i.MX53 [1] ... 4

Fig. 3) Tap “ZERO” to zero-out attitude indicator (force pitch and bank to equal 0) 5

Fig. 4) Tap marked area to turn on/off precise filter coefficient setup ... 5

Fig. 5) Tap marked area to turn on/off rough filter coefficient setup ... 5

Fig. 6) PIC24FJ256GB106 pinout [2] .. 7

Fig. 7) MPU-6000 pinout [5] .. 8

Fig. 8) Orientation of MPU-6000 axes of sensitivity and polarity of rotation [3] 8

Fig. 9) Typical Vacuum Attitude Indicator [15] .. 10

Fig. 11) Interpretation of Attitude Indicator readings [14] ... 12

Fig. 12) Rotations of the object defined by Euler angles [12] .. 13

Fig. 13) Earth-Centrered reference frame [13] ... 14

Fig. 14) Earth-Fixed reference frame [13] .. 14

Fig. 15) Local-Horizontal reference frame [13] ... 14

Fig. 16) Attitude Indicator App running on i.MX53 development board with IMX28LCD touch

screen .. 15

Fig. 17) Embedded MotionApps platform by Invensense [19] .. 17

Fig. 18) Serial interfaces location in the scope of the design modules ... 18

Fig. 19) MPU-60X0 axes orientation.. 18

Fig. 20) Embedded circuit schematic.. 20

Fig. 21) Embedded circuit PCB (bottom side).. 21

Fig. 22) Embedded circuit PCB (top side) .. 21

Fig. 23) X-axis gyroscope driven mode [22] .. 23

Fig. 24) Complementary filter – the concept .. 25

Fig. 25) Complementary filter implementation .. 26

Fig. 26) Invensense Motion Processing platform ... 27

Fig. 27) Axes orientation with reference to the Android device ... 27

Fig. 28) Inflexion UI solution in the scope of Android platform [28] .. 32

Fig. 29) Inflexion UI installation: Project import ... 33

Fig. 30) Inflexion UI: Selection of the active project ... 34

Fig. 31) Inflexion UI: Location of the Collada files ... 35

Fig. 32) Inflexion UI: The placement of the 3D objects on the layout ... 35

viii

Fig. 33) Inflexion UI: The previewer .. 36

Fig. 34) Inflexion UI: Access to element’s properties .. 37

Fig. 35) Inflexion UI: Setting a draw plane .. 37

Fig. 36) Inflexion UI: Basic properties of the 3D object .. 38

Fig. 37) Inflexion UI: The layout .. 38

Fig. 38) Inflexion UI: Layout’s condition ... 39

Fig. 39) Inflexion UI: Local variables .. 40

Fig. 40) Inflexion UI: Shared variables .. 41

Fig. 41) Inflexion UI: Module registration ... 42

Fig. 42) Inflexion UI: Java class ... 44

Fig. 43) Inflexion UI: Inflexion framework imports .. 45

Fig. 44) Inflexion UI: Class member .. 45

Fig. 45) Inflexion UI: Integration of the module implementation class with Android app 46

Fig. 46) Inflexion UI: Project build .. 47

Fig. 47) Inflexion UI / Eclipse integration – “jni” folder in Eclipse... 48

Fig. 48) Inflexion UI / Eclipse integration – “jni” folder in Inflexion .. 48

Fig. 49) Inflexion UI / Eclipse integration – “sample packages” folder in Eclipse 49

Fig. 50) Inflexion UI: Package wizard .. 49

Fig. 51) Modelling in Blender v. 2.5 ... 54

Fig. 52) Editable elements of the 3D objects [33] .. 54

Fig. 53) UV mapping of the cube 3D object [32] ... 55

Fig. 54) 3D object texturing through UV mapping [32] ... 55

Fig. 55) Attitude Indicator 3D representation created in Blender v. 2.5 with 2D picture used to

UV map the sphere part of the 3D object.. 56

Fig. 56) Partial (sphere) mapping of the Attitude Indicator 3D object (imported by Blender v.

2.49) .. 57

Fig. 57) Partial (ring) mapping of the Attitude Indicator 3D object (imported by Blender v. 2.49)

... 57

Fig. 58) Partial (wings) mapping of the Attitude Indicator 3D object (Blender v. 2.49 import is

shown in Fig. 59) .. 58

Fig. 59) Export of the 3D object from Blender v. 2.49 to Collada (.dae) file using settings

acceptable by Inflexion UI (shown) .. 59

Fig. 60) 3D objects available from within Inflexion UI (.dae and .png files under “Project

Explorer”) ... 60

Fig. 61) Primary 3D object properties available in Inflexion UI .. 61

Fig. 62) Placement of a “Touch Region” component on the active layout using “Element

ix

Manager”... 62

Fig. 63) Access to “Touch Region” properties through “Element Manager” 62

Fig. 64) Displacement setup access through “Layout Manager” .. 63

Fig. 65) The assignment of the variable “pitch” to drive a displacement in the range of -1800 ÷

1800, i.e. 360deg in both directions with 0.1 degree resolution for smooth transitions within a

real range of -180 ÷ 180 degrees. .. 63

Fig. 66) Linking “pitch” displacement with “gyro_sphere” 3D object and defining 360 degrees

rotation of the object around its X axis to be controlled by the variable previously assigned to

that displecement. ... 64

Fig.67) Inflexion Previewer .. 64

Fig. 68) Android device as a USB device (a). Android device as a USB host (b). [35] 66

Fig. 69) USB driver architecture [35] ... 67

Fig. 70) USB embedded host state machine - Format of a single USB transfer [34] 70

Fig. 71) Chain of interfaces utilized in the Aircraft Attitude Indicator application 71

Fig. 72) Linux shell and file system access on Android device through Windows “cmd” and ADB

service ... 71

Fig. 73) ADB launch through Windows’ “cmd” ... 71

Fig. 74) Access to Android device serial number via ADB protocol through Windows “cmd” and

through Eclipse ... 72

Fig. 75) Java version check ... 79

Fig. 76) ADT plugin install details ... 81

Fig. 77) ADT preferences ... 82

Fig. 78) [41] Last historical dataset collected during a 14-day period ending on February 1, 2012

(based on the number of Android devices that have accessed Android Market) 83

Fig. 79) Android SDK Manager.. 83

Fig. 80) Cygwin: awk setup .. 84

Fig. 81) Cygwin: make setup .. 85

Fig. 82) Inflexion UI: Express/Runtime installer launch .. 85

Fig. 83) Inflexion UI Runtime: Target error message ... 87

Fig. 84) Project properties automatic fix .. 88

Fig. 85) Run configuration .. 88

Fig. 86) i.MX53-QSB-Android-Gingerbread-Release4.0 extraction ... 90

Fig. 87) SD (Secure Digital) as a Linux device .. 91

Fig. 88) "flash_prebuilt_android.sh" script permission setup ... 91

Fig. 89) "flash_prebuilt_android.sh" script execution .. 92

Fig. 90) "flash_prebuilt_android.sh" script execution progress .. 92

x

Fig. 91) MPLAB Toolsuite setup .. 94

Fig. 92) MPU-6000 board circuit schematic... 95

Fig. 93) MPU-6000 PCB: Bottom side ... 96

Fig. 94) MPU-6000 PCB: Top side ... 96

Fig. 95) BOM .. 98

xi

Abstract

AIRCRAFT ATTITUDE INDICATOR WITH INTERFACE TO 3D ANDROID

APPLICATION

By

Robert Zdunski

Master of Science in Electrical Engineering

The goal of this project is to provide a 6-axis Aircraft Attitude Indicator solution based on

Android OS and cutting edge MPU-6000 chip by Invensense. Mentor Graphics emerging

Inflexion UI technology to create 3D environment for Android devices has been utilized on

i.MX53 platform. Motion-fusion algorithms have been developed as well as Invensense’s

proprietary and encrypted MotionFusion™ library has been tested. The project involves tools

like Inflexion, Eclipse, Blender, MPLAB and C/C++ JAVA languages to create complete

software solution. Hardware includes i.MX53 and external board designed for this project with

microcontroller from Microchip with USB capabilities and MPU-6000 populated on it. USB and

I
2
C interfaces have been implemented.

1

Chapter 1

Introduction

1.1. Overview.

This report addresses implementation of the aircraft’s artificial horizon on the

Android Operating System. "The first attitude instrument (AI) was originally referred to

as an artificial horizon, later as a gyro horizon, now it is more properly called an attitude

indicator." [42] Therefore the name "Artificial Horizon" will be used interchangeably

with an "Attitude Indictor" throughout this report. The term "Artificial Horizon" refers to

the line that separates the sky (blue) and the ground (brown) which is supposed to reflect

the actual position of the aircraft in relation to the real horizon seen from the perspective

of the pilot, while the term "Attitude Indicator" refers to the same spatial position of the

aircraft defined by pitch and bank, but also may include Earth's magnetic-north related

heading indicator. Aircraft’s attitude indicator is one of the flight instruments installed in

the cockpit of the aircraft, whose purpose is to provide the pilot with information about

the current spatial position of the machine without visually referencing to the outside

objects. Flight instruments are divided into categories: control instruments (e.g. power),

performance instruments (e.g. altitude, speed), navigation instruments (e.g. GPS-Global

Positioning System). Basic flight instruments are airspeed indicator, attitude indicator,

altimeter, turn coordinator, heading indicator, and vertical speed indicator [2]. Attitude

indicator falls under "Control Instruments" category, shown in Fig. 1. The basic

requirement that applies to attitude indicator is that it must be properly installed on the

machine, i.e. it must be attached so that its pitch-sensing axis is perpendicular to aircraft’s

fuselage as it indicates the position of the object that needs to share exactly the same

system of coordinates.

"Until recently, most general aviation aircraft were equipped with individual

instruments utilized collectively to safely manoeuver the aircraft by instrument reference

alone. With the release of the electronic flight display system, the conventional

instruments have been replaced by multiple liquid crystal display (LCD) screens." [1] In

this project widely available Android device has been used instead of multiple LCD

screens with interface to Attitude Indicator. Additional instrumentation may be added to

the solution and communicate with 3D UI via USB interface in the future. After Android

devices with USB host interface become widely available on the market, the external

Attitude Indicator board could be powered from that device’s battery in case of aircraft’s

electrical failure. Currently available Android development tools enable the design of

outstanding 3D graphics that would fit individual requirements and would constitute

easily modifiable and standardized platform.

2

Fig. 1) The screen depicting some of aircraft’s control instruments (pitch=0̊;

bank=15̊) [1]

In order to obtain actual position of the Aircraft in relation to Earth’s gravity, i.e.

its pitch and bank, either gyroscopic device or accelerometer or both are required to be

incorporated into the system. Albeit, when aircraft’s pilot is maintaining constant altitude

he uses altimeter as the primary instrument to control the pitch and as long as the machine

maintains constant airspeed and pitch attitude, the altitude remains constant. Also, the pi-

lot relies on the heading indicator to lean about current bank when flying in instrument

meteorological conditions. In case, both, accelerometer and gyro sensor are used, their

outputs need to be combined in so called Motion-Fusion process, which calculates esti-

mated output based on readings from gyroscope and from accelerometer rather than trust-

ing one device only. This approach improves the quality of final result by eliminating

drawbacks of the sensors and by emphasizing their strengths at the same time. To do so

algorithm utilizing complementary filter solution has been employed.

The MPU-6000 by Invensense has been picked as a 6-axis

gyroscope/accelerometer MEMS (MicroElectroMechanical System) chip due to its

extraordinary feature of delivering 6-axis MotionFusion™ data encompassing 3-axis

gyroscopes and 3-axis accelerometers fabricated on the same die, thus eliminated PCB

level misalignments, with MPU (Motion Processing Unit) and optimized for 8-bit

embedded microcontrollers with limited MIPS and memory. MPU-6000 comes with

MotionApps software platform designed to help in shortening time to market.

3

Chapter 2

Design Overview

2.1. Design elements.

The design consists of the following elements:

 Android device: i.MX53 development board provided by freescale with Android

BSP (Board Support Package) from Adeneo.

 3D user interface created using Blender and Inflexion UI from Mentor Graphics and

Android application developed through integrating Inflexion UI outputs with

Android application JAVA code in Eclipse IDE.

 Custom, external board designed for this project with MPU-6000 chip from

Invensense and PIC24FJ256GB106 microcontroller from Microchip. I
2
C interface

on board is used as a communication channel between MPU-6000 and

PIC24FJ256GB106. USB interface on board is used as a communication channel

between PIC24FJ256GB106 and i.MX53.

 PIC24FJ256GB106 firmware compiled using C30 compiler and programmed using

MPLAB tool, both provided by the chip’s manufacturer, i.e. Microchip.

2.2. Android device

 i.MX53 board, shown in Fig. 2, with IMX28LCD (WVGA) touch-screen (optionally

VGA output can be used to drive VGA monitor => no touch screen):

 CPU: ARMCortex-A8 1GHz+ multi-core

 Process:65nm, LP/GP

 Core Voltage:0.85V-1.3V

 Package:19x19 0.8mm 529 ball BGA12x12 0.4mm PoP (Consumer)

 Case Temp:-20 to 70C (Consumer)-40 to 85C (Auto/Industrial)

 2500 –14,000+ DMIPS

 Graphics: Adv 2D+3D HW

 Full HD capability

 Display up to UXGA (1600x1200)

 Video: >1080p enc/dec

 LCD: >1080p

 PMIC: Integrated/Separate

 HDD: PATA, S-ATA interface

 One eSDHC ports supports MMC4.4 including DDR mode

 Delivers rich graphics and UI in HW

 OpenGL™ ES 2.0 3D accelerator (AMD Z430)

 OpenVG™ 1.1 graphics accelerator (AMD Z160)

4

 NEON™ Vector floating point co-processor

 Open source development platform

 Connectivity:

o High speed USB OTG and HS Host, with embedded Phy(s) (2x). HS

Host x2

o Up to 800Mbps LP-DDR2, LV-DDR2, DDR2 & DDR3, 2GB total DDR.

o SLC/MLC NAND Flash 8/16-bit, up to 16-bit ECC

o SRAM/NOR

o Ethernet 10/100 with IEEE1588 HW enabled

o High speed eMMC 4.3/4.4, SD 2.1, UART, SPI

o ATA-6, SATA 2 + PHY

o 3.3V and GPIO support on most non-DDR pins

Fig. 2) i.MX53 [1]

 Android application operation manual illustrated in Fig. 3-5.

