CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

AIRCRAFT ARTIFICIAL HORIZON
WITH
INTERFACE TO 3D ANDROID APPLICATION

A graduate project submitted in partial fulfilment of the requirements
for the Degree of Master of Science
in Electrical Engineering

By

Robert Zdunski

May 2012

The graduate project of Robert Zdunski is approved:

Ramin Roosta, Ph. D. Date
Xiaojun Geng, Ph. D. Date
Ronald W. Mehler, Ph. D., Chair Date

California State University, Northridge

Dedication

To Ting,

My dearest wife, thank you for your love and support.

Acknowledgements

I would like to give special thanks to Professor Ronald Mehler for agreeing on
supervising this project, his dedication and contribution in providing quality education in
Electrical Engineering program as well as for his patience and help in shaping this project
throughout its course.

| would like to thank Professor Ramin Roosta and Professor Xiaojun Geng for agreeing
on serving as a Graduate Project Committee Members and their support.

Thanks to the Department of Electrical and Computer Engineering for an excellence in
providing a quality program and creating great environment that encourages pursuing an
engineering degree.

Table of Contents

T[0T T USSR I
[=To [o= U4 o] o [T ii
ACKNOWIEAGEMENTS ...t b e n s 1\
L o] (o) B O] 1 (=]] TSP PR %
LIST OF FIQUIES ...ttt et s e st e e e e st e e beebeeneesreenteenee e vii
N o1 = Tod OSSPSR xi
(O =T o) - TSRS 1
T i oo 0o o] o TSRS 1

L@ T VT SRS PR SRS 1

(O =) SRS 3
DESION OVEIVIEW ...ttt ettt ettt et et e et e saeesta et e aseesbeestesneesteenteeneeataeneeaneeneas 3
DESIGN EIEMENTS ...t bbbttt b bbb 3

F N g Lo o] To [[ot SO 3
Gyroscope/accelerometer DOAI............ccooviii i 6
(01T 0] (=] S TSRS T TP PO PP PSPPI 10
Aircraft Attitude Indicator IMplementationc.cccvoiiiiiie i 10
Introduction to Attitude Indicator and itS fEatUrEScceverereiiiiiisiee e 10
Motion and coordinate systems fundamentals............cccoeieiiiiiiiinieee s 12
ANAroid PIALFOIM ..o e 14
GyroscopiC Chip AESCIIPLIONc.viiieie et nre e 18
Embedded impPIEMENTAioNcoviiiiiiii e 20
Gyroscope/Accelerometer readings ProCeSSINGc.vevvveieieeieeriesieseesreeee e sre e sre e 23

(O =0 SO SPSRSR 29
ANArOTd APPIICALION. ...ttt ettt b bbb 29
Overview of Android platform and related application development process and tools...... 29

3D graphics AeVEIOPMENTccviiieie et nre e 31
Features of INFIEXION Ul ..o 32
INFleXion UL INSTAlIAtIONooiiieee e 33

(O 0T o (=T o OSSP SUPOPRTSRPPN 52
Development of 3D Obijects and their integration with Inflexion Ulcccoocovivevviieiienns 52
3D FOIMIAL ...ttt ettt R e et e e n e b e e n e e e 52

BD IDE .. ettt bbb R R e Rt et et be b renneans 53

Using 3D objects within Inflexion Ul enVIronNmentcccoooiiiiiiiinieiie e 59

(O =) G OSSR 65
USB INTEITACE.ottt et bbbt e ettt st e nneene s 65
(@] VT SRR 65
ADB (Android Debug Bridge)......cccueiueiieiieieiieie et 70
Debugging feature of the ANdroid deVICe..........ccciveiiiiieiiece e 72
Main components of the Android implementation of the USB device ADB server 72
Embedded implementation of the USB host / ADB clientcccoovvieiiiie e 73

(O = o) USSR 75
(070 0 0d (11 [ST TRR 75
S (= =T To0 SRR P RPN 77
N o] 0T a0 D OSSPSR 79
Development Software INstallation GUITE............ociiiiiiiiiiiie e 79
AN o] 01010 D = TSRS 95
SCREMALIC & PCB ... bbbttt st be b neenes 95
APPENAIX C oot b bbb bbbt R et bbb bbb 97
Bill OF MALETIAIS ...ttt bbbt esbenneas 97
AN o] 01010 5 I OSSPSR 99
Android Application SOUICE COUEeiiiiiiiieie s 99
APPENTIX E .ottt e bbb ene s 100
INFIEXION SOUICE.....viieieeiee ettt st st sresneeneas 100
AAPPENTIX Foo bbbttt bbbttt e bbb ene s 101
FIrMWAre SOUICE COUEevirieiieeieeie ettt sae et e eneesbe e e aneenneeneeenee e 101

Vi

List of Figures

Fig. 1) The screen depicting some of aircraft’s control instruments (pitch=0; bank=15) [1]......... 2
FIQ. 2) 1IMXBE3 1] ettt ettt sb bbbt et b et b e re s 4
Fig. 3) Tap “ZERO” to zero-out attitude indicator (force pitch and bank to equal 0) 5
Fig. 4) Tap marked area to turn on/off precise filter coefficient SEtUpPcccceoeviieieiciiiiiis 5
Fig. 5) Tap marked area to turn on/off rough filter coefficient SEtUPcccvvvieiicii i, 5
Fig. 6) PIC24FJ256GB106 PINOUL [2]veivieiieiieieieiiesiesie sttt 7
Fig. 7) MPU-6000 PINOUL [5]....cuveeiteiiiiiiiieieieee et 8
Fig. 8) Orientation of MPU-6000 axes of sensitivity and polarity of rotation [3]............c.cceeueenee. 8
Fig. 9) Typical Vacuum Attitude INdiCator [15]ccooiiiiiiiiiiieee e 10
Fig. 11) Interpretation of Attitude Indicator readings [14]ccceoereiireniniiieeee e 12
Fig. 12) Rotations of the object defined by Euler angles [12]cccoveieiiieiieieic e 13
Fig. 13) Earth-Centrered reference frame [13]cccocoiiiiiiiiiiieiese e 14
Fig. 14) Earth-Fixed reference frame [13]......cccooiiiiiiiiiiieeeee e 14
Fig. 15) Local-Horizontal reference frame [13]ccoveoveiiiiiieeie e 14
Fig. 16) Attitude Indicator App running on i.MX53 development board with IMX28LCD touch

o] (=T o TSRO TP PP PP 15
Fig. 17) Embedded MotionApps platform by Invensense [19]cccooveveiieieeie i 17
Fig. 18) Serial interfaces location in the scope of the design modules...........cccccoviiniiiiiinnnne 18
Fig. 19) MPU-60X0 aX€S OFENTALION........ccviiieeieeiecieecie et se e ste et te e sve e sreesre e sae e 18
Fig. 20) Embedded circuit SChEMALIC..........c.civiiiiiic e 20
Fig. 21) Embedded circuit PCB (DOTEOM SIAR).........eiuiiiriiiiiiiieieie e 21
Fig. 22) Embedded Circuit PCB (10D SIAE)ccviiuiiieiieiieie et 21
Fig. 23) X-axis gyroscope driven MOUE [22]c.ccvveiieiieieiieie e 23
Fig. 24) Complementary filter — the CONCEPL........ocviiiiiiiii e 25
Fig. 25) Complementary filter implementationccccoe i 26
Fig. 26) Invensense Motion Processing platform ..o 27
Fig. 27) Axes orientation with reference to the Android devicecccocvvviiiiiiiii i, 27
Fig. 28) Inflexion Ul solution in the scope of Android platform [28]cccccovveviiiiiciieiiic, 32
Fig. 29) Inflexion Ul installation: Project IMport..........cccooiieiiiiii i 33
Fig. 30) Inflexion Ul: Selection of the active Project ... 34
Fig. 31) Inflexion Ul: Location of the Collada fileS...........cccoevviiiiiiiiii e 35
Fig. 32) Inflexion Ul: The placement of the 3D objects on the layout..........c.cccoceevieveiiieinn, 35