5

Fig. 3) Tap “ZERO” to zero-out attitude indicator (force pitch and bank to equal 0)

Fig. 4) Tap marked area to turn on/off precise filter coefficient setup

Fig. 5) Tap marked area to turn on/off rough filter coefficient setup

6

Settings are saved on the SD card inserted into SD mini socket on i.MX53 board

and valid after power down/up procedure.

2.3. Gyroscope/accelerometer board.

 PIC24FJ256GB106 microcontroller shown in Fig. 6 with I
2
C interface to MPU-

6000 and USB interface to i.MX53.

 Modified Harvard Architecture

 Up to 16 MIPS Operation at 32 MHz

 •8 MHz Internal Oscillator

 •17-Bit x 17-Bit Single-Cycle Hardware Multiplier

 •32-Bit by 16-Bit Hardware Divider

 •16 x 16-Bit Working Register Array

 •C Compiler Optimized Instruction Set Architecture with

 Flexible Addressing modes

 •Linear Program Memory Addressing, Up to 12 Mbytes

 •Linear Data Memory Addressing, Up to 64 Kbytes

 •Two Address Generation Units for Separate Read and

 Write Addressing of Data Memory

 Connectivity:

o USB:

 USB v2.0 On-The-Go (OTG) Compliant

 •Dual Role Capable – can act as either Host or Peripheral

 •Low-Speed (1.5 Mb/s) and Full-Speed (12 Mb/s) USB

 Operation in Host mode

 •Full-Speed USB Operation in Device mode

 •High-Precision PLL for USB

 •Internal Voltage Boost Assist for USB Bus Voltage

 Generation

 •Interface for Off-Chip Charge Pump for USB Bus

 Voltage Generation

 •Supports up to 32 Endpoints (16 bidirectional):

 USB Module can use any RAM location on the device as USB

endpoint buffers

 On-Chip USB Transceiver with On-Chip Voltage Regulator

 •Interface for Off-Chip USB Transceiver

 •Supports Control, Interrupt, Isochronous and Bulk Transfers

 •On-Chip Pull-up and Pull-Down Resistors

o UART w/ IrDA

o SPI

o I
2
C

7

Fig. 6) PIC24FJ256GB106 pinout [2]

 MPU-6000 gyro/accel chip by Invensense shown in Fig. 7. Fig. 8 illustrates axes

orientation.

 Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a

user-programmable full-scale range of ±250, ±500, ±1000, and ±2000°/sec

 Digital-output tri-axis accelerometer with a programmable full scale range of

±2g, ±4g, ±8g and ±16g

 Data is measured using on-chip ADCs and transmitted over I²C or SPI

interface

 VDD 2.5V±5%, 3.0V±5%, or 3.3V±5%

8

Fig. 7) MPU-6000 pinout [5]

Fig. 8) Orientation of MPU-6000 axes of sensitivity and polarity of rotation [3]

 RJ-11 ICSP (In Circuit Serial Programming) microcontroller programming

connector (ICD-3 programmer by Microchip used to update the firmware).

 USB-MINI-B 5VDC power connector.

 USB-A communication interface port.

 100-mil pitch UART connector (needs UART - RS-232 or UART – USB converted

to interface with PC).

9

 SMD power LED indicator.

 Through-hole No-Motion LED indicator.

10

Chapter 3

Aircraft Attitude Indicator Implementation

3.1. Introduction to Attitude Indicator and its features.

Aircraft’s Attitude Indicator provides the pilot with the rotation around the

longitudinal axis to indicate the degree of roll (bank), and around the lateral axis to

indicate the pitch (nose up/down).

In a typical vacuum, shown in Fig. 9, installed in the circuit similar to the one

depicted in Fig. 10, or electrical implementation of the Attitude Indicator the rigidity of

rotating gyroscope is used. Due to its inherited characteristics, the gyroscope maintains

fixed position regardless the aircraft's attitude.

The pilot focuses on the following parts of the Attitude Indicator:

 The miniature wings mounted on the indicator's casing. Those wings indicate the

position of the real wings of the aircraft in relation to its spatial position

(miniature wings are mounted in parallel to real wings).

 The horizon line that separates the top (sky) and the bottom (ground) parts of the

indicator

 The position marks that indicate actual number of degrees the aircraft's attitude

changes about since last zero out procedure performance.

The reference arm, with its attached blue and black card representing the sky and

ground respectively, remains upright relative to the actual horizon as the airplane climbs,

descends, and banks. [15] "Vacuum pressure draws fast moving air alongside the cupped

edges of this gyroscope causing it to spin. This spinning gyroscope remains rigid in

space, regardless of the pitch or bank attitude of the airplane."

Fig. 9) Typical Vacuum Attitude Indicator [15]

11

Fig. 10) A typical pneumatic circuit of the Attitude Indicator [15]

The alignments of the miniature wings with the horizon bar indicates that aircraft

is in the flight leveled in relation to its position at the time the last zero out operation was

performed. Whenever miniature wings are located above the horizon line, it indicates

that the aircraft is climbing, and vice versa, the wings below the horizon line indicate

descending of the aircraft.

The sky is usually blue and the ground is usually brown in most commercially

available solutions.

The rigidity of the gyroscope maintains the horizon line in parallel to the natural

horizon, provided the last zero out procedure was performed with the gyroscope in level

with the natural horizon. Zero out procedure always sets the reference that might not

necessarily be a natural horizon. The miniature wings representing a real aircraft move

with the object the attitude indicator is attached to, i.e. aircraft itself. The movement ratio

indicates the degree of pitch and bank changes.

For this project electronic the Aircraft’s Attitude Indicator that communicates with

Android application has been designed. This device uses gyroscope as well as

accelerometer to calculate actual spatial position of the aircraft in relation to its position

at the time of zeroing out. Fig. 11 illustrates interpretation of the Attitude Indicator

readings performed by the pilot.

12

Fig. 11) Interpretation of Attitude Indicator readings [14]

3.2. Motion and coordinate systems fundamentals.

Coordinate systems are used to keep track of the relative object's position and

orientation in space. The simple way to model an aircraft's coordinate system is to use

the one which is fixed in the body of the aircraft itself. Then, the forward direction is

modified by the presence of wind, and the motion of the object through the air is not the

same as its motion relative to the ground. [12]

13

 Body-fixed frame of reference

 The orientation of the body coordinate axes is fixed in the shape of body and

the aircraft is assumed to be rigid.

 First of the axes points through the nose of the craft, the second is

perpendicular to the first and the third is perpendicular to the first/second axes

plane and points down through the aircrafts bottom.

 The origin of the Frame (Body) coordinate system perpetually moves with the

object it’s attached to.

 In the body axis coordinates system, where the axes are fixed to the rigid

object's body, aerodynamic forces and moments depend upon relative velocity

orientation angles, hence are not referenced to the earth axes.[13]

 Rotational degrees of freedom are defined by quaternions, rotation matrix or

Euler angles [12] shown in Fig. 12:

 P or Φ Roll about the x axis

 Q or Θ Pitch about the y axis

 R or Ψ Yaw about the z axis

Fig. 12) Rotations of the object defined by Euler angles [12]

14

 World-fixed coordinates systems illustrated in Fig. 13-15.

The origin of the system is fixed to an arbitrary point on the surface of the Earth.

Fig. 13) Earth-Centrered reference frame [13]

Fig. 14) Earth-Fixed reference frame [13]

Fig. 15) Local-Horizontal reference frame [13]

3.3. Android platform

 Android application visualizes aircraft dynamics by displaying 6 degrees of freedom

animation object described in Collada (COLLAborative Design Activity) format

15

that defines an open standard XML (Extensible Markup Language) schema for

exchanging digital assets among applications that include graphics. Without Collada

standard those applications would store their graphics related resources in formats

incompatible with each other, causing distribution of those assets more problematic.

Collada format has been used in this project to consolidate flight data gathered by

MPU-6000 chip and processed in PIC24FJ256GB106 processor, with its 3D spatial

representation in Android application.

 Implemented transformations convert axes representations and coordinate systems.

 Examples of Android devices:

 freescale i.MX53 board with 3D graphics developed using Inflexion UI by

Mentor Graphics with Inflexion Engine loaded onto Android OS, touch screen

LCD and BSP (Board Support Package) by Adeneo Embedded [17] – used for

this project, shown in Fig. 16.

Fig. 16) Attitude Indicator App running on i.MX53 development board with

IMX28LCD touch screen

16

 Off the shelf Android smart phones or tablets with Inflexion Engine preloaded

(usually by OEM)

 Off the shelf Android smart phones or tablets with graphics developed using

OpenGL library

 Complete Aircraft Artificial Horizon Solution

 Motion Processing Unit (MPU-6000) with integrated Accelerometer and

Gyroscope, hardware DMP (Digital Motion Processor) with hardware

accelerator engine and a secondary I2C-master port that interfaces to optional

3rd party digital accelerometers, and FIFO to store MotionFusion data

 Application Processor with Motion-Fusion algorithms implemented on it.

The generic Motion-Fusion library available on Invensense website [6] in

fall 2011 has been modified to handle PIC24FJ256GB106 processor for the

purpose of this project. Some of the functionalities that came with the library

worked but most vital ones turned out not to. Due to the fact that Invensense's

IP runs in encrypted form and is considered proprietary and confidential, it

turned out too difficult to find the fix for encountered problems due to very

limited debugging access and the proprietary library did not work “out-of-the-

box as-is”. The DMP (Digital Motion Processor) memory interface uses three

registers on the IMU/MPU device. “The 16-bit memory address is selected by

two 8-bit registers (DMP Bank and DMP Start Address), and a third register

(DMP Read/Write) provides sequential read/write access to the DMP memory

using sequential I
2
C read/write. The implementations provided for AT32 break

the memAddr argument into Bank and Start Address, and perform single-byte

writes to the Bank and Start Address registers." [19] Those registers are

undocumented as they constitute the part of Invensense IP.

Few attempts were made on the Invensense's development forum and

through contacting Invensense directly to resolve the issues, with no success.

Eventually, Invensense removed a generic library from their website. The only

library available at the time of writing this report is the one that handles

Invensense's demo board with Atmel processor populated on it. Due to the

problems encountered in the past with the generic library, the approach was

changed and own motion processing algorithms were incorporated into the

firmware, which seems to be more valuable from the research standpoint, but

likely provides worse solution that the one by Invensense with its years of

experience in the field and multimillion dollars resources. Based on Invensense

history, which is "the pioneer and a global market leader in intelligent motion

processing solutions that enable a motion-based user interface for consumer

electronics." [18] it is assumed that the final attitude of the aircraft resulting

from proprietary Motion-Fusion data processing would be more accurate than

the solution devised for this project.

17

The most difficult part, as it turned out during the design and testing phase,

was to eliminate a linear acceleration from the readings to obtain pure gravity

that translates directly to the tilt of the object and therefore to its position in a

3D space. Due to the Motion-Fusion processing, a gyroscope’s data are

affected by the linear acceleration if the latter is not completely removed from

the accelerometer output. The accelerometer is used in motion processing to

minimize the effect of gyroscope’s inherent drift caused by inevitable bias and

the integration of the consecutive readings. The integration is used to convert

an angular rate that gyroscope outputs in deg/sec into an actual tilt for each

particular axis separately.

Fig. 17) Embedded MotionApps platform by Invensense [19]

The Embedded MotionApps platform, shown in Fig. 17, interfaces with

the customer platform through the following modules that were prepared for

Invensense IP library integration with the existing firmware [19]:

 MLSL - platform dependent I
2
C implementation for communication

with MPU.

 MLOS - provides a system timer with the resolution of 1ms and a delay

routine.

 UStore IO - provides an access to a non-volatile memory like

EEPROM, filesystem, external Flash drive, etc.

 Android device with 3D representation of one of the standard artificial horizon

instruments installed in aircrafts

 MPU-6000 and Application Processor share the same PCB connected to

Android device via wired USB

18

Fig. 18) Serial interfaces location in the scope of the design modules

 Application Processor provides I2C interface to MPU-6000 and USB

interface to i.MX53 Android device as depicted in Fig. 18.

 Application processor performs Motion Fusion calculations using data

received from MPU-6000 and provides Android device with the current

position (pitch and roll) of the object, which the PCB is attached to, i.e.

aircraft’s cockpit

3.4. Gyroscopic chip description.

 Features of MPU-60X0 (Motion Processing Unit) chip by Invensense

(axes orientation shown in Fig. 19):

Fig. 19) MPU-60X0 axes orientation

 Complete solution to deliver 6-axis MotionFusion™ data encompassing 3-axis

gyroscopes and 3-axis accelerometers

 Internal 3-axis gyroscope integrated with internal 3-axis accelerometer on one

silicon die

 World’s first and only integrated 6-axis IMU (Inertial Measurement Unit) to

eliminate PCB (Printed Circuit Board) level cross axis misalignment errors

19

 Can drive 3-axis external magnetometer

 Manufactured using Nasiri process that combines MEMS (Micro-Electro-

Mechanical-System) on CMOS

 Two types: MPU-6000 (I2C, SPI) and MPU-6050 (I2C, extra power options)

 Comes with 9-axis (9 degrees of freedom: 3-axis accelerator, 3-axis gyroscope,

3-axis magnetometer) proprietary Embedded MotionApps Platform™ library

software (Embedded MPL), optimized for 8-bit embedded microcontrollers,

capable of processing complex 9-axis MotionFusion algorithms

 4x4x0.9mm (QFN) footprint

 VDD Supply voltage range of 2.375V–3.46V. VLOGIC (MPU-6050 only) at

1.8V±5% or VDD

 400kHz Fast Mode I²C or up to 20MHz SPI (MPU-6000 only) serial interfaces

 Digital Motion Processor.

“The embedded Digital Motion Processor (DMP) is located within the MPU-60X0

and offloads computation of motion processing algorithms from the host processor.

The DMP acquires data from accelerometers, gyroscopes, and additional 3rd party

sensors such as magnetometers, and processes the data. The resulting data can be

read from the DMP’s registers, or can be buffered in a FIFO. The DMP has access to

one of the MPU’s external pins, which can be used for generating interrupts. The

purpose of the DMP is to offload both timing requirements and processing power

from the host processor. Typically, motion processing algorithms should be run at a

high rate, often around 200Hz, in order to provide accurate results with low latency.