Vil

Fig. 33) INflexion UL THe PreVIBWETccuiiiiiiiie ettt st sne e 36

Fig. 34) Inflexion UI: Access to €lement’s PrOPETTIEScvveirveeiiirieiiiiiesiiiesieeesieeesreessieessinee e 37
Fig. 35) Inflexion UL Setting @ drawW PIaneccveiveiiiii i 37
Fig. 36) Inflexion Ul: Basic properties of the 3D 0DJECtccoovriiiiiiiniiiccee e 38
Fig. 37) Inflexion UL The [aYOUL...........coviiiiice et 38
Fig. 38) Inflexion UL Layout’s CONAItIONccuvieiiiiiiiieiiiie st 39
Fig. 39) Inflexion Ul: Local Variables ... 40
Fig. 40) Inflexion UL Shared VariabIesccvoieiioiiie e 41
Fig. 41) Inflexion UL: Module regiStrationccccveiierieiiieseeieseese e ee e e e 42
Fig. 42) INflexion UL JAVA CIASSccoiiiiiiiieee e 44
Fig. 43) Inflexion Ul Inflexion framework iMportsccccooveiiiiiiiccc e 45
Fig. 44) Inflexion UL Class MEMDETcoiiiiiii et 45
Fig. 45) Inflexion Ul: Integration of the module implementation class with Android app 46
Fig. 46) Inflexion UL Project DUIIcooiiiiiie e 47
Fig. 47) Inflexion Ul / Eclipse integration — “jni” folder in EClipse.......c.ccoovviviiinienencienennnn 48
Fig. 48) Inflexion Ul / Eclipse integration — “jni” folder in InfleXxion............ccooevvienencinnnnnnn 48
Fig. 49) Inflexion Ul / Eclipse integration — “sample packages” folder in Eclipse...........c.co...... 49
Fig. 50) Inflexion UL: Package WIzZard..............ccceoeiiiiiiic et 49
Fig. 51) Modelling in BIENTEr V. 2.5.....cui i 54
Fig. 52) Editable elements of the 3D 0bJeCtS [33]coeiiriiiiiiieee e 54
Fig. 53) UV mapping of the cube 3D 0bJect [32]cccoveieiieieee e 55
Fig. 54) 3D object texturing through UV mapping [32]cccooeiiiiiiiinirieieeee e 55
Fig. 55) Attitude Indicator 3D representation created in Blender v. 2.5 with 2D picture used to
UV map the sphere part of the 3D ODJECL..........ccviiiiiecice e 56
Fig. 56) Partial (sphere) mapping of the Attitude Indicator 3D object (imported by Blender v.
e) LTSRS USRS 57
Fig. 57) Partial (ring) mapping of the Attitude Indicator 3D object (imported by Blender v. 2.49)
... 57
Fig. 58) Partial (wings) mapping of the Attitude Indicator 3D object (Blender v. 2.49 import is
SNOWN TN FIG. 59) it b bbbttt bbb 58
Fig. 59) Export of the 3D object from Blender v. 2.49 to Collada (.dae) file using settings
acceptable by Inflexion UT (SROWN).......coiiiiie e 59
Fig. 60) 3D objects available from within Inflexion UI (.dae and .png files under “Project
254 0] (03 (= o) OO P PP 60
Fig. 61) Primary 3D object properties available in Inflexion Ul............cccooiiiiiiiiiicinen 61

Fig. 62) Placement of a “Touch Region” component on the active layout using “Element

viii

A 3BT PP P PPN 62
Fig. 63) Access to “Touch Region” properties through “Element Manager”ccccvevevinenne 62
Fig. 64) Displacement setup access through “Layout Manager”............ccccoevvveveiieeieesesieesinennens 63

Fig. 65) The assignment of the variable “pitch” to drive a displacement in the range of -1800 +
1800, i.e. 360deg in both directions with 0.1 degree resolution for smooth transitions within a
real range Of -180 + 180 EGIEES.eceeiereieiieite ettt 63

Fig. 66) Linking “pitch” displacement with “gyro_sphere” 3D object and defining 360 degrees
rotation of the object around its X axis to be controlled by the variable previously assigned to

that dISPIECEMENL. ... e et e s te e teaneesre e reenee e 64
Fig.67) INFIEXION PIEVIBWETecuiiciiecieee ettt sttt e s te e e neenneeee s 64
Fig. 68) Android device as a USB device (a). Android device as a USB host (b). [35]............... 66
Fig. 69) USB driver architeCture [35].....ccciiiieiiiie ittt sae e 67
Fig. 70) USB embedded host state machine - Format of a single USB transfer [34]................... 70
Fig. 71) Chain of interfaces utilized in the Aircraft Attitude Indicator application...................... 71
Fig. 72) Linux shell and file system access on Android device through Windows “cmd” and ADB
=] Y7o 71
Fig. 73) ADB launch through Windows’ “cmd”ccceiiiiiiiiiiiiine e 71
Fig. 74) Access to Android device serial number via ADB protocol through Windows “cmd” and

TNPOUGN ECHIPSE ...t b bbb 72
Fig. 75) Java VEISION CRECK.......cuiiiiiiiiiie e 79
Fig. 76) ADT plugin install detailscooieeiiiiiiiececc e 81
Fig. 77) ADT PIrEfEIENCESoouiiiiieitiite ittt bbbttt b 82
Fig. 78) [41] Last historical dataset collected during a 14-day period ending on February 1, 2012

(based on the number of Android devices that have accessed Android Market)ccccccevenes 83
Fig. 79) ANAroid SDK IMaNAGET.........cciiiiiiiiieieite ettt 83
Fig. 80) CYgWIN: QWK SELUDcveeiiiiieciie ettt ta e be e e ae e steenesreesaeereas 84
Fig. 81) CygWin: MAKE SEIUDveeviitieitieieeie sttt ettt s et e re et st e s e s seesbeesaesnaesreenesneesaeeneeas 85
Fig. 82) Inflexion Ul: Express/Runtime installer launch ..., 85
Fig. 83) Inflexion Ul Runtime: Target error MESSAQE......cveiveireerreieesieereeresteesieseesreesreseesreenaeas 87
Fig. 84) Project properties aUtOMALIC FIXccivviiiiiiiieiic e 88
Fig. 85) RUN CONTIGUIATION.eiiiiiitiiiiie ettt 88
Fig. 86) i.MX53-QSB-Android-Gingerbread-Release4.0 extractioncccccvvevvieiiieiieesnnnn, 90
Fig. 87) SD (Secure Digital) as a LINUX GEVICEcccvieiiieiiieiie it 91
Fig. 88) "flash_prebuilt_android.sh™ script permission SEtUP.........ccocevereririenieiee e 91
Fig. 89) "flash_prebuilt_android.sh” SCript eXeCULIONcccviveiiiiiiieciicce e 92
Fig. 90) "flash_prebuilt_android.sh” script eXeCUtion Progress.......occeuvveiieiieesieiiieesnessieesineenns 92

Fig. 91) MPLAB TOOISUITE SELUD ...cvvivieiieiie sttt sttt sttt sne e 94

Fig. 92) MPU-6000 board Circuit SCEMALIC.ccveiieiieii e 95
Fig. 93) MPU-6000 PCB: BOMOM SIAE........cciieiiiieiiiesieeieseeseeie s ste e sreese s e sreesae e sne e 96
Fig. 94) MPU-6000 PCB: TOP SIUE.......ccuiiiiiieieieieiiesie sttt 96
FIQ. 95) BOM ..ottt bbbttt b e b bbbttt b et b 98

Abstract

AIRCRAFT ATTITUDE INDICATOR WITH INTERFACE TO 3D ANDROID
APPLICATION

By

Robert Zdunski

Master of Science in Electrical Engineering

The goal of this project is to provide a 6-axis Aircraft Attitude Indicator solution based on
Android OS and cutting edge MPU-6000 chip by Invensense. Mentor Graphics emerging
Inflexion Ul technology to create 3D environment for Android devices has been utilized on
i.MX53 platform. Motion-fusion algorithms have been developed as well as Invensense’s
proprietary and encrypted MotionFusion™ library has been tested. The project involves tools
like Inflexion, Eclipse, Blender, MPLAB and C/C++ JAVA languages to create complete
software solution. Hardware includes i.MX53 and external board designed for this project with
microcontroller from Microchip with USB capabilities and MPU-6000 populated on it. USB and
I°C interfaces have been implemented.

Xi

Chapter 1

Introduction

1.1. Overview.

This report addresses implementation of the aircraft’s artificial horizon on the
Android Operating System. "The first attitude instrument (Al) was originally referred to
as an artificial horizon, later as a gyro horizon, now it is more properly called an attitude
indicator." [42] Therefore the name "Artificial Horizon" will be used interchangeably
with an "Attitude Indictor” throughout this report. The term "Artificial Horizon" refers to
the line that separates the sky (blue) and the ground (brown) which is supposed to reflect
the actual position of the aircraft in relation to the real horizon seen from the perspective
of the pilot, while the term "Attitude Indicator"” refers to the same spatial position of the
aircraft defined by pitch and bank, but also may include Earth's magnetic-north related
heading indicator. Aircraft’s attitude indicator is one of the flight instruments installed in
the cockpit of the aircraft, whose purpose is to provide the pilot with information about
the current spatial position of the machine without visually referencing to the outside
objects. Flight instruments are divided into categories: control instruments (e.g. power),
performance instruments (e.g. altitude, speed), navigation instruments (e.g. GPS-Global
Positioning System). Basic flight instruments are airspeed indicator, attitude indicator,
altimeter, turn coordinator, heading indicator, and vertical speed indicator [2]. Attitude
indicator falls under "Control Instruments” category, shown in Fig. 1. The basic
requirement that applies to attitude indicator is that it must be properly installed on the
machine, i.e. it must be attached so that its pitch-sensing axis is perpendicular to aircraft’s
fuselage as it indicates the position of the object that needs to share exactly the same
system of coordinates.