This is required even if the application updates at a much lower rate; for example, a

low power user interface may update as slowly as 5Hz, but the motion processing

should still run at 200Hz. The DMP can be used as a tool in order to minimize

power, simplify timing, simplify the software architecture, and save valuable MIPS

on the host processor for use in the application.” [16]

 MPU-6000 SERIAL INTERFACE

The MPU-6000 communicates to a system processor using either SPI or I
2
C serial

interface. For this project, I
2
C interface has been chosen with the maximum 400kHz

frequency of the SCL signal. The MPU-6000 always acts as a slave when

communicating to the system processor. The LSB of the of the I2C slave address is

set by the pin 9 of the chip. The logic levels for communications between the MPU-

60X0 and its master are as by the VDD. [16]

20

3.5. Embedded implementation.

 MPU-6000 device by Invensense uses a microcontroller by Microchip

(PIC24FJ64GB106) to establish and maintain USB communication channel with

i.MX53 Android device. PIC24FJ64GB106 acts as a mid-man that communicates

with MPU-6000 using I2C interface and protocol described in MPU-6000

specification on one end, and also it communicates with i.MX53 using USB

interface and ADB (Android Debug Bridge) protocol on the other end. Other

functions of PIC24FJ64GB106 microcontroller include setting up MPU-6000 at

start-up, responding to MPU-6000 messages by taking a proper action, storing and

processing readings coming from MPU-6000, as well as performing motion-fusion

calculations resulting in actual object’s position in relation to earth.

 Schematic of the circuit, shown in Fig. 20.

Fig. 20) Embedded circuit schematic

 J1 – UART port used strictly for diagnostics

 J2 – USB communication port to connect to Android device

 J3 - +5VDC power input

 J5 – ICSP programming connector to download/upload firmware to/from the

microcontroller

 D1 – power indicator LED

 LED1,2 – auxiliary LEDs

21

 PCB (Printed Circuit Board) depicted in Fig. 21-22.

Fig. 21) Embedded circuit PCB (bottom side)

Fig. 22) Embedded circuit PCB (top side)

 Bill of Materials is provided in Appendix C to this report.

 PIC24FJ64GB106 microcontroller simplified specification [10]

 CPU

 Up to 16 MIPS performance

 16 x 16 Hardware Multiply, Single Cycle Execution

22

 12-bit x 16-bit Hardware Divider

 C Compiler Optimized Instruction Set

 Flash Program Memory

 Self-Reprogrammable under Software Control

 10,000 erase/write cycles

 20 year data retention

 System

 Internal oscillator support - 31 kHz to 8 MHz, up to 32 MHz with 4X

PLL

 On-chip LDO Voltage Regulator

 JTAG Boundary Scan and Flash Memory Program Support

 Fail-Safe Clock Monitor – allows safe shutdown if clock fails

 Watchdog Timer with separate RC oscillator

 Universal Serial Bus Features

 USB v2.0 On-the-Go compliant

 Dual role capable, can act as either Host or Device

 Low speed(1.5Mb/s) and full speed(12 Mb/s) operation in host mode

 Full speed USB operation in Device mode

 Supports 32 endpoints

 On-chip USB transceiver

 Peripherals

 CTMU supports Capacitive Touch applications

 Peripheral Pin Select allows I/O remapping of many peripherals in real

time

 4xUART Modules with LIN and IrDA support, 4 Deep FIFO

 3xSPI ™ Modules with 8 Deep FIFO

 3xI2C™ Modules with Master and Slave Modes

 Five 16-bit Timer Modules

 Up to 9 Input Capture and 5 Output Compare/PWM with dedicated time

base

 Hardware RTCC, Real-Time Clock Calendar with Alarms

 PMP, Parallel Master Port, with 16 Address Lines, and 8/16-bit Data

 I2C interface between PIC24FJ64GB106 and MPU-6000

 MPU-6000 uses standard I
2
C communication in a Fast-mode (SCL clock

frequency up to 400kHz) [11]. I
2
C interface on the PIC24FJ64GB106 side has

been implemented to meet MPU-6000 requirements enumerated in [16].

23

 USB interface between PIC24FJ64GB106 and i.MX53

 USB 2.0 with PIC24FJ64GB106 acting as a USB host and i.MX53 acting as a

USB device.

3.6. Gyroscope/Accelerometer readings processing.

 Gyroscope features

 Gyro operates at high resonant frequency for better rejection of ambient noise

and vibration and also provides for less sensitivity to physical shock (10,000g)

compared to other solutions available on the market. [20] Gyro’s resonant

frequency is associated with the fact that when it rotates around any of the

sense axes, the so called Coriolis effect, which has to do with a deflection of

moving object(s) when they’re viewed in a rotating frame of reference [17],

causes a vibration that is detected by a capacitive pickoff. Then the resulting

signal is amplified, demodulated, and filtered to produce a voltage that is

proportional to the angular rate. [16]. “All InvenSense X- and Y-axis

gyroscopes are based on coupled dual-mass (tuning fork) proof-masses that are

driven out-ofplane and generate Coriolis forces in-plane” [22], as shown in the

Fig. 23:

Fig. 23) X-axis gyroscope driven mode [22]

 Gyroscope measures angular speed in dps (degree per second) around three

axis (x, y, z). Positive readings are obtained for counter-clockwise direction

and vice versa.

 Gyroscope is specifically designed not to measure linear acceleration and to

reject gravity force.

24

 Angle is derived by integrating rate of rotation oven certain period of time.

 Gyroscope readings always have some bias that changes over time.

 Due to integration of gyroscope readings in order to receive an actual angle, a

bias translates to inevitable drift (sitting device will always drift, e.g. from

0deg to 360deg on each given axis, with different rate, depending on the

integral time constant as well as initial and current bias).

 ±2000dps max (MPU-60X0).

 Accelerometer features:

 Accelerometer measures linear acceleration and tilt due to gravity. It can’t

measure yaw, which is a rotation in relation to gravity

 Accelerometer measures acceleration in m/s2 applied to the object and after

processing input data it returns three angles corresponding to its three axis

(MPU-60X0).

 Angles calculated by accelerometer hardware are affected by both, linear

acceleration and gravity, thus only sitting device will read pure gravity.

 In order to receive device’s attitude (pitch and roll), a linear acceleration has to

be removed and only pure gravity that directly translated to actual tilt has to be

taken into account

 ±16g max (MPU-60X0)

 Accelerometer – Gyroscope Motion Fusion, i.e. why and how to combine

accelerometer with gyroscope data

 Motion-fusion purpose

 Provides high accuracy (accelerometer) and fast response not affected by

linear acceleration (gyroscope)

 Both sensors complement each other.

 Gyro provides turning information (angle received through integration

of the readings)

 Accelerometer provides linear acceleration and gravity combined

 Provides accurate 6-axis interpretation of movement in space

 Filters out accelerator’s unintended ambient movement and vibration

(removes linear acceleration that affects gravity readings - tilt)

 Gyroscope never reads zero while stationary as it should. Instead it gives

accurate angular change readings in short period of time (as long as drift

within that period of time is acceptable for particular application)

25

 Motion-fusion Implementation

 Acceleration applied to the object, read by the sensor: a = -g - ?F / m

 Pass accelerator readings through low pass filter to isolate gravity (If

linear acceleration was constant or it was increasing or decreasing

indefinitely, then its removal from accelerometer readings would not be

possible, given that acceleration was not known by other means.

Fortunately, long term average of acceleration that most of the objects on

Earth, including aircraft are exposed to, equals zero. This means that

objects usually have constant linear acceleration heading zero, while

sitting, or their acceleration increases and decreases alternatively with a

long term average of zero. Therefore, in order to remove a linear element

from acceleration, a low pass filter can be used.)

 Solution introduces delay that without support of gyroscope readings,

would turn out not acceptable for aircraft application as in order to, in

ideal situation, remove a linear acceleration from accelerometer’s output

additional filtration is needed and hence a delay is added to the display

update time along with the filtration of the mechanical vibrations that an

accelerometer is sensitive to.

 Pass gyroscope readings through high pass filter to remove drift (Drift’s

short term changes happen to be close to zero, thus the influence of this

element on the final angle calculated based on gyro readings can be

almost eliminated by applying high pass filtration algorithm)

 Pass, in ideal conditions error-free, pre-processed readings through

complementary filter that can easily be implemented on the 8-bit

platform, or mathematically complex Kalman filter if the target platform

provides enough resources for its implementation that in practice provides

barely noticeable advantage over much simpler to implement

complementary filter

 Motion-Fusion theory.

 Idea behind Complementary Filter illustrated in Fig. 24.

Fig. 24) Complementary filter – the concept

26

 Complementary filter solution decreases drift, noise, linear acceleration impact

on the final angle value and lag, depicted in Fig. 25.

Fig. 25) Complementary filter implementation

 MPU-60X0 Motion Fusion Approach.

 Provided by Invensense.

o Application Processor loads a boot firmware into MPU-60X0

memory at startup

o Application Processor performs calibration and sets up bias trackers

o MPU-60X0 performs computations that combine data gathered from

sensors and shares it with Application Processor using FIFO

o The Algorithms for sensor fusion are InvenSense IP (run in

encrypted form on the DMP)

o User’s embedded application may be affected by Invensense

firmware (used as a bootloader and to set up DMP) in unacceptable

way (e.g. it may affect timing requirements)

o User is required to implement platform dependent functionalities to

integrate Invensense library

o Hardware DMP provides an object attitude via FIFO in the form of

Quaternion, Rotation Matrix or Euler Angles

 Implemented by developer.

o Application Processor sets up MPU-60X0 using its Register

Memory Map

27

o Application Processor reads row sensor data

o Application Processor performs Motion Fusion to combine data

gathered from sensors

o User’s embedded application communicates with MPU-60X0

through accessing dedicated registers

o User’s embedded application does not use Invensense library

o User has to implement his own Motion Fusion algorithms, over

which he has full control (they are not encrypted as Invensense IP)

 Motion Processing Platform as shown in Fig. 26.

Fig. 26) Invensense Motion Processing platform

o Integrates hardware sensors, such as gyroscope and accelerometer as

well as optional compass and sensors accessed through secondary

serial port

o Provides computation engine to combine data gathered from

individual sensors

o Provides calibration functions and API interface

Fig. 27) Axes orientation with reference to the Android device

28

o 6-axis Motion Fusion combines 3 degrees of freedom measured by

Gyroscope with 3 degrees of freedom measured by Accelerator and

results in angular frame relative to ground 9-axis Motion Fusion, in

addition, uses 3-axis magnetometer and results in angular frame

relative to both ground and north, which is illustrated in Fig. 27.

29

Chapter 4

Android Application

4.1. Overview of Android platform and related application development process and tools.

 Android platform

Android constitutes complete application framework built on top of Linux kernel. It

is an open source software platform delivered by Google. The platform includes an

Android Operating System, middleware, i.e. software that provides services to

applications in addition to those ones that are already available through the operating

system and Android compatible applications. Android platform has been developed as a

solution to implement high-end mobile phones. A very important feature of Android

platform is its open source distribution, with most of the source code provided under

Apache2 licence terms, which allows proprietary modifications into the source without

any source distribution requirements.

Android platform includes the stack of software components with a Linux kernel on

the bottom of it. Linux kernel provides device drivers, networking handlers, security, a

memory and system management functionalities. On the higher level there come

libraries that support media including audio, video and 2D/3D graphics.

Dalvik VM (Virtual Machine), specifically designed for Android, implements

Android runtime environment. Its main features are [23]:

 register based in contrast to stack based

 memory efficient

 uses its own byte code implementation

 provides each application with the separate copy of the VM (separate Linux

process)

Application framework provides services to Android applications in the form of

JAVA classes, where each and every application can share its functions with other

applications and the system itself. Application layer is located above Application

framework and is considered the top layer of the stack.

 Application development for Android

Eclipse IDE is used as a standard Android application development environment.

It requires installation of the plugin that adds Android specific features to the integrated

development environment. Application code is written in JAVA (SDK) or when using

native code for Android, in C/C++ (NDK). Applications are composed of resources

packaged into archives. The tools to develop Android applications are available for

Linux, Windows and Mac operating systems.

30

Applications are described in so called “manifest”. The description of the

application is used by Android system. For instance, in order to enable on hardware

debugging feature, application needs to be registered as debuggable in the manifest file.

[24] Applications are made up of few components. A developer uses them according to

application specific requirements. Those basic components are as follows [23]:

 Activity – a functional unit of the application that may be invoked by

another application, or activity.

 Service - a functional unit of the application that runs in the background,

i.e. without interactive access to the user interface. It may be invoked by

another application, or activity.

 Content Provider – makes data generated by one application available for

other application(s) on request.

 Broadcast Receiver – the mechanism of responding to broadcast messages

sent out by the system or other application(s).

Standard SDK installation includes the following development tools [25]:

 adb – Android Debug Bridge

 ddms – Dalvik Debug Monitor Service

 aapt – Android Asset Packaging tool

 dx – Dalvik Cross-Assembler

The structure of the Android application seen in the Eclipse IDE contains files as

follows [26]:

 AndroidManifest.xml (required)

 Enumerates screens provided by the application and their

assignment.

 Defines the content and data types to handle.

 Provides information about implementation classes and cross-

application information.

 src/

 Folder stores all the source code files.

 res/ (required)

31

 Folder stores all the resources used by the application, i.e. description

files and external data files. Resources are compiled with the

application code at build time.

 anim/

 Folder stores animation XML files.

 layout/

 Folder stores XML files that describe screens used by the application.

 drawable/

 Folder stores XML or image files (.png, .jpg, .gif) to be compiled

into android.graphics.drawable resources

 values/

 classes.xml, colors.xml, strings.xml, dimens.xml, values.xml,

styles.xml

 xml/

 Folder stores XML files that can be read by the Android device at

runtime

 raw/

 Folder stores files to be copied in their original form into the target

Android device

4.2. 3D graphics development.

Blender, is used to create interactive 3D graphics within Inflexion UI

environment. Inflexion project is then exported as .c and .dat files that are subsequently

imported through Eclipse IDE into Android application written in JAVA. Both

environments communicate through variables. Inflexion framework provides JAVA

functions to interact with those variables from within Android application JAVA code.