"Until recently, most general aviation aircraft were equipped with individual
instruments utilized collectively to safely manoeuver the aircraft by instrument reference
alone. With the release of the electronic flight display system, the conventional
instruments have been replaced by multiple liquid crystal display (LCD) screens.” [1] In
this project widely available Android device has been used instead of multiple LCD
screens with interface to Attitude Indicator. Additional instrumentation may be added to
the solution and communicate with 3D Ul via USB interface in the future. After Android
devices with USB host interface become widely available on the market, the external
Attitude Indicator board could be powered from that device’s battery in case of aircraft’s
electrical failure. Currently available Android development tools enable the design of
outstanding 3D graphics that would fit individual requirements and would constitute
easily modifiable and standardized platform.

Fig. 1) The screen depicting some of aircraft’s control instruments (pitch=0
bank=15) [1]

In order to obtain actual position of the Aircraft in relation to Earth’s gravity, i.e.
its pitch and bank, either gyroscopic device or accelerometer or both are required to be
incorporated into the system. Albeit, when aircraft’s pilot is maintaining constant altitude
he uses altimeter as the primary instrument to control the pitch and as long as the machine
maintains constant airspeed and pitch attitude, the altitude remains constant. Also, the pi-
lot relies on the heading indicator to lean about current bank when flying in instrument
meteorological conditions. In case, both, accelerometer and gyro sensor are used, their
outputs need to be combined in so called Motion-Fusion process, which calculates esti-
mated output based on readings from gyroscope and from accelerometer rather than trust-
ing one device only. This approach improves the quality of final result by eliminating
drawbacks of the sensors and by emphasizing their strengths at the same time. To do so
algorithm utilizing complementary filter solution has been employed.

The MPU-6000 by Invensense has been picked as a 6-axis
gyroscope/accelerometer MEMS (MicroElectroMechanical System) chip due to its
extraordinary feature of delivering 6-axis MotionFusion™ data encompassing 3-axis
gyroscopes and 3-axis accelerometers fabricated on the same die, thus eliminated PCB
level misalignments, with MPU (Motion Processing Unit) and optimized for 8-bit
embedded microcontrollers with limited MIPS and memory. MPU-6000 comes with
MotionApps software platform designed to help in shortening time to market.

Chapter 2
Design Overview
2.1. Design elements.
The design consists of the following elements:

e Android device: i.MX53 development board provided by freescale with Android
BSP (Board Support Package) from Adeneo.

e 3D user interface created using Blender and Inflexion Ul from Mentor Graphics and
Android application developed through integrating Inflexion Ul outputs with
Android application JAVA code in Eclipse IDE.

e Custom, external board designed for this project with MPU-6000 chip from
Invensense and PIC24FJ256GB106 microcontroller from Microchip. 1°C interface
on board is used as a communication channel between MPU-6000 and
PIC24FJ256GB106. USB interface on board is used as a communication channel
between PIC24FJ256GB106 and i.MX53.

e PIC24FJ256GB106 firmware compiled using C30 compiler and programmed using
MPLAB tool, both provided by the chip’s manufacturer, i.e. Microchip.

2.2. Android device

e i.MX53 board, shown in Fig. 2, with IMX28LCD (WVGA) touch-screen (optionally
VGA output can be used to drive VGA monitor => no touch screen):

CPU: ARMCortex-A8 1GHz+ multi-core

Process:65nm, LP/GP

Core Woltage:0.85V-1.3V

Package:19x19 0.8mm 529 ball BGA12x12 0.4mm PoP (Consumer)
Case Temp:-20 to 70C (Consumer)-40 to 85C (Auto/Industrial)
2500 -14,000+ DMIPS

Graphics: Adv 2D+3D HW

Full HD capability

Display up to UXGA (1600x1200)

Video: >1080p enc/dec

LCD: >1080p

PMIC: Integrated/Separate

HDD: PATA, S-ATA interface

One eSDHC ports supports MMC4.4 including DDR mode
Delivers rich graphics and Ul in HW

OpenGL™ ES 2.0 3D accelerator (AMD Z430)

OpenVG™ 1.1 graphics accelerator (AMD Z160)

. NEON™ Vector floating point co-processor

" Open source development platform
. Connectivity:
o High speed USB OTG and HS Host, with embedded Phy(s) (2x). HS

Host x2

Up to 800Mbps LP-DDR2, LV-DDR2, DDR2 & DDR3, 2GB total DDR.
SLC/MLC NAND Flash 8/16-bit, up to 16-bit ECC

SRAM/NOR

Ethernet 10/100 with IEEE1588 HW enabled

High speed eMMC 4.3/4.4, SD 2.1, UART, SPI

ATA-6, SATA 2 + PHY

3.3V and GPIO support on most non-DDR pins

O O O O O O O

Debug SATA

i VGA DB15
UART DB9 7-pin data
Connector
Connector Connector 1

[

Wall 5v

Power Jack » Expansion Port

Connector
Headphone
Jack i.MX53
Application

Microphone > Processor
Jack

@ DDR3 SDRAM

Ethernet RJ45/ ¥ 5 3
Dual USB Host b FeLlttL sttt !l.\llll‘l;
Jack —l nETTeN f':{—j] e Reset Button
| | 3 e Power Button
Hewab ||
Micro-B USB User Defined SD Card MicroSD
Device Jack Buttons Slot Card Slot

Fig. 2) i.MX53 [1]

e Android application operation manual illustrated in Fig. 3-5.

Fig. 5) Tap marked area to turn on/off rough filter coefficient setup

Settings are saved on the SD card inserted into SD mini socket on i.MX53 board
and valid after power down/up procedure.

2.3. Gyroscope/accelerometer board.

e PIC24FJ256GB106 microcontroller shown in Fig. 6 with 1°C interface to MPU-
6000 and USB interface to i.MX53.

Modified Harvard Architecture

Up to 16 MIPS Operation at 32 MHz

*8 MHz Internal Oscillator

+17-Bit x 17-Bit Single-Cycle Hardware Multiplier
+32-Bit by 16-Bit Hardware Divider

16 x 16-Bit Working Register Array

*C Compiler Optimized Instruction Set Architecture with
Flexible Addressing modes

*Linear Program Memory Addressing, Up to 12 Mbytes
*Linear Data Memory Addressing, Up to 64 Kbytes
*Two Address Generation Units for Separate Read and
Write Addressing of Data Memory

Connectivity:

o USB:

R/
A X4

USB v2.0 On-The-Go (OTG) Compliant
*Dual Role Capable — can act as either Host or Peripheral

X/
X4

L)

<> *Low-Speed (1.5 Mb/s) and Full-Speed (12 Mb/s) USB
<> Operation in Host mode
<> *Full-Speed USB Operation in Device mode
<> *High-Precision PLL for USB
<> Internal Voltage Boost Assist for USB Bus Voltage
<> Generation
<> eInterface for Off-Chip Charge Pump for USB Bus
X2 \oltage Generation
<> *Supports up to 32 Endpoints (16 bidirectional):
X2 USB Module can use any RAM location on the device as USB
endpoint buffers
X On-Chip USB Transceiver with On-Chip Voltage Regulator
X eInterface for Off-Chip USB Transceiver
<> *Supports Control, Interrupt, Isochronous and Bulk Transfers
> *On-Chip Pull-up and Pull-Down Resistors
o UART w/ IrDA
o SPI
o 1°’C

Fa

L8 -
£ SEBne
] El - 5
e B A o= I = H = =
[P FTTER T H o B L
EEFFEZ D pEEl :
A=ssartz fswg g
??????gljtrrn T
E-JE-JS_.&'L!;]-::Euli.-;gHE e
EEEEEE R T -
SFFFSiArimmE &
00 oko>>W>0a E
SEFTEIETE g
HEESRELREIR " :IHPH?.'SDSCD\.'DEIND-'I'ICK;'
PMOSACHEIRES] 1 CHIRC14
PMOS/SCLACHEARES [2 [SOSCUCANDICH1RCT3
PMOTSDaNCHESRET (] 3 [RPTDMHCREYINTORDD
PMASIRPZ1/C1INDVCHARGE (] 4 [RPAZPMC S CNSERD 11
RP2EPMALCIINCICHSRET [5 [RPHSCL/PMCEZCNSSRDI0
PMAIRPNCIINDICHIORGES [6 [RPA/DPLNSDATICNELRDD
MoRO 7 [RPHDMLN/RTCCICHSHROE
RP2T/PMAZCIHNCCHINRGE] & PIC24FJXXXGE106 e
wes]2 [OSCOCLEOICNZ2ZRCIS
wioo 1D [OSCHCLEICNZIRCZ

%o

]

[D~RG3

] Wi

L

[] RPI&/USBIDICHT 1/RF3

PEECHRPIBNVEUeon T INAANSCHTRES (] 1
PGEDIRPIS/USSOENCIINSANACNSRES (] 12
VPIDCZINAANSCHIRES [12
VIMIORP3C2INBANZICNARER [14
PEECIRPINVREF-ANTICHIRST [1=

PEEDT RPOPMASVREF+HANDICHZTSD [16

B A RPATISCLC N 1amEs []32 RN Y MM EEAEERESE

- @ N D e 04 0T W WD - @ o
= — v 04 0§ 04 04 T4 04 04 04 0 04 02 M
R Mmoo G ™ MW oW T
RS S A
a—.ﬁi{a.-.:r.r_; EEE T
8585 3838y Hg¥cx
R 0 =
F = ook %'ErJE'g?
€= Z=py g=¥ 4
E < ‘-‘E‘-‘Esr§ R R
o 2P I—r—-_i_:r"-
= L ¥ L) = 2
ZE EESR EEEL
85 2z SoFze
W E FEz %;25&
¥] tZ2zizF
:u ;p éﬁ"é?-l
: & Eggm
z BEEE
SR

Fig. 6) PIC24FJ256GB106 pinout [2]

MPU-6000 gyro/accel chip by Invensense shown in Fig. 7. Fig. 8 illustrates axes
orientation.

. Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a
user-programmable full-scale range of +250, +500, +1000, and £2000°/sec

. Digital-output tri-axis accelerometer with a programmable full scale range of
+20, +49, +8g and £16g

. Data is measured using on-chip ADCs and transmitted over 12C or SPI
interface

. VDD 2.5V+5%, 3.0V+5%, or 3.3V+5%

Top View

s 82 9.
855285 ¢
EEERE|E
ckn] 1] @ [18 |eno
NC Z| E NC
e E MPU-6000 E "
NC Z| E NC
ne| s | [14]ne
aux DAl 6 | [13]voo
g0
>

oasfioav El
1noozu| 2 |
onasd| =]
INI El

QFN Package
24.-pin, 4mm x 4mm x 0.9mm

Fig. 7) MPU-6000 pinout [5]

Fig. 8) Orientation of MPU-6000 axes of sensitivity and polarity of rotation [3]

RJ-11 ICSP (In Circuit Serial Programming) microcontroller programming
connector (ICD-3 programmer by Microchip used to update the firmware).

USB-MINI-B 5VDC power connector.
USB-A communication interface port.

100-mil pitch UART connector (needs UART - RS-232 or UART — USB converted
to interface with PC).

e SMD power LED indicator.

e Through-hole No-Motion LED indicator.

3.1.

Chapter 3

Aircraft Attitude Indicator Implementation

Introduction to Attitude Indicator and its features.

Aircraft’s Attitude Indicator provides the pilot with the rotation around the
longitudinal axis to indicate the degree of roll (bank), and around the lateral axis to
indicate the pitch (nose up/down).

In a typical vacuum, shown in Fig. 9, installed in the circuit similar to the one
depicted in Fig. 10, or electrical implementation of the Attitude Indicator the rigidity of
rotating gyroscope is used. Due to its inherited characteristics, the gyroscope maintains
fixed position regardless the aircraft's attitude.

The pilot focuses on the following parts of the Attitude Indicator:

e The miniature wings mounted on the indicator's casing. Those wings indicate the
position of the real wings of the aircraft in relation to its spatial position
(miniature wings are mounted in parallel to real wings).

e The horizon line that separates the top (sky) and the bottom (ground) parts of the
indicator

e The position marks that indicate actual number of degrees the aircraft's attitude
changes about since last zero out procedure performance.

The reference arm, with its attached blue and black card representing the sky and
ground respectively, remains upright relative to the actual horizon as the airplane climbs,
descends, and banks. [15] "Vacuum pressure draws fast moving air alongside the cupped
edges of this gyroscope causing it to spin. This spinning gyroscope remains rigid in
space, regardless of the pitch or bank attitude of the airplane.”

Bank Index
Horizon
Reference

Gimbal
Rotation

Pitch Roll
Gimbal Gimbal

Fig. 9) Typical Vacuum Attitude Indicator [15]

10

Heading Indicator
>, > 3

Vacuum Relief

Vacuum

N\

Suction

Overboard
Gauge

Vent Line

Attitude
Indicator

OO
%%-€— Vacuum Air Filter
o.o.

Fig. 10) A typical pneumatic circuit of the Attitude Indicator [15]

The alignments of the miniature wings with the horizon bar indicates that aircraft
is in the flight leveled in relation to its position at the time the last zero out operation was
performed. Whenever miniature wings are located above the horizon line, it indicates
that the aircraft is climbing, and vice versa, the wings below the horizon line indicate
descending of the aircraft.

The sky is usually blue and the ground is usually brown in most commercially
available solutions.

The rigidity of the gyroscope maintains the horizon line in parallel to the natural
horizon, provided the last zero out procedure was performed with the gyroscope in level
with the natural horizon. Zero out procedure always sets the reference that might not
necessarily be a natural horizon. The miniature wings representing a real aircraft move
with the object the attitude indicator is attached to, i.e. aircraft itself. The movement ratio
indicates the degree of pitch and bank changes.

For this project electronic the Aircraft’s Attitude Indicator that communicates with
Android application has been designed. This device uses gyroscope as well as
accelerometer to calculate actual spatial position of the aircraft in relation to its position
at the time of zeroing out. Fig. 11 illustrates interpretation of the Attitude Indicator
readings performed by the pilot.

11

3.2.

%Wﬁ%

Climbing right bank

Climbing left bank

Level right bank

Fig. 11) Interpretation of Attitude Indicator readings [14]

Motion and coordinate systems fundamentals.

Coordinate systems are used to keep track of the relative object's position and
orientation in space. The simple way to model an aircraft's coordinate system is to use
the one which is fixed in the body of the aircraft itself. Then, the forward direction is
modified by the presence of wind, and the motion of the object through the air is not the
same as its motion relative to the ground. [12]

12

% Body-fixed frame of reference

The orientation of the body coordinate axes is fixed in the shape of body and
the aircraft is assumed to be rigid.

First of the axes points through the nose of the craft, the second is
perpendicular to the first and the third is perpendicular to the first/second axes
plane and points down through the aircrafts bottom.

The origin of the Frame (Body) coordinate system perpetually moves with the
object it’s attached to.

In the body axis coordinates system, where the axes are fixed to the rigid
object's body, aerodynamic forces and moments depend upon relative velocity
orientation angles, hence are not referenced to the earth axes.[13]

Rotational degrees of freedom are defined by quaternions, rotation matrix or
Euler angles [12] shown in Fig. 12:

Por @ Roll about the x axis
Qor® Pitch about the y axis
Ror¥ Yaw about the z axis

Fig. 12) Rotations of the object defined by Euler angles [12]

13

% World-fixed coordinates systems illustrated in Fig. 13-15.
The origin of the system is fixed to an arbitrary point on the surface of the Earth.

ol

OM

)
//.
/
[
|
s
Equator \'7 ~—

\ VLY

/

'
/
gl
|
|
|
\

A Zero
Longitude

Fig. 13) Earth-Centrered reference frame [13]

\’f ‘I’. .
NP4

Fig. 14) Earth-Fixed reference frame [13]

Fig. 15) Local-Horizontal reference frame [13]

3.3. Android platform

¢ Android application visualizes aircraft dynamics by displaying 6 degrees of freedom
animation object described in Collada (COLLAborative Design Activity) format

14

that defines an open standard XML (Extensible Markup Language) schema for
exchanging digital assets among applications that include graphics. Without Collada
standard those applications would store their graphics related resources in formats
incompatible with each other, causing distribution of those assets more problematic.
Collada format has been used in this project to consolidate flight data gathered by
MPU-6000 chip and processed in PIC24FJ256GB106 processor, with its 3D spatial
representation in Android application.

Implemented transformations convert axes representations and coordinate systems.

Examples of Android devices:

freescale i1.MX53 board with 3D graphics developed using Inflexion Ul by
Mentor Graphics with Inflexion Engine loaded onto Android OS, touch screen
LCD and BSP (Board Support Package) by Adeneo Embedded [17] — used for
this project, shown in Fig. 16.

P

'T P

o, £ =

o:' -
-

MCIMCBLLD Seiko 4.3

Fig. 16) Attitude Indicator App running on i.MX53 development board with
IMX28LCD touch screen

15

° Off the shelf Android smart phones or tablets with Inflexion Engine preloaded
(usually by OEM)

o Off the shelf Android smart phones or tablets with graphics developed using
OpenGL library

% Complete Aircraft Artificial Horizon Solution

o Motion Processing Unit (MPU-6000) with integrated Accelerometer and
Gyroscope, hardware DMP (Digital Motion Processor) with hardware
accelerator engine and a secondary 12C-master port that interfaces to optional
3rd party digital accelerometers, and FIFO to store MotionFusion data

. Application Processor with Motion-Fusion algorithms implemented on it.

The generic Motion-Fusion library available on Invensense website [6] in
fall 2011 has been modified to handle PIC24FJ256GB106 processor for the
purpose of this project. Some of the functionalities that came with the library
worked but most vital ones turned out not to. Due to the fact that Invensense's
IP runs in encrypted form and is considered proprietary and confidential, it
turned out too difficult to find the fix for encountered problems due to very
limited debugging access and the proprietary library did not work “out-of-the-
box as-is”. The DMP (Digital Motion Processor) memory interface uses three
registers on the IMU/MPU device. “The 16-bit memory address is selected by
two 8-bit registers (DMP Bank and DMP Start Address), and a third register
(DMP Read/Write) provides sequential read/write access to the DMP memory
using sequential 1°C read/write. The implementations provided for AT32 break
the memAddr argument into Bank and Start Address, and perform single-byte
writes to the Bank and Start Address registers.” [19] Those registers are
undocumented as they constitute the part of Invensense IP.