32

4.3. Features of Inflexion UI.

 Inflexion UI Express is an Eclipse–based software tool used to create interactive

graphical user interface. The entire user interface, that might include 2D and 3D

graphics, can be built using a drag and drop approach without a single line of the

code to describe graphical interface itself. Graphics changes do not involve

application code modifications. “Looking at the GUI, the Android development

platform affords basic GUI customizations. These types of customizations include

changes to boot animations, personalized wallpapers and/or icons. Swappable

themes are introduced in Android, but the software developer has very little chance

to create or radically customize these themes without some serious software

experience. The ability to make more compelling changes, such as creating a new

menu or completely changing the look and feel of a menu system, is not within the

scope of the Android SDK today. Instead, these customizations need to be done at a

deep code level and usually require major engineering investment.” [27] Inflexion

provides an intelligent, customizable GUI technology that enables the designer to

create compelling interactive graphics without modifying existing code, if all shared

variables that link user interface with application code are already defined and used

in the Android application code. Inflexion UI location in Android OS is depicted in

Fig. 28.

Fig. 28) Inflexion UI solution in the scope of Android platform [28]

 Graphical user interface can be functionally tested using “preview window”

without updating the physical target device with design files.

 Inflexion UI consists of Inflexion Express and Inflexion Runtime. Inflexion

Runtime is installed on the physical device and constitutes the engine that runs on

the target device, i.MX53 in particular. The engine (library) launches executables

developed using Inflexion UI. OpenGL/ES is used as a hardware graphics engine on

33

i.MX for 2D, 2.5D, as well as 3D effects. Runtime library supports graphical effects

like twisting, flipping, tilting, spinning, and is available on Android and Linux OS.

4.4. Inflexion UI installation.

 The installation is covered in the Appendix A of this report and creates the folder

"<Inflexion UI install directory>

\embedded_2011_03_iMX\InflexionUI-Express-2.3\SamplePackages\Palletes". That

folder includes definitions of basic components that might be used to speed up user

interface development, as buttons, checkBoxes, editBoxes, sliders, spins, etc. In

order to make that components' database available for UI under development, the

Palette has to be imported into UI IDE, by following steps described below in

Inflexion UI IDE:

 Select “File > Import > General > Existing Projects into Workspace”. Click “Next”,

as shown in Fig. 29.

Fig. 29) Inflexion UI installation: Project import

 Browse or type “C:\mgc\embedded_2011_03_iMX\InflexionUI-Express-

2.3\SamplePackages\Palettes\controlsPalette”. The path may vary depending on

installation settings as covered in the Appendix A of this report.

 Select active project (controlsPalette, as shown in Fig. 30) into “Import” memo

box. In case there is only one item listed, simply click on “Select All”. Click

“Finish” to make the palette of components available for the project to develop.

34

Fig. 30) Inflexion UI: Selection of the active project

 In order to create graphical user interface for Android project using Inflexion UI

select “New > Project... > General > Project”, enter desired name and select target

location. Click “Finish”.

 Copy 3D objects saved in Collada format (COLLAborative Design Activity; files

with .dae extension) created earlier in Blender and accompanying 2D graphics into

“<Project directory>\GyroApp\GyroUi\Graphics”. Right click on the project's top-

folder (GyroUI [Generic]) in “Project Explorer” and select “Refresh” to make 3D

objects and 2D graphics immediately available within Inflexion UI environment.

Objects in Collada format are used to build interactive 3D application. Fig. 31

illustrates their location.

35

Fig. 31) Inflexion UI: Location of the Collada files

 Double click on “Project Explorer > GyroUI [Generic] > Templates >

root.template” and place .dae objects and components available through Palette on

the “default layout > Page” in desired locations by using “Drag & Drop” method, as

shown in Fig. 32.

Fig. 32) Inflexion UI: The placement of the 3D objects on the layout

 At any moment, the user interface, including interactive and non-interactive

graphics can be tested by right clicking the top-folder of the design, i.e. “Project

36

Explorer > GyroUI [Generic]” and selecting “Show in Previewer”, shown in Fig.

33. The layout to preview needs to be selected first as well as its “Page” in “Element

Manager > Screen” by single clicking on it. Left clicking on tested Page simulates

actual tapping on Android device touch screen. “Field” provides access to variables

that can be modified within UI, without integration with actual Android Application

to be developed in Eclipse IDE (Android application code does not even have to

exist at the moment).

Fig. 33) Inflexion UI: The previewer

 Access to the settings of each and every element listed by “Element Manager” is

gained by right clicking on selected element, followed by left clicking on its

“Properties”, as shown in Fig. 34.

37

Fig. 34) Inflexion UI: Access to element’s properties

 “Draw Plane” value, shown in Fig. 35, defines the layer of the layout on which the

particular object will be located, where 0 corresponds to the bottom layer, i.e. the

layer that will be covered by layers with higher “Draw Plane” values. This property

can be used to make object(s) with higher “Draw Plane” values visible after being

placed on the object(s) with lower “Draw Plane” value(s).

Fig. 35) Inflexion UI: Setting a draw plane

 For each layout, the location, scale in relation to original object size, and 3D

orientation of the object needs to be defined, based on application dependent

requirements set. Basic properties are shown in Fig. 36. Opacity, ranges from 0.0 to

1.0, and if defined, makes given object completely transparent for value = 0.0 and

vice versa.

38

Fig. 36) Inflexion UI: Basic properties of the 3D object

 Inflexion UI Express uses layouts to manage and organize particular layers of

interactive graphics. Layouts may inherit properties from their parent layouts, but

also, they might consist of completely independent design. At any time, some

layouts, that user interface is composed of, may be disabled (not available for the

user) and some of them may be enabled (available and fully or partially visible,

depending on whether or not the part of a given layout is covered by another layout

with graphics placed on higher layers, i.e. with higher priority of visibility).

 In order to create a new layout, right click within the “Layout Manager” area

and select “New Layout” as shown in Fig. 37.

Fig. 37) Inflexion UI: The layout

 Layout's “Condition”, shown in Fig. 38, defines when the layout becomes

39

available for the user. Value of “TRUE” implies the layout available

unconditionally. An expression to define layout turn on/off condition may be

defined by accessing layout condition editor through clicking on the magnifier

icon on the right of the condition's value. An expression field accepts C

statements that return boolean values, e.g. (var0 && var1).

Fig. 38) Inflexion UI: Layout’s condition

 In case the layout is supposed to inherit the properties of another layout, that

layout needs to be selected as the parent within “Inherits” field. Child-layout

consists of interactive graphics designed within the parent one that can be

further modified.

 Variables can be used by Inflexion UI internally or can be shared with Android

application code developed under Eclipse IDE.

 Internal variables – add/modify/delete access enabled through “Settings” view

of the root.template. Internal Inflexion UI variables are not available for

Android application code developed in Eclipse IDE in JAVA, C/C++.

o “Name” defines the name, the particular variable is associated with

o “Data Type”: int, string, time, float, Boolean

o “Default Value” defines the value Inflexion UI environment assumes for

a given variable without interaction with Android application.

o “Expression” defines the constant value the variable, shown in Fig. 39, is

set to

40

Fig. 39) Inflexion UI: Local variables

 Shared variables connect Inflexion UI with Android application JAVA code

being developed in Eclipse IDE. Inflexion “modules” are used to link both

environments through application dependent set of variables, and are defined

as XML files that include “module fields” that represent particular shared

variables. It's meant by “shared” that those variables can be read/modified in

both, Inflexion UI IDE as well as Android application JAVA code being

developed in Eclipse IDE. Those variables constitute peculiar interface

between both development environments (graphics and application), through

which graphical interactive user interface can be controlled based on current

status of the application being executed. Shared variables can be created in the

following, exemplary way:

o Create “module” XML file.

 To simplify, copy “ifxui_template.module” from “<Eclipse>

<GyroAppCode> src” and paste into the same location under

different name (“pitchbank.module” will be used in this example).

 Open created module in Inflexion UI text editor (right click and

select “Open With > Text Editor”) in order to modify it.

 Enter “pitchbankmodule” as a name that Android application

uses to launch the module.

41

 Enter required fields (one field per variable) in the following

fashion, as shown in Fig. 40: “<field name="pitch"

mode="inputOutput" previewValue="0" dataType="int"/>”,

where “filed name” defines variable's name, “mode” defines

whether the variable is to be read/written by both Inflexion UI

and Android application , “previewValue” sets the value the

variable assumes in Inflexion UI environment without

interaction with Android application, and a “dataType” assigns

one of available types (int, string, time, float, boolean) to the

variable. Save the file.

Fig. 40) Inflexion UI: Shared variables

 Register the module in Android application so that Inflexion UI

can access it, by modifying “android.application” file as

follows:

o Navigate to “<Eclipse> Package Explorer >

<GyroAppCode> jni > android.application” and open the

file in Text Editor available from Eclipse IDE.

o Add “<support module="..\src\pitchbank.module"

programmingLanguage="java"/>” line and save the file,

to create a link between a “module” file and Android

42

application as well as to make the module available for

interactive graphical interface being developed in

Inflexion UI Express. Fig. 41 depicts the registration

module.

Fig. 41) Inflexion UI: Module registration

 Create JAVA interface class that contains prototypes of

functions used to read/write to variables shared between

Inflexion UI environment and Android application being

developed in Eclipse IDE and defined as fields of the

module(s) file(s). JAVA interface class is created automatically

every time the project is built. To build the project, navigate to

“Project > Clean...” in Eclipse, select the project to build and

click “OK”. Generated PitchbankmoduleInterface.java

interface class will be located @ “<Eclipse> <GyroAppCode>

src > com.mentorgraphics.pitchbankmodule >“.

“

/***

*

* Copyright 2006 Mentor Graphics Corporation

* All Rights Reserved.

*

* THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY INFORMATION

WHICH IS

* THE PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS

* SUBJECT TO LICENSE TERMS.

*

**/

43

/***

*

* WARNING: This file is automatically generated. Any changes made to this

* file may be lost.

*

**/

package com.mentorgraphics.pitchbankmodule;

import java.nio.ByteBuffer;

import com.mentorgraphics.inflexionui.modules.Handle;

import com.mentorgraphics.inflexionui.modules.Module;

import com.mentorgraphics.inflexionui.modules.IfxModule;

public interface PitchbankmoduleInterface extends IfxModule {

 /* Link enums */

 public abstract int initialize(

 int hModuleId);

 public abstract int shutDown();

 public abstract int getFieldIntData_pitch(

 Handle<Integer> pData);

 public abstract int setFieldIntData_pitch(

 int value,

 int isFinal);

 ...remaining fields follow:

 public abstract int getFieldIntData_nextVariableName(

 Handle<Integer> pData);

 public abstract int setFieldIntData_nextVariableName(

 int value,

 int isFinal);

 .

 .

 ...

}

“

o Create module's JAVA implementation class

“Pitchbankmodule.java” based on JAVA interface file

already created automatically. This file will be further

modified manually to meet application dependent

requirements and won't be affected by subsequent

project's builds as JAVA interface file will be.

44

“Pitchbankmodule.java” contains part of actual Android

application code. To create the file follow the steps below:

 Right click “PitchbankmoduleInterface.java” and

select “New > Class”

 Set the values as shown in Fig. 42, and click

“Finish”:

Fig. 42) Inflexion UI: Java class

 Modify “PitchBankModule.java” to incorporate

Inflexion Framework into Android JAVA code and

implement the module.

Open “Pitchbankmodule.java” in JAVA editor available through Eclipse IDE and add import

lines as shown in the Fig. 43 manually:

45

Fig. 43) Inflexion UI: Inflexion framework imports

Add manually the member of the class as well as its initialization constructor as shown in the

Fig. 44, then save the file:

Fig. 44) Inflexion UI: Class member

Integrate module implementation class with Android application by adding lines into

“GyroAppCode.java” as shown in Fig. 45 and save the file:

46

Fig. 45) Inflexion UI: Integration of the module implementation class with Android app

 In order to build Inflexion UI project select the project to

clean with “Start a build immediately” option checked as

shown in Fig. 46:

47

Fig. 46) Inflexion UI: Project build

o Export modified Inflexion UI project into Android Eclipse IDE.

 Link Android application project being developed under Eclipse

with Interactive 3D Graphics being developed in Inflexion UI.

 Copy the path to the “jni” folder in Eclispse IDE as shown in

Fig. 47, and click “Cancel”:

48

Fig. 47) Inflexion UI / Eclipse integration – “jni” folder in Eclipse

 Paste the path to the “jni” folder previously copied in Eclispse

IDE into “Inflexion UI Express > GyroUI > Properties >

Theme > Application Definition > Location” to link both

environments the project is being developed in as shown in the

Fig. 48:

Fig. 48) Inflexion UI / Eclipse integration – “jni” folder in Inflexion

 Copy the path to the “samplepackages” folder in Eclispse IDE as in

the Fig. 49, and click “Cancel”:

49

Fig. 49) Inflexion UI / Eclipse integration – “sample packages” folder in Eclipse

 Export .c and .dat files generated by Inflexion UI Express to Eclipse

as a ROM package as depicted in Fig. 50. Interactive graphics

developed under Inflexion UI becomes immediately available in

Eclipse IDE and gets integrated with Android application JAVA code

through the set of variables.

Fig. 50) Inflexion UI: Package wizard

 Android application JAVA code interface between both development environments,

Inflexion UI and JAVA in Eclipse.

 “PitchBankModule.java” includes functions to serve as a mid-men between

Eclipse and Inflexion UI environments as follows:

o Function called by Inflexion framework to fetch the value of the variable.

50

In this example “pitch” is that variable:

public int getFieldIntData_pitch(Handle<Integer> pData) {

 pData.value = pitch_eclipse; /* pData.value represents

 “pitch” variable accessed by Inflexion UI through the

 module */

 return 0;

 }

o Function called by Inflexion framework whenever the variable is

modified by the Inflexion UI. In this example “zero” is that variable:

public int setFieldBoolData_zero(boolean value) {

 pitchOffset += pitch;

 pitch = 0;

 mIfxFramework.ifxiRequestFieldRefresh(moduleId, 0, -1,

 "pitch");

 bankOffset += bank;

 bank = 0;

 mIfxFramework.ifxiRequestFieldRefresh(moduleId, 0, -1,

 "bank");

 return 0;

 }

o Function called by the Android application to inform Inflexion UI that

the variable is being updated, so that Inflexion UI can call

getFieldIntData_zero (for variable “zero”) to refresh the value.

mIfxFramework.ifxiRequestFieldRefresh(moduleId, 0, -1, "zero");

 Debugging.

 In Eclipse open “AndroidManifest.xml” using Android Manifest Editor

(accessible through right clicking and selecting from the list)

 Navigate to “Application” tag

 Set “Debuggable” option to “true”

 Save the file

 Set the breakpoint at desired line of desired file including JAVA code by right

clicking on the line number and clicking “Toggle Breakpoint”

 In “Eclipse > Package Explorer” right click on the project top folder and select

“Debug As > Debug Configurations...”

 Select configuration corresponding to a given project.

 Click “Debug” button and select device currently connected via ADB

(Android Debug Bridge) protocol.

 Click “OK” in order to download and launch application on the physical

51

device (i.MX53).

 Perform a proper action on the target device to cause the stop of debugging at

the breakpoint.

 Downloading into Android device (running onto Android)

 Right click on Gyro in “Eclipse IDE > Package Explorer”

 Select “Run As > Run Configurations...”

 Click on the icon “New Launch Configuration” if desired configuration does

not exist yet.

 Enter desired name of the configuration

 Click “Browse” button and select the project to run

 Navigate to “Target” tab

 Pick “Manual” as “Deployment target selection mode”

 Click “Run”

 Choose a running Android device from the list that corresponds to the device

under development (i.MX53)

 Click “OK” to install and run application on the target device

52

Chapter 5

Development of 3D Objects and their integration with Inflexion UI

5.1. 3D Format

5.1.1. Collada (COLLAborative Design Activity) format.

Collada files describe 3D objects using XML (Extensible Markup Language) and

support sharing digital resources among independent graphical applications through

standardization. Collada files are extended with “.dae”, which stands for “digital

asset exchange”.

5.1.2. Graphics interface between Blender suite and Inflexion UI.

Inflexion UI accepts 3D objects in Collada format (COLLAborative Design

Activity) that defines interchange rules for interactive 3D applications that might

include animations.

At the time of developing graphics interface for this project, Inflexion UI accepted

Collada files that include features exported by Blender v. 2.49, which used, already

obsolete, user interface (the last “old” version of Blender) and API (Application

Programming Interface). Therefore, 3D objects were created in Blender v. 2.5, with

modern GUI and API, then imported by Blender 2.49 and finally exported as .dae

files to be used by Inflexion UI. Blender is a tool that utilizes OpenGL library for

drawing graphics interface. It uses scripts written in Python (popular interpreted

programming language), that calls on its routines in order to extend existing

functionalities. “Blender is the free open source 3D content creation suite, available

for all major operating systems under the GNU General Public License.” [29].

5.1.3. XML (Extensible Markup Language)

XML constitutes flexible, self-descriptive (tags are defined by developer) text

format markup language, designed to handle the challenges of electronic publishing

(transporting and storing data) and its interchange among independently developed

applications, even on incompatible platforms.

 Features of XML [30]:

 Used to simplify data storage and sharing.

 Separates Data from HTML.

 Stores data in separate XML files.

 External XML files can be read and modified using JavaScript

 Simplifies Data Sharing

 XML creates a bridge between systems with data in incompatible

formats. Simplifies Data Transport between incompatible systems over

the Internet.

 Stores data in plain text format, thus providing software/hardware

independent mechanism of storing data.

53

 Simplifies Platform Changes (data described using XML stays

untouched).

 Makes data available across different applications (HTML pages and

XML data sources)

 Used to define new Internet languages, e.g:

 A lot of new Internet languages are created with XML, e.g:

 XHTML

 WSDL for describing available web services

 WAP and WML as markup languages for handheld devices

 RSS languages for news feeds

 RDF and OWL for describing resources and ontology

 SMIL for describing multimedia for the web

5.2. 3D IDE.

5.2.1. Blender (Due to the complexity of the tool, only essential information related to

this project has been emphasized, without providing step by step guidance.

Documentation, including manuals and tutorials is available at

http://www.blender.org).

 Key features [31]:

 Rendered and post-processed image

 Fully integrated creation suite with broad range of essential tools for the

creation of 3D content , like:

 Modelling.

Base objects in Blender are added to the project through menu.

Depending on the application they may be further modified.

Basic operations in Blender are: changing the position of the

object, resizing the object and rotating the object (available

through Hot-Keys or icons as follows:).

Modelling in Blender is shown in Fig. 51 and basic elements of

the 3D object(s) are depicted in Fig. 52.

http://www.blender.org/

54

Fig. 51) Modelling in Blender v. 2.5

3D objects consists of different elements as follows:

Fig. 52) Editable elements of the 3D objects [33]

Particular meshes are positioned using “Object Mode” and modified

further using “Edit Mode”. Basic operations used to create desired shape

include mirroring and extruding.

 Texturing, which connects triangles that make up a 3D object with

the image, and UV-mapping shown in Fig. 53, defined as the process

of making a 2D image representation of a 3D model. Popular

nomenclature uses X, Y, Z letters to describe 3D object in the model

space, and to differentiate, U, V letters to describe 2D mesh

coordinates in the model space, as shown in Fig. 54.

55

Fig. 53) UV mapping of the cube 3D object [32]

Fig. 54) 3D object texturing through UV mapping [32]

56

Fig. 55-58 illustrate the elements of the Attitude Indicator 3D object:

Fig. 55) Attitude Indicator 3D representation created in Blender v. 2.5 with 2D picture used to

UV map the sphere part of the 3D object.

57

Fig. 56) Partial (sphere) mapping of the Attitude Indicator 3D object (imported by Blender v.

2.49)

Fig. 57) Partial (ring) mapping of the Attitude Indicator 3D object (imported by Blender v. 2.49)

58

Fig. 58) Partial (wings) mapping of the Attitude Indicator 3D object (Blender v. 2.49 import is

shown in Fig. 59)

Fig. 59) Export of the 3D object from Blender v. 2.49 to Collada (.dae) file using settings

59

acceptable by Inflexion UI (shown)

 Rigging – a computer animation technique that groups elements in

an animated 3D computer model. Object is represented by two

elements: object's surface (mesh) and interconnected skeleton (rig).

 Skinning - the process of creating the link between the rig and the

mesh

 Animation created in Blender has not been used for this project.

Animation has been incorporated into the Android application solely

using Inflexion UI Express.

 Simulation – the process of imitating physical phenomena

 Scripting – the way to extend Blender’s functionalities

 Rendering – the process of converting object’s model into the image

of its 2D representation

 Compositing – combining separate elements into single object

 Game creation – using integrated Blender’s gameengine to build

interactive 3D applications

 Uses OpenGL GUI that, uniform on all platforms and customizable

through python scripts. Supported OS: XP, Vista, Win7, Linux, OS X,

FreeBSD, Sun and others.

 High quality 3D architecture enabling efficient work-flow

 User community support by forums for questions, answers, and critique at

http://BlenderArtists.org and news services at http://BlenderNation.com

 Small executable size and easy distribution

 Blender’s Hot-Keys (used as the primary tool to access Blender’s

functionalities). In-depth reference is available at

http://download.blender.org/documentation/BlenderHotkeyReference.pdf

5.3. Using 3D objects within Inflexion UI environment

5.3.1. Import.

In order to make 3D objects created in Blender and exported to Collada (.dae)

format available from within Inflexion UI Express environment, those files simply

need to be copied into “<Project Directory> Graphics” folder using file manager

http://download.blender.org/documentation/BlenderHotkeyReference.pdf

60

(e.g. Windows Explorer). Accompanying images used for UV mapping earlier need

to be copied into the same location. After copying, right click on “<Inflexion UI>

GyroUI” shown in Fig. 60 and select “Refresh”.

Fig. 60) 3D objects available from within Inflexion UI (.dae and .png files under

“Project Explorer”)

5.3.2. Once 3D objects become available in Inflexion UI, they can be dragged and

dropped at the desired locations on the “Screen/Page” (select through “Element

Manager”) of the “root.template”.

5.3.3. 3D object’s Properties.

Fig. 61 illustrates the primary 3D object’s properties include its original location

(X, Y, Z) on the layout the object is placed on, and its spatial orientation (Azimuth,

Elevation, Roll).

61

Fig. 61) Primary 3D object properties available in Inflexion UI

5.3.4. Animation.

An animation of the 3D object that constitutes the part of the user interface created

in Inflexion IDE can be realized through its displacement. That way the object’s

original position (location and orientation, but also size, etc.), and hence appearance

in the layout, can be interactively modified through updating assigned variable(s)

values that control particular displacement. Those values are usually dynamically

defined by Android application, outside the Inflexion UI, but also they can be set by

Inflexion UI if variables are defined as local to that environment.

In order to setup 3D object’s displacement and assign it to a given variable to

following steps can be taken as an example:

 The variable to be used to displace a 3D object needs to be defined. It can

be either Inflexion’s UI local variable, not available from Android

application developed in Eclipse IDE or a variable defined in Eclipse

available for Inflexion UI. The process of defining variables has been

described in Chapter 4 “Android Application” of this report.

 Using an Inflexion nomenclature, so called “Touch Region” needs to be

created. The user gains a control over a 3D displacement through that

“Touch Region”. The “Touch Region” needs to be added as a component

of the Page and placed, by dragging and dropping, on the active layout

including that Page afterwards, as shown in Fig. 62.

62

Fig. 62) Placement of a “Touch Region” component on the active layout

using “Element Manager”

 The “Touch Region” has to be configured. Access to its properties is

available through “Element Manager”, as shown in the Fig. 63. The crucial

properties of the “Touch Region” are the variable assigned to define its

“Drag Field” and the operating range it would affect.

Fig. 63) Access to “Touch Region” properties through “Element Manager”

 After the variable to control displacement and the “Touch Region” are both

set up, the “displacement” itself needs to be created and configured. The

function of the “displacement” is to link the object’s placement, which

describes its appearance on the layout, with the variable that controls it

dynamically (at runtime) within predefined range of movement. The

63

displacement is created through “Layout Manager” as depicted in the Fig.

64:

Fig. 64) Displacement setup access through “Layout Manager”

In order to assign the variable to drive the particular

“displacement“, it needs to be entered as a displacement’s property along

with corresponding range. Fig. 65 illustrates those settings.

Fig. 65) The assignment of the variable “pitch” to drive a displacement in

the range of -1800 ÷ 1800, i.e. 360deg in both directions with 0.1 degree

resolution for smooth transitions within a real range of -180 ÷ 180 degrees.

 The displacement needs to be finally configured to drive the particular

object, as depicted in Fig. 66. To do so, the displacement needs to be single

64

clicked on, followed by single clicking on the object to create the link

with. This enables an access to a different properties set then when object

is accessed separately. The animation can be simulated using the

“Timeline” feature at the bottom of the layout editor.

Fig. 66) Linking “pitch” displacement with “gyro_sphere” 3D object and

defining 360 degrees rotation of the object around its X axis to be

controlled by the variable previously assigned to that displecement.

 Finally the object can be seen in action using previewer which provides a

developer to the direct access to all the variables, those local and those set

by the Android application at runtime. Fig. 67 illustrates the previewer.

Previewer allows the test of the interactive user interface before installing

it on the physical Android device.

Fig.67) Inflexion Previewer

65

Chapter 6

USB Interface

6.1. Overview

6.1.1. USB (Universal Serial Bus) is a popular standard interface used by USB devices

(e.g. Android tablets) to communicate with a USB host (e.g. PC).

With the introduction of microcontrollers incorporating the USB OTG (On-The-

Go) module by Microchip, it became possible for embedded applications to utilize

the wide range of USB devices as a USB embedded hosts, using their chips.

Per USB standard specification, USB devices cannot communicate directly with

each other as they need to communicate with USB host that controls the USB bus

through which one or more devices exchange data. [34]

The USB host has to learn about the USB device and assign a device driver to

handle further communication over a USB bus. USB device enumeration process is

defined by the following steps[37] :

 Device is plugged into host’s USB port

 USB hub detects the device

 Host gets notified about new device attached to the bus through an

interrupt

 Hub determines if the device is a low or high speed

 Hub resets the device

 Host learns if full speed device supports high speed

 Hub establishes the signal path between USB device and the bus

 Hosts sends a request packet to learn the maximum packet size of

the default pipe. It uses Get_Descriptor request for this purpose.

 Host assign an address to the device

 Host learns about device’s features

 Host assigns a device driver

 Host loads a device driver

 The driver selects device’s configuration and its interface(s) are

enabled ever since for communication

6.1.2. USB interface optional implementations.

 Tethering Android device to USB device, i.e.: i.MX53 as a USB host and

uController as a USB device interoperated via USB bus.

Majority of Android devices acts as USB devices that must be connected to

and controlled by USB host (e.g. PC) via star USB bus. Through tethering, an

Android device becomes a USB host that controls USB devices on the bus.

Such a host can connect to USB devices, in the contrary to the USB device that

cannot connect to other USB devices. Fig. 68 depicts USB Host-Device

66

topology.

Fig. 68) Android device as a USB device (a). Android device as a USB host

(b). [35]

In order to transform a standard USB device running on Android OS, its

drivers need to be modified to support USB OTG interface. In case such

modification is made by an independent developer, it would be lost after

uploading the new revision of the operating system to the Android device by its

vendor, who does not maintain that driver as a part of device’s OS kernel.

Therefore custom USB OTG solution involves the following challenges [35] :

 USB host has to supply 5VDC to USB devices per its

specification. Standard Android device is not equipped in the

hardware to support this requirement, so customization is

necessary.

 In Android environment, USB services are supported by device

drivers, as depicted in Fig. 69, and Linux kernel. USB host

uses number of drivers that logically communicate with a given

device driver that handles external, physical USB equipment.

Each Android device is built out of a device-specific hardware,

with unique registers, data buffers, intra-hardware

dependencies, etc. The hardware of each, vendor/PN/revision

dependent chipset, differs and hence requires specific host

controller driver to handle each particular device, with its

unique features and without affecting the remaining,

standardized part of the USB stack, i.e. host core driver that

incorporates common, across host core drivers, solutions to

handle standard USB functions like buffer management,

devices’ attachment and configuration, data transfers, etc.