Few attempts were made on the Invensense's development forum and
through contacting Invensense directly to resolve the issues, with no success.
Eventually, Invensense removed a generic library from their website. The only
library available at the time of writing this report is the one that handles
Invensense's demo board with Atmel processor populated on it. Due to the
problems encountered in the past with the generic library, the approach was
changed and own motion processing algorithms were incorporated into the
firmware, which seems to be more valuable from the research standpoint, but
likely provides worse solution that the one by Invensense with its years of
experience in the field and multimillion dollars resources. Based on Invensense
history, which is "the pioneer and a global market leader in intelligent motion
processing solutions that enable a motion-based user interface for consumer
electronics.” [18] it is assumed that the final attitude of the aircraft resulting
from proprietary Motion-Fusion data processing would be more accurate than
the solution devised for this project.

16

The most difficult part, as it turned out during the design and testing phase,
was to eliminate a linear acceleration from the readings to obtain pure gravity
that translates directly to the tilt of the object and therefore to its position in a
3D space. Due to the Motion-Fusion processing, a gyroscope’s data are
affected by the linear acceleration if the latter is not completely removed from
the accelerometer output. The accelerometer is used in motion processing to
minimize the effect of gyroscope’s inherent drift caused by inevitable bias and
the integration of the consecutive readings. The integration is used to convert
an angular rate that gyroscope outputs in deg/sec into an actual tilt for each
particular axis separately.

(" Embedded MotionApps Platform +J]
API

Platform

-
- ~ et Independent
MLDL [S OI'EJ
) Manager

(N

4 ™ ’
Platf
MLSL] [MLOS [Ustore |0] }Dege:;;"nt
(N A

i Customer
Serial Interface System Timer Nonvolatile
Memory Platform

Fig. 17) Embedded MotionApps platform by Invensense [19]
The Embedded MotionApps platform, shown in Fig. 17, interfaces with
the customer platform through the following modules that were prepared for
Invensense IP library integration with the existing firmware [19]:

e MLSL - platform dependent 1°C implementation for communication
with MPU.

e MLOS - provides a system timer with the resolution of 1ms and a delay
routine.

e UStore 10 - provides an access to a non-volatile memory like
EEPROM, filesystem, external Flash drive, etc.

Android device with 3D representation of one of the standard artificial horizon
instruments installed in aircrafts

MPU-6000 and Application Processor share the same PCB connected to
Android device via wired USB

17

MPU-6000 5
MPU-6050 é

\ s
‘ o Application
Gyro Accel | &

Processor

12C or SPI (MPU-6000 only)

Fig. 18) Serial interfaces location in the scope of the design modules

. Application Processor provides 12C interface to MPU-6000 and USB
interface to i.MX53 Android device as depicted in Fig. 18.
. Application processor performs Motion Fusion calculations using data

received from MPU-6000 and provides Android device with the current
position (pitch and roll) of the object, which the PCB is attached to, i.e.
aircraft’s cockpit

3.4. Gyroscopic chip description.

X2 Features of MPU-60X0 (Motion Processing Unit) chip by Invensense
(axes orientation shown in Fig. 19):

Fig. 19) MPU-60X0 axes orientation

o Complete solution to deliver 6-axis MotionFusion™ data encompassing 3-axis
gyroscopes and 3-axis accelerometers

o Internal 3-axis gyroscope integrated with internal 3-axis accelerometer on one
silicon die

o World’s first and only integrated 6-axis IMU (Inertial Measurement Unit) to
eliminate PCB (Printed Circuit Board) level cross axis misalignment errors

18

K/
L X4

Can drive 3-axis external magnetometer

Manufactured using Nasiri process that combines MEMS (Micro-Electro-
Mechanical-System) on CMOS

Two types: MPU-6000 (12C, SPI) and MPU-6050 (12C, extra power options)

Comes with 9-axis (9 degrees of freedom: 3-axis accelerator, 3-axis gyroscope,
3-axis magnetometer) proprietary Embedded MotionApps Platform™ library
software (Embedded MPL), optimized for 8-bit embedded microcontrollers,
capable of processing complex 9-axis MotionFusion algorithms

4x4x0.9mm (QFN) footprint

VDD Supply voltage range of 2.375V-3.46V. VLOGIC (MPU-6050 only) at
1.8V+5% or VDD

400kHz Fast Mode 12C or up to 20MHz SPI (MPU-6000 only) serial interfaces
Digital Motion Processor.

“The embedded Digital Motion Processor (DMP) is located within the MPU-60X0
and offloads computation of motion processing algorithms from the host processor.
The DMP acquires data from accelerometers, gyroscopes, and additional 3rd party
sensors such as magnetometers, and processes the data. The resulting data can be
read from the DMP’s registers, or can be buffered in a FIFO. The DMP has access to
one of the MPU’s external pins, which can be used for generating interrupts. The
purpose of the DMP is to offload both timing requirements and processing power
from the host processor. Typically, motion processing algorithms should be run at a
high rate, often around 200Hz, in order to provide accurate results with low latency.
This is required even if the application updates at a much lower rate; for example, a
low power user interface may update as slowly as 5Hz, but the motion processing
should still run at 200Hz. The DMP can be used as a tool in order to minimize
power, simplify timing, simplify the software architecture, and save valuable MIPS
on the host processor for use in the application.” [16]

MPU-6000 SERIAL INTERFACE

The MPU-6000 communicates to a system processor using either SP1 or 1°C serial
interface. For this project, I1°C interface has been chosen with the maximum 400kHz
frequency of the SCL signal. The MPU-6000 always acts as a slave when
communicating to the system processor. The LSB of the of the 12C slave address is
set by the pin 9 of the chip. The logic levels for communications between the MPU-
60X0 and its master are as by the VDD. [16]

19

3.5.

X/
°

Embedded implementation.

MPU-6000 device by Invensense uses a microcontroller by Microchip
(PIC24FJ64GB106) to establish and maintain USB communication channel with
1.MX53 Android device. PIC24FJ64GB106 acts as a mid-man that communicates
with MPU-6000 using 12C interface and protocol described in MPU-6000
specification on one end, and also it communicates with i.MX53 using USB
interface and ADB (Android Debug Bridge) protocol on the other end. Other
functions of PIC24FJ64GB106 microcontroller include setting up MPU-6000 at
start-up, responding to MPU-6000 messages by taking a proper action, storing and
processing readings coming from MPU-6000, as well as performing motion-fusion
calculations resulting in actual object’s position in relation to earth.

Schematic of the circuit, shown in Fig. 20.

93

e . Vout
2 o
3 _LCc20 J_C13 2
4 VST == 3
5 10u [-1u
USB-Mini-B(S5)
Res
e
RE7
FE”‘?
R19 :gu

+3_3V, _MCLR
L 10K i

Fear L el Voa

1y RES

+3_3v R4
5 RB2

Em—|rst
——{w] (reor) R8O
Q+3_3V
L R7.
R1 010
+3_3O Gal

- 39k

(@=SPI mode)

B s
i.J 1) I

R22
100K Tu

Fig. 20) Embedded circuit schematic

J1 — UART port used strictly for diagnostics

J2 — USB communication port to connect to Android device

J3 - +5VDC power input

J5 — ICSP programming connector to download/upload firmware to/from the
microcontroller

D1 — power indicator LED

LED1,2 — auxiliary LEDs

20

% PCB (Printed Circuit Board) depicted in Fig. 21-22.

1.625

O HOOK—AND—LOGP FASTENER MOUNTING AREA O]

1.825

O HOOK =AND=LOOP FASTENER MOUNTING AREA O !
l< 1.835 —-|

Fig. 22) Embedded circuit PCB (top side)
% Bill of Materials is provided in Appendix C to this report.
X PIC24FJ64GB106 microcontroller simplified specification [10]
o CPU

" Up to 16 MIPS performance
16 x 16 Hardware Multiply, Single Cycle Execution

21

12-bit x 16-bit Hardware Divider
C Compiler Optimized Instruction Set

o Flash Program Memory

Self-Reprogrammable under Software Control
10,000 erase/write cycles
20 year data retention

J System
" Internal oscillator support - 31 kHz to 8 MHz, up to 32 MHz with 4X
PLL
. On-chip LDO \oltage Regulator
. JTAG Boundary Scan and Flash Memory Program Support
" Fail-Safe Clock Monitor — allows safe shutdown if clock fails
" Watchdog Timer with separate RC oscillator

° Universal Serial Bus Features

USB v2.0 On-the-Go compliant

Dual role capable, can act as either Host or Device

Low speed(1.5Mb/s) and full speed(12 Mb/s) operation in host mode
Full speed USB operation in Device mode

Supports 32 endpoints

On-chip USB transceiver

o Peripherals

. CTMU supports Capacitive Touch applications

Peripheral Pin Select allows I/0O remapping of many peripherals in real
time

4XUART Modules with LIN and IrDA support, 4 Deep FIFO

3xSPI ™ Modules with 8 Deep FIFO

3xI2C™ Modules with Master and Slave Modes

Five 16-bit Timer Modules

Up to 9 Input Capture and 5 Output Compare/PWM with dedicated time
base

. Hardware RTCC, Real-Time Clock Calendar with Alarms

. PMP, Parallel Master Port, with 16 Address Lines, and 8/16-bit Data

« 12C interface between PIC24FJ64GB106 and MPU-6000

o MPU-6000 uses standard I’C communication in a Fast-mode (SCL clock
frequency up to 400kHz) [11]. I°C interface on the PIC24FJ64GB106 side has
been implemented to meet MPU-6000 requirements enumerated in [16].