67

Fig. 69) USB driver architecture [35]

Function drivers encapsulate device interfaces. USB host needs to access

USB device interface(s) to obtain information about device’s capabilities. USB

core driver and host controller, both handle devices enumeration, connection

procedures and data exchange. Enumerated USB device reports to the host its

configuration(s) that describe(s) device’s interface(s) and endpoint(s) to

connect to. USB function drivers serve the USB host as access solutions to

device functionalities. USB host has host class drivers implemented, which it

uses to communicate with USB device function drivers. Linux OS supports

standardized, e.g. HID, CDC, etc. class drivers for the number of interfaces.

New capabilities that come with USB OTG specification require new driver

architecture that needs to support host and device mode during and after

having a USB communication channel established. In order for the Android

device to provide USB host capabilities, the processor running OS has to have

USB host controller hardware built-in or at least available through available

on-board interfaces. Also, the processor needs a driver for Linux in order to act

as a USB host. BSP (Board Support Package) with Android OS used for this

project, provided by Adeneo includes USB host controller drivers, but access

to those drivers is not available from the Android API level, and therefore such

implementation would involve additional Android OS level modifications and

kernel recompilation. These changes would negatively impact future

generations of the solution, if any, as Adeneo would possibly provide new

(higher) API levels of Android OS designed for i.MX53 platform that would

not include those custom modifications. Thus, every OS update would involve

further kernel modifications and recompilations. For those reasons this

approach was dropped.

 “Open Accessory API or Open Accessory Framework - this is the

API/framework in the Android development environment that allows the

Android applications to transmit data in and out of the available USB port.

68

This is provided by Google through the Android SDK.” [36] The Open

Accessory solution seemed to be the simplest and the most direct with full

support in the Android development environment, but at the time of developing

this project, Adeneo was providing BSP with Android 2.2 which did not

include Open Accessory framework. For that reason the approach was

dropped.

 ADB (Android Debug Bridge) interface, i.e.: i.MX53 as a USB device

interoperated via USB bus and uController as a USB host. ADB has been

implemented on every Android device since its early introduction. It defines

de-facto standard for debugging Android devices. It was found that all features

of the ADB would not be needed for the purpose of implementing

communication channel between i.MX53 and external board with uController

and MPU-6000 populated on it. ADB functionality of port forwarding via TCP

(Transmission Control Protocol) channel has been implemented on i.MX53

Android device configured as a USB device and ADB server and on

uController configured as a USB host and ADB client. Existing USB

debugging socket on the i.MX53 board has been used for communication

purposes over ADB channel.

6.1.3. USB Hosts and Peripheral Devices.

Per USB specification, USB host is responsible for supplying 5VDC to the USB

device(s) on the other end over the USB cable to announce that it is connected to

that(those) device(s). Linux OS constitutes the core of Android OS, and hence

services provided by Android devices use Linux services and kernel. Android

device’s hardware uses Linux kernel as well as its drivers and libraries. Therefore

Android JAVA USB applications actually access Linux drivers to implement

communication via USB channel.

A typical USB system consists of one host and one or more peripheral devices.

Per common nomenclature they are referred to as USB devices. Particular USB

device can communicate directly with the host that acts as a centre of USB tiered

star network topology. Thus, USB devices have no way to establish and maintain

communication channel with each other.

USB devices have a mechanism implemented to send data to the host only after

the host requests it. The host indicates to the device when it’s ready to accept data

and at the same time the device needs to be capable to accept data incoming from

the host.That way all communication on the bus is always initialized by the host

controlling the traffic.

USB devices are usually divided into categories. Those categories are called

classes within USB terminology. Classes have special requirements as for their

communication format so that the USB host can recognize them. The host needs to

meet the requirements of the given class in order to establish USB communication

69

session. Device drivers provide API to handle classes on the application level.

Classes might be standard (e.g. HID-Human Interface Device like mouse or

keyboard) or vendor specific that require special (non-standard) drivers that require

separate USB client drivers.

“The number of devices that can attach to a host can be expanded through the use

of hubs. Typically, a hub allows four or seven devices to attach to a single port. A

maximum of five hubs can be chained together, creating up to five tiers. A

maximum of 127 devices (including the hubs) can be connected on the bus. A full

USB host uses a Type-A receptacle, and must be able to communicate with any

device. This support may be provided via special drivers that must be installed on

the host prior to attaching the device. Hubs must be supported, and each port must

be able to deliver a minimum of 100 mA.” [34]

6.1.4. Host Mode

USB devices respond to requests initiated by the USB host, which controls all the

traffic on the bus. USB devices are not capable of initiating data transfers.

The USB OTG (On The Go) module, that PIC24FJ256GB106 is equipped with,

has been used in the host mode adequate for this project. In general, it could be

configured as a USB device as well per OTG specification.

USB transfers consist of, usually, multiple transactions, that on the other hand

consist of multiple packets. Control transfers in most cases require all transactions.

Interrupt, isochronous and bulk transfers do not use neither “SETUP” token nor the

status transaction. Bulk transfers allow for the transference of up to 64 bytes within

single data stage transaction. [34] Fig. 70 illustrates a USB transfer state machine.

70

Fig. 70) USB embedded host state machine - Format of a single USB transfer [34]

6.2. ADB (Android Debug Bridge).

ADB is a debugging protocol implemented on all Android OS since Android’s

introduction. ADB defines the rules that control data exchange between ADB client (e.g.

PC) and ADB server running on actual Android device via USB interface. Through

ADB, the Android device can provide ADB client with a shell access, and hence direct

execution of the command(s) defined in ADB specification available at [7]. The feature

of TCP ports forwarding via sockets enables the establishment of bidirectional pipes

between an Android device and ADB client. In that case, an Android application listens

on the port acting as an ADB server, while the PIC24 connects to that port as an ADB

client. In this case embedded application corresponds to the PC. ADB provides the set of

communication channels that enable the host to open a session with Android device

physically connected to it via USB cable. Android devices use ADB communication

channels to access services ADB provides, such as:

 Data forwarding over ADB channel to a TCP socket, also called “port

forwarding”.

The service enables the process running on Android OS to use TCP sockets

API, so it can listen and accept connections on the particular TCP port. This

feature of the ADB protocol has been used to implement USB communication

between microcontroller by Microchip on board, serving as a mid-man

71

between MPU-6000 chip and an Android device, and i.MX53 acting as an

Android device itself.

Port forwarding service forwards communication data supposed to target

localhost on the specified port to the external Android device with ADB server

running on it via USB interface. It works the similar way in an opposite

direction, while port numbers do not need to match. ADB bridge may be seen

as a link between client TCP socket on the host (e.g. PC) side and server TCP

socket on the Android device side. Server socket implemented on

PIC24FJ256GB106 listens for incoming connection establishment requests.

Attitude Indicated developed for this project uses communication

interfaces as depicted in Fig. 71.

Fig. 71) Chain of interfaces utilized in the Aircraft Attitude Indicator

application

 Linux shell

 File system access (shown in Fig. 72)

Fig. 72) Linux shell and file system access on Android device through

Windows “cmd” and ADB service

 Debugging functions

In order to receive the full list of functions/options "adb" command should be

executed without any arguments. Some of the ADB functions are:

 Listing connected devices (shown in Fig. 73-74)

Fig. 73) ADB launch through Windows’ “cmd”

72

Fig. 74) Access to Android device serial number via ADB protocol through

Windows “cmd” and through Eclipse

 Connecting/disconnecting to/from a device via TCP/IP (if no port

specified, 5555 is assumed)

 File operations, including root access

 Running remote shell

 Viewing device’s log (corresponds to Eclipse's logcat)

 Forwarding socket connections

 Pushing package files into the device

 Removing app packages from the device

 Returning all information from the device

 Starting/Killing of the ADB server

6.3. Debugging feature of the Android device.

In order to use ADB, a debugging needs to be enabled on the Android device,

usually through running “Settings>Applications>Development>USB debugging” on that

device.

6.4. Main components of the Android implementation of the USB device ADB server.

The implementation of the ADB interface for Android application is straightforward and

relies on regular TCP communication implementation similar to the following in brief

(part of PitchBankModula.java):

private class usbCommHandler implements Runnable {

 public void run() {

 ...

73

 server_ = new ServerSocket(PORT_NO);

 ...

 while (true) {

 ...

 socket_ = server_.accept();

 ...

 while ((socket_.getInputStream().read(input_data)) != -1) {

 ...socket_.getOutputStream().write(output_data);

 ...

6.5. Embedded implementation of the USB host / ADB client

The firmware for this project has been written for the PIC24 series processor by

Microchip. It constitutes a modification of the IOIO (pronounced yo-yo) project

available at [39] . ADB (Android Debug Bridge) specification itself is available at [7].

Information regarding the implementation of the ADB on the embedded platform

available at [38] was found very helpful along with the resources accessible from [39]

and Microchip’s USB library that had a direct impact on the final shape of the

communication-via-USB-interface related part of the firmware.

Microchip's library provides USB host stack, i.e. an implementation of the USB

host driver that includes handler for USB embedded host hardware interface and

application interfaces for client drivers. The library defines constants, data types,

structures and macros, common to the multiple layers of the Microchip USB Firmware

Stack and the USB Device Framework protocol described in a Chapter 9 of the USB 2.0

specification. IOIO [7] provides Android driver for a USB embedded host device as well

as support for ADB protocol. For the purpose of this project, the driver files had been

modified to support PIC24FJ254GB106 processor. Moreover the driver defines common

ADB layer types and implements an ADB packet transfer mechanism and API on top of

the USB layer that enables data exchange between ADB server and client.

On the top level, the ADB protocol is handled by the state machine. The main part

of the handler is as follows (the part of “main.c” file):

. . .

switch(state) {

 case MAIN_STATE_WAIT_CONNECT:

 if (connected) {

 print0("ADB connected!");

 h = ADBOpen("tcp:4356", &ChannelRecv);

 state = MAIN_STATE_WAIT_READY;

 }

 break;

 case MAIN_STATE_WAIT_READY:

 if (ADBChannelReady(h)) {

74

 state = MAIN_STATE_RUN;

 }

 break;

 case MAIN_STATE_RUN:

if (mpu6000_data.pitch != mpu6000_data.pitch_mem ||

mpu6000_data.bank != mpu6000_data.bank_mem ||

delta(&ADBReconnect_dwInternalTicks_mem, FALSE) > 1.0) {

 ADBWrite(h, &mpu6000_data, 4);

 mpu6000_data.pitch_mem = mpu6000_data.pitch;

 mpu6000_data.bank_mem = mpu6000_data.bank;

 state = MAIN_STATE_WAIT_READY;

 }

 break;

 default: break;

 }

 }

 . . .

ADBOpen() – opens a channel for the remote ADB server, with the TCP port

defined during the call. ChannelRecv() serves as a receive handler (handles data

incoming from i.MX53). In case the connection request is refused by the remote end, the

ADBChannelReady() returns appropriate value to indicate it through the API as it does

in case the request to establish a communication channel via ADB results in a "ready"

state. The role of ADBChannelReady() function is to indicate the success or the failure

in opening the channel between ADB server and client, and to notify the API whether the

channel is ready for a data transmission. ADBWrite() writes data to the remote end

(i.MX53) via open channel and indicates whether the data have been received on that

end or not through the acknowledge mechanism.

75

Chapter 7

Conclusions

The project demonstrates the implementation of the Aircraft Attitude Indicator that uses

USB ports to interface Android application with the cutting edge MPU-6000 gyroscope /

accelerometer from Invensense. An Android based implementation of the Aircraft Attitude

Indicator has been presented with the source code and all design details including hardware

schematic. An extensive research was done in order to combine application specific

requirements, including 3D graphics and its animation, with the outputs of the processor. Those

outputs were calculated during motion processing of the readings from the gyroscope and the

accelerometer. Android Debug Bridge protocol was studied to establish a communication link

between an external board designed for this project with gyroscope/accelerometer populated on it

and an i.MX53 development board with Android OS loaded onto.

Android platform has been found suitable for an aircraft instrument application as it

provides wired USB interface, virtually limited merely by designer’s imagination graphics

development environment in conjunction with Inflexion IDE from Mentor Graphics and might

possibly be equipped with a large touch screen.

It has been found vital for the success of the Attitude Indicator implementation to develop

reliable Motion-Fusion algorithm that combines the readings of the gyroscope and accelerometer.

A digital filter design was identified as the most difficult part of that phase of the project. To

reliably combine gyroscope’s and accelerometer’s readings with simultaneous removal of the

linear acceleration in order to obtain pure gravity for further motion processing, turned out to be

crucial for the development of the device that could be proven to work in the field. It was

assumed that Invensense delivered the solution that provides a near “perfect” estimate of the

spatial position of the aircraft, i.e. Motion-Fusion library that in part runs in encrypted form on

the MPU (Motion Processing Unit). The main problem encountered throughout the completion

of the project was the Invensense IP in the form of the library and its migration to the target

PIC24 platform. At some point Invensense removed the library from their website. It can only be

assumed that complains from the developers forum might have triggered it to happen.

Consequently, due to problems with Invensense’s IP, the approach had to be changed and some

concrete steps taken in order to finalize the project in the timely manner. As the result, motion-

fusion algorithms were formulated and entered into the PIC24 processor firmware that handled

processed data exchange between MPU-6000 and i.MX53. The final solution chosen for this

project is independent from Invensense and can interface with a different gyro / accel device(s)

with few modifications as it handles MPU-6000 now, but does not utilize Invensense library. As

the future consideration, it is worth to note that modifying and integrating the library for Atmel

processor that Invensense currently makes available on their website, might turn out beneficial

for the Attitude Indicator performance as Invensense is perceived to possess an extensive

experience in the field and therefore might be able to provide the best solutions available at the

moment.

Working on the project let practice JAVA and C/C++ programming for the prolonged time

and familiarize with most up to date development tools, which has been found extremely

76

beneficial for the future work in an engineering field. All the functional modules such as:

Android application with 3D graphics linked to particular variables, processor <–> i.MX53 data

exchange via USB interface, processor <–> MPU-6000 data exchange via I
2
C interface and a

motion processing including filtration of the signals were simulated and tested individually and

during the final phase of the design combined together.

Overall, considerable amount of knowledge was gained through the process of

developing the solution that involved integration of few separate development environments

such as in the area of 3D objects design using popular Blender, their animation and integration

with Android application in Eclipse through Inflexion UI. The latter allows skipping Open GL

techniques and detailed knowledge necessary for efficient development of 3D user interface for

Android application and hence was found a very helpful tool to speed up a time to market.

Familiarity with Invensense cutting edge solutions, MPU-60X0 in particular has been acquired

as well as detailed knowledge about motion processing.

77

References

[1] "Airplane Attitude Instrument Flying" Chapter 4, Section II "Using an Electronic Flight

Display"

[2] http://en.wikipedia.org/wiki/Flight_instruments; March 2012

[3] “FTF-ENT-F0541.pdf” document by freescale

[4] "PIC24FJ256GB110 Family Data Sheet" by Microchip

[5] “MPU-6000/MPU-6050 EV Board User Guide” by Invensense

[6] http://www.invensense.com/; March 2012

[7] http://www.freescale.com/; March 2012

[8] http://www.mentor.com/; March 2012

[9] http://www.adeneo-embedded.com/; March 2012

[10] http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en531078; March

2012

[11] PS-MPU-6000A.pdf available @ [6]

[12] http://www.mathworks.com/help/toolbox/aeroblks/f3-22568.html; March 2012

[13] “Aircraft Motion Analysis” J.A.Thelander; March 2012

[14] http://www.flightlearnings.com/2010/09/30/attitude-indicator/; March 2012

[15] http://overtheairwaves.com/vol3-20final.html; March 2012

[16] “MPU-6000 and MPU-6050 Product Specification Revision 3.2” by Invensense

[17] http://www.adeneo-embedded.com/; March 2012

[18] http://invensense.com/mems/about.html; March 2012

[19] “Atmel UC3 Reference Implementation User Guide for InvenSense Embedded

MotionApps™ Platform Release 2.0.0” by Invensense

[20] http://invensense.com/mems/faq.html; March 2012

[21] http://en.wikipedia.org/wiki/Coriolis_effect; March 2012

[22] "DEVELOPMENT OF HIGH-PERFORMANCE, HIGH-VOLUME CONSUMER MEMS

GYROSCOPES" by Joe Seeger, Martin Lim, and Steve Nasiri

[23] “Android Development for Embedded Systems Beyond Mobile” by Colin Walls, Mentor

Graphics

[24] “Lab: Deploy the application on the device” by freescale & Adeneo Embedded

[25] “Android SDK and tools” by freescale and Adeneo Embedded

[26] “Android application files” by freescale and Adeneo Embedded

[27] http://www.arm.com/files/pdf/11mentor_android_gui_challenges.pdf; March 2012

[28] "How to Quickly Invigorate Your Device Utilizing 3D UI Technology" by Mentor Graphics

[29] http://www.blender.org/; March 2012

[30] http://www.w3schools.com/xml/xml_usedfor.asp; March 2012

[31] http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction; March 2012

[32] http://en.wikipedia.org/wiki/UV_mapping; November 2011

[33] http://en.wikipedia.org/wiki/Polygon_mesh; November 2011

[34] “USB Embedded Host Stack” by Microchip www.microchip.com

[35] “Tethering an Android Smartphone to USB Devices” www.securecommconsulting.com;

November 2011

[36] “Microchip's Accessory Framework for Android(tm)” www.microchip.com; November

2011

http://en.wikipedia.org/wiki/Flight_instruments
http://www.invensense.com/
http://www.invensense.com/
http://www.freescale.com/
http://www.freescale.com/
http://www.mentor.com/
http://www.adeneo-embedded.com/
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en531078
http://www.mathworks.com/help/toolbox/aeroblks/f3-22568.html
http://www.flightlearnings.com/2010/09/30/attitude-indicator/
http://overtheairwaves.com/vol3-20final.html
http://www.adeneo-embedded.com/
http://invensense.com/mems/about.html
http://invensense.com/mems/faq.html
http://en.wikipedia.org/wiki/Coriolis_effect
http://www.arm.com/files/pdf/11mentor_android_gui_challenges.pdf
http://www.blender.org/
http://www.w3schools.com/xml/xml_usedfor.asp
http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction
http://en.wikipedia.org/wiki/UV_mapping
http://en.wikipedia.org/wiki/Polygon_mesh
http://www.microchip.com/
http://www.securecommconsulting.com/
http://www.microchip.com/

78

[37] "USB Complete Fourth Edition - The Developers Guide" Jan Axelson

[38] http://code.google.com/p/microbridge/; October 2011

[39] https://github.com/ytai/ioio/wiki; November 2011

[40] http://developer.android.com/guide/developing/tools/adb.html; March 2012

[41] http://developer.android.com/resources/dashboard/platform-versions.html; March 2012

[42] "Instrument Flying Handbook" by Federal Aviation Administration, Skyhorse Publishing

http://code.google.com/p/microbridge/
https://github.com/ytai/ioio/wiki
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/resources/dashboard/platform-versions.html

79

Appendix A

Appendix A: Development Software Installation Guide

Development Software Installation Guide

 The following installation guide applies to Win7(x64), and describes, step by step, how

the software components required to setup Eclipse IDE Android Development Environment and

embedded C compiler should be integrated with the system.

 Links and webpage screenshots used in this guide were updated in February, 2012.

 During the entire installation process AVD Manager, SDK Manager, Inflexion UI and

Eclipse IDE must be launched with Administrator privilages (in Win7, right click and select

"Run as Administrator" instead of simply double clicking on the program's icon).

Internet connectivity should be available during installation process to allow automatic download

of any necessary dependencies by particular software.

Development Computer preparation:

1. Download Java Development Kit (JDK) from

"http://www.oracle.com/technetwork/java/javase/downloads/index.html" and install it on the

host, if not yet installed (check installation status by launching "cmd" in Windows

environment and executing a command: "java -version", as shown in Fig. 75.

Fig. 75) Java version check

2. Let Installation Wizard for JAVA SE Development Kit (JDK) guide through the installation

process. Leave all the options as default.

3. Download Eclipse IDE (Interactive Development Environment) from

"http://www.eclipse.org/downloads/" and extract it to the desired destination folder. Eclipse

version supported by current Android SDK is listed at

"http://developer.android.com/sdk/requirements.html". At the time of writing this guide

Eclipse 3.6 (Helios) and greater are being supported. Google recommends to install one of

the packages for developing Android applications. Following this recommendation is needed

to properly integrate ADT (Android Development Tools) into suitable Eclipse IDE. Per

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/requirements.html

80

"http://developer.android.com/sdk/eclipse-adt.html": "The Eclipse Classic version is

recommended. Otherwise, a Java or RCP version of Eclipse is recommended.":

 Eclipse Classic – a version used for this project. Eclipse Classic Package includes the

Eclipse Platform, Java Development Tools, and Plug-in Development Environment with

source and both user and programmer documentation.

 Eclipse IDE for Java Developers

 Eclipse IDE for Java EE Developers

4. Eclipse JDT plugin must be either included in Eclipse IDE package (it is included in Eclipse

Classic 3.6.2 used to develop Android application for this project) or it must be installed

separately. The JDT project provides the tool plug-ins that implement Java IDE supporting

the development of any Java application, including Eclipse plug-ins. It adds a Java project

nature and Java perspective to the Eclipse Workbench as well as a number of views, wizards,

editors and builders. Furthermore, it includes merging and refactoring tools. The JDT project

allows Eclipse to become a development environment for itself.

5. Launch Eclipse IDE and pick the location of the workspace as desired.

6. Download Android SDK from "http://developer.android.com/sdk/index.html" and intall it on

the host. During installation process use default options.

7. Start SDK manager to install most up to date packages via internet. Use default selections.

(Add Android 2.2 platform as it is used to develop 3D app that runs on i.MX53 which uses

Android OS provided by Adeneo through BSP (Board Support Package). BSP related

information is provided in next point of this guide as well.

8. Install the ADT Plugin for Eclipse IDE (without this step Eclipse could not be used as a

development environment for Android applications). Per

"http://developer.android.com/sdk/eclipse-adt.html": Android Development Tools (ADT) is a

plugin for the Eclipse IDE that is designed to give a powerful, integrated environment to

build Android applications. ADT extends the capabilities of Eclipse to allow to set up new

Android projects quickly, to create an application UI (User Interface), add components based

on the Android Framework API (Application Programming Interface), debug applications

using Android SDK tools, and export signed/unsigned .apk files in order to distribute given

application. ADT provides guided project setup, tools integration, custom XML editors,

debug ouput pane, and basically gives an incredible boost in developing Android

applications. Before installing or using ADT, a compatible version of Eclipse and at least one

development platform must be installed on a development computer, as explained above.

Revisions of Eclipse IDE as well as Android SDK must both match those enumerated for the

current ADT (16.0.1) at "http://developer.android.com/sdk/eclipse-adt.html" URL location,

i.e. Eclipse Helios (Version 3.6) or higher and Android SDK Tools r16 (at the time of

writning this guide).

Use Eclipse Update Manager feature to install ADT:

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

81

 Start Eclipse, then select "Help > Install New Software"...

 Click "Add", in the top-right corner.

 In the "Add Repository" dialog that appears, enter "ADT Plugin" for the "Name" and the

following URL for the "Location": "https://dl-ssl.google.com/android/eclipse/"

 Click "OK". Note: If you have trouble acquiring the plugin, try using "http" in the

"Location" URL, instead of "https".

 In the "Available Software" dialog, select the checkbox next to "Developer Tools" and

click "Next".

 In the next window, a list of the tools to be downloaded will be enumerated. Click

"Next".

 In order to prevent appearance of the message as shown in Fig. 76, the entries must be

added through "Eclipse/Help/Install New Software/Available Software Sites/..."

"Name: Helios

 Location: http://download.eclipse.org/releases/helios"

"Name: The Eclipse Project Updates

 Location: http://download.eclipse.org/eclipse/updates/3.6"

Fig. 76) ADT plugin install details

https://dl-ssl.google.com/android/eclipse/
http://download.eclipse.org/releases/helios
http://download.eclipse.org/eclipse/updates/3.6

82

 Click "Finish". Note: If you get a security warning saying that the authenticity or validity

of the software can not be established, simply click "OK".

 When the installation completes, restart Eclipse IDE.

 After restarting Eclipse IDE, select "Use existing SDKs" and provide the path to SDK

installation on the host in order to modify ADT preferences. Follow an example as

shown in Fig. 77. Update the path to SDK installation if required.

Fig. 77) ADT preferences

 Optionally ADT preferences can be changed at any time by following the procedure:

 Select "Window > Preferences..." to open the "Preferences" panel

 Select Android from the left panel. Click "Proceed" after making the choice regarding

sending usage statistics to Google.

 Click "Browse..." and locate directory containing SDK.

 Click "Apply" followed by clicking "OK".

9. Add platforms and other components.

 In order to modify SDK setup use the Android SDK (Software Development Kit) and

 AVD (Android Virtual Device) Manager (a tool included in the SDK starter

package) to download essential SDK components into your development environment.

The SDK uses a modular structure that separates the major parts of the SDK

83

Android platform versions, add-ons, samples, tools, and documentation into a set of

components installed separately. To develop an Android application, at least one

Android platform and the associated platform tools need to be installed. Other

components and platforms can be added as well. For this project Android application

uses Android Platform 2.2, API level 8 (one of the most popular Android platforms in

January-February 2012). Fig. 78 illustrates Android’s market popularity.

Fig. 78) [41] Last historical dataset collected during a 14-day period ending on February 1, 2012

(based on the number of Android devices that have accessed Android Market)

 Launch the Android SDK, shown in Fig. 79, and AVD Manager in one of the following

ways:

From within Eclipse, select "Window > Android SDK Manager / AVD Manager." SDK and AVD

Managers has been separated in the newest revision of the SDK. AVD Manager setup is not

necessary in case a target Android device is availale (for this project i.MX53 was available to

begin with and therefore a virtual device has not been used). Debugging on bith virtual and real

devices is possible with the use of the same tools and approach so no particular benefit has been

noticed coming from using the virtual one. Add required platforms as follows:

Fig. 79) Android SDK Manager

10. Installation of Inflexion UI (User Interface) by Mentor Graphics.

84

 Inflexion makes use of native API application programming interface (written in C/C++)

in Android application(s), so that development of the application takes place directly on

the target platform without involvement of the virtual machine, and hence the Android

NDK (Native Development Kit) which is a toolset that allows generating libraries from

C/C++ sources and embedding them into an application package file (.apk) that can be

deployed on Android device needs to be integrated with Android SDK.

 Install Cygwin 1.7 or higher in Windows. Cygwin is a Unix-like environment and

command-line interface for Microsoft Windows. Cygwin provides native integration of

Windows-based applications, data, and other system resources with applications,

software tools, and data of the Unix-like environment.

 Download Cygwin from "http://www.cygwin.com/" and launch "setup.exe". Use

default options during installation, except:

 select "awk" version 3.1.8 or newer under packages during Cygwin pre-

installation setup as shown in Fig. 80.

Fig. 80) Cygwin: awk setup

 select "make" version 3.81 or newer under packages during Cygwin pre-

installation setup as shown in Fig. 81.

http://www.cygwin.com/

85

Fig. 81) Cygwin: make setup

Note: Neither "awk" nor "make" is included by default.

 Download NDK from "http://developer.android.com/sdk/ndk/index.html".

Extract the file to desired location. No further installation is needed. Tools will be updated with a

path to NDK directory later.

 Download Inflexion UI from "http://www.mentor.com/embedded-software/inflexion/ui-

imx-processors". For this project, i.MX53 Quick Start Reference Board by Freescale +

TFT LCD display with touchscreen (optionally VGA graphics could be used without

touchscreen capability) have been used as a target Android device.

 Install Inflexion UI (Rev.2.3 has been used for this project). Follow installer's default

recommendations across installation process. Use settings as depicted in Fig. 82:

Fig. 82) Inflexion UI: Express/Runtime installer launch

http://developer.android.com/sdk/ndk/index.html
http://www.mentor.com/embedded-software/inflexion/ui-imx-processors
http://www.mentor.com/embedded-software/inflexion/ui-imx-processors

86

11. Configuration of Inflexion UI Android Environment.

 Install Inflexion Android Plugin into the Eclipse IDE.