22

< USB interface between PIC24FJ64GB106 and i.MX53

o USB 2.0 with PIC24FJ64GB106 acting as a USB host and i.MX53 acting as a
USB device.

3.6. Gyroscope/Accelerometer readings processing.
% Gyroscope features

o Gyro operates at high resonant frequency for better rejection of ambient noise
and vibration and also provides for less sensitivity to physical shock (10,0009)
compared to other solutions available on the market. [20] Gyro’s resonant
frequency is associated with the fact that when it rotates around any of the
sense axes, the so called Coriolis effect, which has to do with a deflection of
moving object(s) when they’re viewed in a rotating frame of reference [17],
causes a vibration that is detected by a capacitive pickoff. Then the resulting
signal is amplified, demodulated, and filtered to produce a voltage that is
proportional to the angular rate. [16]. “All InvenSense X- and Y-axis
gyroscopes are based on coupled dual-mass (tuning fork) proof-masses that are
driven out-ofplane and generate Coriolis forces in-plane” [22], as shown in the
Fig. 23:

Fcoriolis

Fcoriolis
Fig. 23) X-axis gyroscope driven mode [22]
o Gyroscope measures angular speed in dps (degree per second) around three
axis (x, v, z). Positive readings are obtained for counter-clockwise direction

and vice versa.

o Gyroscope is specifically designed not to measure linear acceleration and to
reject gravity force.

23

o Angle is derived by integrating rate of rotation oven certain period of time.

o Gyroscope readings always have some bias that changes over time.

o Due to integration of gyroscope readings in order to receive an actual angle, a
bias translates to inevitable drift (sitting device will always drift, e.g. from
Odeg to 360deg on each given axis, with different rate, depending on the
integral time constant as well as initial and current bias).

o +2000dps max (MPU-60X0).

< Accelerometer features:

o Accelerometer measures linear acceleration and tilt due to gravity. It can’t
measure yaw, which is a rotation in relation to gravity

o Accelerometer measures acceleration in m/s2 applied to the object and after
processing input data it returns three angles corresponding to its three axis
(MPU-60X0).

. Angles calculated by accelerometer hardware are affected by both, linear
acceleration and gravity, thus only sitting device will read pure gravity.

. In order to receive device’s attitude (pitch and roll), a linear acceleration has to
be removed and only pure gravity that directly translated to actual tilt has to be
taken into account

. +16g max (MPU-60X0)

X Accelerometer — Gyroscope Motion Fusion, i.e. why and how to combine
accelerometer with gyroscope data

o Motion-fusion purpose

. Provides high accuracy (accelerometer) and fast response not affected by
linear acceleration (gyroscope)

. Both sensors complement each other.

. Gyro provides turning information (angle received through integration
of the readings)

. Accelerometer provides linear acceleration and gravity combined

" Provides accurate 6-axis interpretation of movement in space

Ll Filters out accelerator’s unintended ambient movement and vibration
(removes linear acceleration that affects gravity readings - tilt)

. Gyroscope never reads zero while stationary as it should. Instead it gives

accurate angular change readings in short period of time (as long as drift
within that period of time is acceptable for particular application)

24

Motion-fusion Implementation

Acceleration applied to the object, read by the sensor:a=-g-?F/m

Pass accelerator readings through low pass filter to isolate gravity (If
linear acceleration was constant or it was increasing or decreasing
indefinitely, then its removal from accelerometer readings would not be
possible, given that acceleration was not known by other means.
Fortunately, long term average of acceleration that most of the objects on
Earth, including aircraft are exposed to, equals zero. This means that
objects usually have constant linear acceleration heading zero, while
sitting, or their acceleration increases and decreases alternatively with a
long term average of zero. Therefore, in order to remove a linear element
from acceleration, a low pass filter can be used.)

Solution introduces delay that without support of gyroscope readings,
would turn out not acceptable for aircraft application as in order to, in
ideal situation, remove a linear acceleration from accelerometer’s output
additional filtration is needed and hence a delay is added to the display
update time along with the filtration of the mechanical vibrations that an
accelerometer is sensitive to.

Pass gyroscope readings through high pass filter to remove drift (Drift’s
short term changes happen to be close to zero, thus the influence of this
element on the final angle calculated based on gyro readings can be
almost eliminated by applying high pass filtration algorithm)

Pass, in ideal conditions error-free, pre-processed readings through
complementary filter that can easily be implemented on the 8-bit
platform, or mathematically complex Kalman filter if the target platform
provides enough resources for its implementation that in practice provides
barely noticeable advantage over much simpler to implement
complementary filter

Motion-Fusion theory.

Idea behind Complementary Filter illustrated in Fig. 24.

SIGNAL +HIGH FRECL NOISE
{ACCELERATOR)

]

o - //-‘ - RECONSTRUCTED SIGNAL
[ACTUAL ANGLE)

SIGNAL + LOW FREQ. NOISE —» ‘ /_

(GYROSCOPE)

= 1

-+ m'gmfms& -+ r\

Fig. 24) Complementary filter — the concept

25

Complementary filter solution decreases drift, noise, linear acceleration impact
on the final angle value and lag, depicted in Fig. 25.

3 /l Integrated

. AngularSpeed + « 7 Angle ¥ A Output
; =J_ \’.} Ny Angle
e A

Bias
Gyroscope

_,{) . Drift I
9 o=
f»‘\ccel.

! Angle

. - |

Accelerator

Fig. 25) Complementary filter implementation

MPU-60X0 Motion Fusion Approach.

Provided by Invensense.

o Application Processor loads a boot firmware into MPU-60X0
memory at startup

o Application Processor performs calibration and sets up bias trackers

o MPU-60X0 performs computations that combine data gathered from
sensors and shares it with Application Processor using FIFO

o The Algorithms for sensor fusion are InvenSense IP (run in
encrypted form on the DMP)

o User’s embedded application may be affected by Invensense

firmware (used as a bootloader and to set up DMP) in unacceptable
way (e.g. it may affect timing requirements)

o User is required to implement platform dependent functionalities to
integrate Invensense library
o Hardware DMP provides an object attitude via FIFO in the form of

Quaternion, Rotation Matrix or Euler Angles
Implemented by developer.

o Application Processor sets up MPU-60X0 using its Register
Memory Map

26

Application Processor reads row sensor data

Application Processor performs Motion Fusion to combine data
gathered from sensors

User’s embedded application communicates with MPU-60X0
through accessing dedicated registers

User’s embedded application does not use Invensense library

User has to implement his own Motion Fusion algorithms, over
which he has full control (they are not encrypted as Invensense IP)

Motion Processing Platform as shown in Fig. 26.

Calibration
Algorithms

Sensor
Fusion

MotionApps

v
2
=]
v
c
@
wy
c
o
B
=]
=

MotionFusion

Fig. 26) Invensense Motion Processing platform

Integrates hardware sensors, such as gyroscope and accelerometer as
well as optional compass and sensors accessed through secondary
serial port

Provides computation engine to combine data gathered from
individual sensors

Provides calibration functions and API interface

Y

Twist from side
to side (Roll)

Tilt forward and
backward (Pitch)

Turn from portrait
to landscape (Yaw)

Fig. 27) Axes orientation with reference to the Android device

27

6-axis Motion Fusion combines 3 degrees of freedom measured by
Gyroscope with 3 degrees of freedom measured by Accelerator and
results in angular frame relative to ground 9-axis Motion Fusion, in
addition, uses 3-axis magnetometer and results in angular frame
relative to both ground and north, which is illustrated in Fig. 27.

28

Chapter 4

Android Application

4.1. Overview of Android platform and related application development process and tools.

e Android platform

Android constitutes complete application framework built on top of Linux kernel. It
is an open source software platform delivered by Google. The platform includes an
Android Operating System, middleware, i.e. software that provides services to
applications in addition to those ones that are already available through the operating
system and Android compatible applications. Android platform has been developed as a
solution to implement high-end mobile phones. A very important feature of Android
platform is its open source distribution, with most of the source code provided under
Apache2 licence terms, which allows proprietary modifications into the source without

any source distribution requirements.

Android platform includes the stack of software components with a Linux kernel on
the bottom of it. Linux kernel provides device drivers, networking handlers, security, a
memory and system management functionalities. On the higher level there come

libraries that support media including audio, video and 2D/3D graphics.