 Create "apps" folder under NDK installation directory.

 Copy "inflexionui" folder from "<Inflexion UI install

directory>/InflexionUIRuntime-2.3/Android/" to "<NDK install directory>/apps".

InflexionUIRuntime-2.3 directory might have different name depending on the

current revision of Inflexion UI that has been installed previously.

 Launch Eclipse IDE and select "Help/Install New Software...". Click "Add...".

 Type "Inflexion UI Project" in the "Name" field

 Type "http://s3.mentor.com/inflexionplugin/freescale_2.2" in the "Location" field,

and click "OK".

 Click on "?" in bottom left corner and then click on "Select All" after having

selected "Inflexion UI Project - http://s3.mentor.com/inflexionplugin/freescale_2.2"

in "Work with" combo box, in case "Next" button is not enabled (grayed).

 Click "Next" until "Finish" gets enabled, then click "Finish" button and follow

defaults until installation finishes. Restart Eclipse IDE after installation process is

over.

 In Eclipse IDE, select "Window/Reset Perspective" and click "OK" when

confirmation dialog box appears.

 Select "Window/Pereferences/Inflexion UI"

 Enter the root of NDK that contains "inflexionui" folder previously copied into it,

e.g. "C:\Program Files (x86)\Android\android-ndk-r7".

 Enter cygwin location, e.g. "C:\cygwin"

 Click "OK".

12. Install Inflexion Runtime Library (Inflexion engine) on a target device (i.MX53). In order to

install Android Application that includes User Interface/3D graphics integrated in Inflexion

UI on the target Android device, Inflexion Engine (Runtime Library) needs first to be

installed on that device. Runtime Library installed on the device makes this device capable to

run applications created using Inflexion UI (package commonly called Inflexion PC tool).

Any Inflexion UI based Android Application loads Inflexion UI Runtime Library at startup.

 In Eclipse IDE, select File/Import.

 Navigate to and select "General/Existing Projects into Workspace". Click "Next".

 Select root directory by browsing to and selecting "<NDK install

directory>/apps/inflexionui/framework". Click "OK".

 Make sure "InflexionUIRuntime" is selected in the "Projects list" and click "Finish".

 In case the error message appears as shown in Fig. 83,

http://s3.mentor.com/inflexionplugin/freescale_2.2
http://s3.mentor.com/inflexionplugin/freescal
file:///C:/cygwin

87

Fig. 83) Inflexion UI Runtime: Target error message

which depends on the current revision of Inflexion Runtime Library and Android API level

installed in SDK, install missing API level as follows:

 Activate "Window/Android SDK Manager".

 Pick a package to install per the following guide:

 Unable to resolve target 'android-1' ==> (Android 1.0) change the

"AndroidManifest.xml"

 Unable to resolve target 'android-2' ==> (Android 1.1) change the

"AndroidManifest.xml"

 Unable to resolve target 'android-3' - install SDK Platform Android 1.5

 Unable to resolve target 'android-4' - install SDK Platform Android 1.6

 Unable to resolve target 'android-5' - install SDK Platform Android 2.0

 Unable to resolve target 'android-6' - install SDK Platform Android 2.0.1

 Unable to resolve target 'android-7' - install SDK Platform Android 2.1

 Unable to resolve target 'android-8' - install SDK Platform Android 2.2

 Unable to resolve target 'android-9' - install SDK Platform Android 2.3

 Unable to resolve target 'android-10' - install SDK Platform Android 2.3.3

 Unable to resolve target 'android-11' - install SDK Platform Android 3.0

 Unable to resolve target 'android-12' - install SDK Platform Android 3.1

 Unable to resolve target 'android-13' - install SDK Platform Android 3.2

 Unable to resolve target 'android-14' - install SDK Platform Android 4.0

 Unable to resolve target 'android-15' - install SDK Platform Android 4.0.3

 Click "Install...".

 Try again.

 In Eclipse IDE, select "File/Import"

 Navigate to and select "General/Existing Projects into Workspace". Click "Next".

 Select root directory by browsing to and selecting "<NDK install

directory>/apps/inflexionui/framework". Click "OK".

 Right click on "InflexionUIRuntime" in "Eclipse/Package Explorer" and Fix Project

Properties as shown in Fig. 84:

88

Fig. 84) Project properties automatic fix

 In "Eclipse/Package Explorer", right click on the "InflexionUIRuntime" and select

"Run As/Run Configurations...".

 Select "Android Application" as shown in Fig. 85 and click on "New launch"

configuration icon (one of the icons shown right above filter text box):

Fig. 85) Run configuration

 On the "Android" tab:

 Enter "RunInflexionUIRuntime" into the "Name" field.

 Click "Browse" button and pick "InflexionUIRuntime".

 On the Target Tab:

 Set "Deployment Target Selection Mode" to "Manual".

 Click "Apply".

89

 Click "Run".

 Select one the the devices compatible with target Android platform by selecting "Choose

a running Android device" and then selecting the one actually connected via USB

interface. Normally it should be just one position on the list, unless more external

devices use ADB channel via separate USB interfaces. For i.MX53 the device Serial

Number is: 0123456789ABCDEF.

 Provided i.MX53 is physically connected via USB interface with the host PC, the library

will be loaded onto the target device (loading the library onto the device need to happen

only one time per device), otherwise the message will appear informing the user that no

compatible targets were found. Click "OK".

 Target Android Device (i.MX53) is now ready to launch Android Applications with user

interface/graphics developed in Inflexion PC tool and integrated with Android

application code (JAVA, C/C++) in Eclipse IDE. Now, a developer needs to launch

Inflexion UI, develop desired user interface using imported (custom) 3D object(s),

previously developed in Blender and exported into Collada format, and/or objects

available through Inflexion UI library. Then he needs to integrate Inflexion output files

with Android application developed in Eclipse and load it onto Target device using

Eclipse IDE features.

13. i.MX53 ("http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB")

preparation as an Android device. The following steps apply only to i.MX53 development

board by Freescale and need to be done only once for each board:

 i.MX53 development board is out the box VGA ready. In order to use LCD instead,

connect i.MX53's RS-232 port to host PC (in case PC is not equipped with RS-232 port,

use RS-232/USB concverter).

 Launch "Hyper Terminal" or other program to communicate via serial port, power up

i.MX53 board and press any key when "AUTOBOOT WILL BEGIN IN:" appears.

 After the prompt, type: "set bootargs_base 'set bootargs console=ttymxc0,115200

${lcd}'"

 Press "Enter".

 Type "saveenv" and press "Enter" to save changes on the microSD card.

 Type "boot" and press "Enter" to continue boot up procedure.

14. i.MX53 comes with Linux UBUNTU on SD card. To use Android OS, BSP (Board Support

Package) from Adeneo "http://www.adeneo-embedded.com/iMX53" needs to be used to copy

Android Image onto SD card that would be used to boot up i.MX53 from. If Android OS was

already running on the target device this step would not be required.

Per "http://www.adeneo-embedded.com/iMX53": "Adeneo Embedded ported Android

and Windows Embedded Compact 7 operating systems into the Freescale i.MX53 Quick

Start board (QSb), a low cost development platform ($149 only) based on an ARM® Cortex-

A8 1 GHz processor. The i.MX53 QSb includes a display controller, hardware-accelerated

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB
http://www.adeneo-embedded.com/iMX53
http://www.adeneo-embedded.com/iMX53

90

graphics, 1080p video decode and 720p encode as well as numerous connectivity options

ideally suited for applications such as human machine interface in embedded consumer,

industrial and medical markets."

 Download VMware player from "http://www.vmware.com/products/player/" and install

it on the host PC. Use default options. This will be used to prepare SD card with Android

OS in Linux Ubuntu environment (in case of using Windows OS to create SD card with

bootable Android OS).

 Restart host computer.

 Copy "VM_UBUNTU.zip" from the DVD that came with i.MX53 board and extract it to

desired directory on host PC.

 Launch VMware through double clicking "Ubuntu.vmx" file under ".../vm_Ubuntu"

directory.

 When "VMware Player" asks whether the virtual computer was "moved" or "copied",

choose "copied".

 Log into the virtual machine with the following credentials:

 username= lucid

 password= lucid

 Download i.MX53_Android Source BSP from "http://www.adeneo-

embedded.com/iMX53" (this will be installed on SD card that i.MX53 will later use to

boot from). In case of downloading it under Windows, instead of under Ubuntu, Store it

temporarily on the 4GB SD card after downloading it, in order to copy it from that SD

card onto a storage device (harddrive) managed by Ubuntu accessed via Vmware later.

 If i.MX53_Android Source BSP (for this project i.MX53-QSB-Android-Gingerbread-

Release4.0.zip) was downloaded under Ubuntu and stored on the storage device

accessible via Ubuntu skip next step, otherwise:

 Log into Ubuntu. Insert previously prepared SD card to SD card reader or to USB port

using SD/USB converter.

 Under Ubuntu, extract i.MX53-QSB-Android-Gingerbread-Release4.0.zip from SD card

onto the hard drive and extract to desired directory as shown in Fig. 86.

Fig. 86) i.MX53-QSB-Android-Gingerbread-Release4.0 extraction

http://www.vmware.com/products/player/
http://www.adeneo-embedded.com/iMX53
http://www.adeneo-embedded.com/iMX53

91

 Learn the Linux name of the SD card storage device. Use "Disk Utility" to verify it, as

shown in Fig. 87.

Fig. 87) SD (Secure Digital) as a Linux device

In this example, the name is: "/dev/sdb".

 Find "flash_prebuilt_android.sh" script under "i.MX53-QSB-Android-Gingerbread-

Release4.0/scripts/"

 Right click on "flash_prebuilt_android.sh", navigate to "Permissions" and check "Allow

executing file as program" as shown in Fig. 88:

Fig. 88) "flash_prebuilt_android.sh" script permission setup

92

 Launch "Terminal".

 Type "cd Desktop/i.MX53-QSB-Android-Gingerbread-Release4.0/scripts". Type ls and

hit enter to check the contents of the directory (look for "flash_prebuilt_android.sh").

 Type "./flash_prebuilt_android.sh /dev/sdb", which will format and install Android OS

on the SD card that will be used by i.MX53 device later. Fig. 89-90 show the process’

progress.

Fig. 89) "flash_prebuilt_android.sh" script execution

Fig. 90) "flash_prebuilt_android.sh" script execution progress

 SD card is ready to be inserted into i.MX53 (mini SD card slot). Android Gingerbread

OS will be launched after i.MX53 is powered up.

93

15. Blender installation.

16. Download Blender version 2.49 (collada file exported by Blender v2.49 was tested with

Inflexion UI PC tool used for this project). In the future newer and more user friendly

revisions of Blender might possibly become compatible with further revisions of Inflexion

UI.

 Download "Blender-2.49-win64.zip" for Windows7(x64), or pick a suitable one for other

OS, from "http://download.blender.org/release/Blender2.49/"

 No installation is necessary. Simply launch "blender.exe" located in extracted directory

in order to create 3D objects for the design.

17. Target Android Device (i.MX53) is now ready to launch Android Applications with user

interface/graphics developed using Inflexion PC tool and integrated with Android application

code (JAVA, C/C++) in Eclipse IDE. Developer needs to launch Inflexion UI, develop

desired user interface using imported (custom) 3D object (developed in Blender and exported

into Collada format) and/or objects available through Inflexion library. Then he needs to

integrade Inflexion output files with Android application developed in Eclipse and load it

onto Target device using Eclipse IDE features.

18. Download MPLAB, a graphical, integrated debugging tool set for all of Microchip’s: 8-bit,

16-bit and 32-bit MCUs digital signal controllers, and memory devices, from

"http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dD

ocName=en019469&part=SW007002" and install using default settings. Microchip

development environment is needed to built C code to handle communication between MPU-

6000 (I2C) and Android application (USB). Moreover, the C code implements MotionFusion

algorithms.

19. Download MPLAB C Compiler for Academic Use from

"http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dD

ocName=en536656 " and install on the host machine using default settings.

 Navigate to "Project/Select Language Toolsuite" and pick "MPLAB C30 Toolsuite" as

shown in Fig. 91. Click "OK".

http://download.blender.org/release/Blender2.49/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469∂=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469∂=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656

94

Fig. 91) MPLAB Toolsuite setup

20. Plug in the programmer into USB port of the host PC in order to update the microcontroller

with the firmware built using C30 compiler (for this project ICD3 programmer has been

used). "Plug and Play" installation will be performed by Microchip tool and programmer will

immediately become available afterwards.

95

Appendix B

Appendix B: Schematic & PCB

Schematic & PCB

Fig. 92) MPU-6000 board circuit schematic

96

Fig. 93) MPU-6000 PCB: Bottom side

Fig. 94) MPU-6000 PCB: Top side

Attached in an electronic form.

97

Appendix C

Appendix C: Bill of Materials

Bill of Materials

Item Quantity Reference Part PCB Footprint

1 1 D1_2 DUAL COLOR LED thruhole

2 6 C11 .1u 0603

3 C13

4 C14

5 C15

6 C16

7 C17

8 1 C18 2.2n 0603

9 1 C21 10n 0603

10 2 C4 47p 0603

11 C12

12 1 C20 10u 0805

13 1 C9 22u/6.3V SMD

14 1 D1 SMD

15 1 U2 MCP1700T3302 SOT-23

16 1 U4 MPU-6000

17 1 U3 PIC24FJ256GB106

18 1 R25 0 0603

19 1 R23 1k 0603

20 2 R20 2k 0603

21 R21

22 2 R7 10 0603

23 R9

24 1 R19 10k 0603

25 2 R14 27 0603

26 R15

27 1 R10 39k 0603

28 1 R22 100k 0603

29 2 R6 330 0603

30 R8

31 1 U1
RESONATOR

8MHz

32 1 J5 ICSP RJ11-SMD

33 1 TVS 6V SMD

34 1 J1 UART-PADS

35 1 J3 USB-Mini-B SMD

98

36 1 J2 USB-A SMD

Fig. 95) BOM

99

Appendix D

Appendix D: Android Application Source Code

Android Application Source Code

Attached in an electronic form.

100

Appendix E

Appendix E: Inflexion Source

Inflexion Source

Attached in an electronic form.

101

Appendix F

Appendix F: Firmware Source Code

Firmware Source Code

Attached in an electronic form.