Dalvik VM (Virtual Machine), specifically designed for Android, implements

Android runtime environment. Its main features are [23]:

register based in contrast to stack based
memory efficient
uses its own byte code implementation

process)

provides each application with the separate copy of the VM (separate Linux

Application framework provides services to Android applications in the form of
JAVA classes, where each and every application can share its functions with other
applications and the system itself. Application layer is located above Application

framework and is considered the top layer of the stack.

e Application development for Android

Eclipse IDE is used as a standard Android application development environment.
It requires installation of the plugin that adds Android specific features to the integrated
development environment. Application code is written in JAVA (SDK) or when using
native code for Android, in C/C++ (NDK). Applications are composed of resources
packaged into archives. The tools to develop Android applications are available for

Linux, Windows and Mac operating systems.

29

Applications are described in so called “manifest”. The description of the
application is used by Android system. For instance, in order to enable on hardware
debugging feature, application needs to be registered as debuggable in the manifest file.
[24] Applications are made up of few components. A developer uses them according to
application specific requirements. Those basic components are as follows [23]:

Activity — a functional unit of the application that may be invoked by
another application, or activity.

Service - a functional unit of the application that runs in the background,
i.e. without interactive access to the user interface. It may be invoked by
another application, or activity.

Content Provider — makes data generated by one application available for
other application(s) on request.

Broadcast Receiver — the mechanism of responding to broadcast messages
sent out by the system or other application(s).

Standard SDK installation includes the following development tools [25]:

adb — Android Debug Bridge
ddms — Dalvik Debug Monitor Service
aapt — Android Asset Packaging tool

dx — Dalvik Cross-Assembler

The structure of the Android application seen in the Eclipse IDE contains files as
follows [26]:

AndroidManifest.xml (required)
= Enumerates screens provided by the application and their
assignment.
= Defines the content and data types to handle.
= Provides information about implementation classes and cross-
application information.
src/
= Folder stores all the source code files.

res/ (required)

30

= Folder stores all the resources used by the application, i.e. description
files and external data files. Resources are compiled with the
application code at build time.

e anim/

= Folder stores animation XML files.
e layout/

= Folder stores XML files that describe screens used by the application.
e drawable/

= Folder stores XML or image files (.png, .jpg, .gif) to be compiled
into android.graphics.drawable resources

e values/

= classes.xml, colors.xml, strings.xml, dimens.xml, values.xml,
styles.xml

o xml/

= Folder stores XML files that can be read by the Android device at
runtime

o raw/

= Folder stores files to be copied in their original form into the target
Android device

4.2. 3D graphics development.

Blender, is used to create interactive 3D graphics within Inflexion Ul
environment. Inflexion project is then exported as .c and .dat files that are subsequently
imported through Eclipse IDE into Android application written in JAVA. Both
environments communicate through variables. Inflexion framework provides JAVA
functions to interact with those variables from within Android application JAVA code.

31

4.3. Features of Inflexion Ul.

Inflexion Ul Express is an Eclipse—based software tool used to create interactive
graphical user interface. The entire user interface, that might include 2D and 3D
graphics, can be built using a drag and drop approach without a single line of the
code to describe graphical interface itself. Graphics changes do not involve
application code modifications. “Looking at the GUI, the Android development
platform affords basic GUI customizations. These types of customizations include
changes to boot animations, personalized wallpapers and/or icons. Swappable
themes are introduced in Android, but the software developer has very little chance
to create or radically customize these themes without some serious software
experience. The ability to make more compelling changes, such as creating a new
menu or completely changing the look and feel of a menu system, is not within the
scope of the Android SDK today. Instead, these customizations need to be done at a
deep code level and usually require major engineering investment.” [27] Inflexion
provides an intelligent, customizable GUI technology that enables the designer to
create compelling interactive graphics without modifying existing code, if all shared
variables that link user interface with application code are already defined and used
in the Android application code. Inflexion Ul location in Android OS is depicted in
Fig. 28.

Replacement home Applications

system

Application Framework

Java-side
framework
for
Inflexion

Android Runtime

: LiShamtes |
Inflexion ?
Ul Engine Dalwk V'r!ual l

Flash Memory Binder (IPC)
Driver Driver

Audio Power
Drivers Management

Fig. 28) Inflexion Ul solution in the scope of Android platform [28]

Graphical user interface can be functionally tested using “preview window”
without updating the physical target device with design files.

Inflexion Ul consists of Inflexion Express and Inflexion Runtime. Inflexion
Runtime is installed on the physical device and constitutes the engine that runs on
the target device, i.MX53 in particular. The engine (library) launches executables
developed using Inflexion Ul. OpenGL/ES is used as a hardware graphics engine on

32

i.MX for 2D, 2.5D, as well as 3D effects. Runtime library supports graphical effects
like twisting, flipping, tilting, spinning, and is available on Android and Linux OS.

4.4. Inflexion Ul installation.

The installation is covered in the Appendix A of this report and creates the folder
"<Inflexion Ul install directory>
\embedded_2011 03 _iMX\InflexionUI-Express-2.3\SamplePackages\Palletes". That
folder includes definitions of basic components that might be used to speed up user
interface development, as buttons, checkBoxes, editBoxes, sliders, spins, etc. In
order to make that components' database available for Ul under development, the
Palette has to be imported into Ul IDE, by following steps described below in
Inflexion Ul IDE:

Select “File > Import > General > Existing Projects into Workspace”. Click “Next”,
as shown in Fig. 29.

2 ~
D Import (B IC] ==
Select \
Create new projects from an archive file or directory. E - 5
Select an import source:
i
[type filter text|
= General
[E, Archive File

1% Existing Projects into Workspace
[, File System
E Preferences

== Run/Debug

= Team

= XML i
|
|

'@:‘ < Bac MNext » FEinish Cancel

Fig. 29) Inflexion Ul installation: Project import

Browse or type = “C:\mgc\embedded_2011 03 _iMX\InflexionUI-Express-
2.3\SamplePackages\Palettes\controlsPalette”. The path may vary depending on
installation settings as covered in the Appendix A of this report.

Select active project (controlsPalette, as shown in Fig. 30) into “Import” memo
box. In case there is only one item listed, simply click on “Select All”. Click
“Finish” to make the palette of components available for the project to develop.

33

) Ul Design - controlsPalette/Components/button/button.component - Inflexion Ul Express for Select ... =008 X

File Edit View MNavigate Search Project Window Help
s~ | & Bis i~ & [UlDesign
B vt Gy
x| | | |
T Project Explorer 72 = O/ button.companent I =8
¢ 3 =
=ER=30 | [90,506 Palette b g
i controlsPalette +1 7 Layout: pressed | Layout Manager -
o
= Cump.unents E [pressed: _touchElement ==
& Graphics N [default: TRUE
Pg effectsPalette
PR= GyroUl [Generic] 2
(= Graphics =il -
(= Menus Component:] M b
(= Output ° t._.-H
T Eement M
4 [= Templates - e — M
) roottemplate E L Template I
(= UlFlow !] Companent &
25 alltokens |- | buttonPanel &
o
(5 Resources 22 ¥ =0 E A buttonTet &
Search: R |[om
- Layouts | Settings
Fonts (5) | Components (14) 3
i = Console &2 um§|"}E'T‘J'DE
_|| | Packager Log
=|| - manifest.=ig n
Signing embedded projects
= a VG proj
Checkbox Cleaning up
Check
Packaging completed successfully...
:’:‘I Combo Box
S --- Finished ---
" i :
o t controlsPalette
| —
g B

Fig. 30) Inflexion Ul: Selection of the active project

In order to create graphical user interface for Android project using Inflexion Ul
select “New > Project... > General > Project”, enter desired name and select target
location. Click “Finish”.

Copy 3D objects saved in Collada format (COLLAborative Design Activity; files
with .dae extension) created earlier in Blender and accompanying 2D graphics into
“<Project directory>\GyroApp\GyroUi\Graphics”. Right click on the project's top-
folder (GyroUI [Generic]) in “Project Explorer” and select “Refresh” to make 3D
objects and 2D graphics immediately available within Inflexion Ul environment.
Objects in Collada format are used to build interactive 3D application. Fig. 31
illustrates their location.

34

) UI Design - Inflexion UI Express for Select ... Elﬁg

e | e
B N
- - ¥o o
1t Project Explorer 52 =g
ES~
» i controlsPalette -

o 2 effectsPalette
4 [GyroUl [Generic]
4 (= Graphics

M) bgWVGA L.png
2/ gyro_ring.dae
|=| gyro_sphere.dae
|2/ gyro_wings.dae
R4 ring_bckgrnd.png
R sphere_bekgmd.png

> = Menus
» (= Output
4 (= Templates
Q rocttemplate

» [= UIFlow
40 alltokens -
(7 Resources £% =8
Search: "
oe [l GyroUl
=]

File Edit MNavigate Search Project Window Help

i (G UiBesian

| wings face.png =

Mo consoles ta disy

=0

]

Fig. 31) Inflexion Ul: Location of the Collada files

Double click on “Project Explorer > GyroUI [Generic]

> Templates >

root.template” and place .dae objects and components available through Palette on
the “default layout > Page” in desired locations by using “Drag & Drop” method, as

shown in Fig. 32.

r n
5 Ul Design - Gyl TemplateuROOLEmp e - Infesion U1 Bxpress for Select iMX Processors N o= =i)

mid al&

s Project Explorer 32

E controlsPalette
BB effectsPalette
% GyroUl [Generic]
[Graphics
W] bgWVGA Lpng
5/ gyro_ring.dae
2] gyro_spheredae
5] gyro_wings.dae
] ring_bekgrmd.png
) sphere_bckgmd.png
Bl wings_face.png
(2 Menus
(= Cutput
(2 Templates
[root.template
(= UFlow
147 alltokens

(5 Resources 2 WS
Search:

A4 Graphics (30)| Forts 5) "2

- bgWVGA Lpng
.

1% B Growp

= O/ [rocttemplate i
| R 00 a0 00

File Edit View MNovigate Search Project Window Help

o
=
3

R
i

FR 1 -

m

[

1200

Primary

150

«
5 || Layouts Settings

w || B Console 22

No consales to display at this time.

ceoec e (D)
| w00% -]
=0
=
i Palette b
” | Layout Manager B3

[coeff_sdRoughly: coeffhdjEnRoughl
[coeff adj: coeffAdiEn
[default: TRUE

‘] v
Element Manager -
L Screen -
[Page e
(2] bankEditBox &
(& coeffadPrecise &
[&] coeffAdjRough &
P e -7
4 i v
~[§-=0
=}

Fig. 32) Inflexion Ul: The placement of the 3D objects on the layout

At any moment, the user interface, including interactive and non-interactive
graphics can be tested by right clicking the top-folder of the design, i.e. “Project

35

Explorer > GyroUI [Generic]” and selecting “Show in Previewer”, shown in Fig.
33. The layout to preview needs to be selected first as well as its “Page” in “Element
Manager > Screen” by single clicking on it. Left clicking on tested Page simulates
actual tapping on Android device touch screen. “Field” provides access to variables
that can be modified within Ul, without integration with actual Android Application
to be developed in Eclipse IDE (Android application code does not even have to
exist at the moment).

L) UI Design - GyroULTemp! root.template - Inflexion UI Express for Select 1.MX Pm__

File Edit View Mavigate Search Project Window Help

r3 - i P e Ay drire ooy (0]
: X| & W8 s of | ol 9| o 6T 8GR 0T A S |

[l Previewer &3 éhlliluv':ﬁ
-

Project: GyrolUl
i

e ¥ Workspace = [EJ]
b View
+ Keypad

« Fields

m

MName
_extentx
_extenty B
_extentz

_focused

m

_pageState

_touchElement

_transitioning

-

Ll '| I} | 5

| 240 alltokens - | Ll o o i 1 T &
- = 4 [l b Q| [| 3
(47 Resources &2 %‘/ ¥ =08 LayoutsJ Settirlgs|
Search: Ex |[E console 2 [EN Eﬁ| HE~-r5-—0
All (74) _Graphics (50) | Fonts (5)| 2 Preview Log
EGL Coniig Attribute sizes: red = U, green = U, blue = U, ¢,
* || Theme loaded successfully...
bgWVGA_L.png Lo il
ORI |5 3
il = B

Fig. 33) Inflexion Ul: The previewer
e Access to the settings of each and every element listed by “Element Manager” is

gained by right clicking on selected element, followed by left clicking on its
“Properties”, as shown in Fig. 34.

36

L) Ul Design - GyroUl/Templates/root.template - Inflexion Ul Express for Select 1MX Processo

File Edit View MNavigate Search Project Window Help

S=mna

&l B EEP ARE RS R R-R R 1 (G 0 Design |
2 E X | | | | | 100% - [[07]o0r 1800 2700 |[SH] L e,
T Project Explorer 22 = O [rocttemplate 52 =0
| g = || B0 200 TS0 400 58 G v 53« 400 v 150 v 200 250 1 200+ 353 1 400t 450 | % | % paette 3 5
©E controlsPalette _ * -
B effectsPalette it - -
8 Gyrolll [Generic] ment Manager e
(= Graphics - [gyro_sphere & -
B bgWVGA Lpng o L |8 gyro_wings & 0.
B gyre_ring.dze B = S i)
L1 gyro_sphere.doe Layouts| Settings
£ gyro_wings.dae
B ring_bekgrnd.png] Console | = Properties 52 (B)% # 7 =
M sphere_bekgmd.png Property Value
R wings face.png Element Type Emphis
£ Menus .
n all layouts
(& Output Draw Plane 2
& Templates Ensble Facus true
@ roottemplate Extent Hint
& UlFlow Focus Order
w3t alltokens Name gyro_sphere
P& menusPalette Open6L - =
Perent
Rendering Quality high
Resource Dats="Graphics/gyro_sphere.dae"
(5 Resources &% a7 =0 Tappable full
Tap Tolerance 10
Search: 3 Taleport
All (74) _Graphics (50| Eents (5)| 2 In this layout
- Color
- bgWVGA L png Extent (330.11084, 330.11084, 330.11084)
Frame
Location .0, 150, -700) =
gyro_ring.dae ~ ||« I r
0% [l Classes of type "graphic” display graphical content such as bitmaps
type "graphic” display grapl P
. . X R .
Fig. 34) Inflexion UI: Access to element’s properties
(13 29 b b b
o Draw Plane” value, shown in Fig. 35, defines the layer of the layout on which the

particular object will be located, where O corresponds to the bottom layer, i.e. the
layer that will be covered by layers with higher “Draw Plane” values. This property
can be used to make object(s) with higher “Draw Plane” values visible after being
placed on the object(s) with lower “Draw Plane” value(s).

[Console | = Properties &3

Property
Element Type
4 In all layouts
Draw Plane
Enable Focus
» Extent Hint
Focus Order
Name
» OpenGL
Parent
Rendering Quality
> Resource
Tappable
Tap Tolerance
> Teleport
> Inthis layout

Walue

Graphic

2
 true

gyro_sphere

high
Data="Graphics/gyro_sphere.dae"
full

10

Fig. 35) Inflexion Ul: Setting a draw plane

o For each layout, the location, scale in relation to original object size, and 3D
orientation of the object needs to be defined, based on application dependent
requirements set. Basic properties are shown in Fig. 36. Opacity, ranges from 0.0 to
1.0, and if defined, makes given object completely transparent for value = 0.0 and
vice versa.

37

= Console | | Properties &3
Property Value
Element Type Graphic
> In all layouts
4 In this layout
Calor

Extent (330.11084, 330.11084, 330.11084)
Frame
4 Location 4.0, -15.0, -70.0)
X 4.0
v -15.0
z =700
Offset (0.0,0.0,00)
Opacity
4 Orientation (180.0, 0.0, 0.0}
Azimuth 180.0
Elevation
Rell 0.0
4 Scale (1.27,1.27,1.27)
X 127
Y 127
z 127

Visual Effect Uniforms

Fig. 36) Inflexion Ul: Basic properties of the 3D object

Inflexion Ul Express uses layouts to manage and organize particular layers of
interactive graphics. Layouts may inherit properties from their parent layouts, but
also, they might consist of completely independent design. At any time, some
layouts, that user interface is composed of, may be disabled (not available for the
user) and some of them may be enabled (available and fully or partially visible,
depending on whether or not the part of a given layout is covered by another layout
with graphics placed on higher layers, i.e. with higher priority of visibility).

In order to create a new layout, right click within the “Layout Manager” area
and select “New Layout” as shown in Fig. 37.

Ul Design - GyroUl/Templates/root template Infiexion UT Express for Select LMX Processors T e)

File Edit View Navigate Search Project Window Help

HrERe & Big ¥~ A AR i (G UlDesign |
of B x| 9| | | | 100% ~|[07)s0° 180 2m0° |[IE)E
B2 Project Explorer 53 = 5[*roottemplate % =g
| 5 T [00 350 300 250 200 0 450 0 400+ S0 0 | pglette S 5
%E controlsPalette R | Layout Manager -

[coeff_adjRoughly: coeffAdjEnRoughly
a

200

150

© 100

B sphere_bckgma.png
B wings facepng 2
& Menus .
= Output Pﬂa§
(= Templates =
[0 roottemplat - £z E 9 4
& UlFlow o L
25 alltokens ! e
& menusPalette - e L
‘ ot Cut
Layouts | Settings
2 Copy
{2 Resources 3 @ ~ = O|[E Console | Properties &2 Paste =]
Search % || Property Value = o
¥
Al (743"_Graphics (50)| ™2 Layout . o
Condition A TRUE [Properties

= Inherits
bgWVGA L.
- JERAEng Neme default
&% oo o MK

0 [20 Each layout specifies the placement (position and appearanc.. the first ‘active' layout found in this list will be used.

Fig. 37) Inflexion Ul: The layout

Layout's “Condition”, shown in Fig. 38, defines when the layout becomes

38

available for the user. Value of “TRUE” implies the layout available
unconditionally. An expression to define layout turn on/off condition may be
defined by accessing layout condition editor through clicking on the magnifier
icon on the right of the condition's value. An expression field accepts C
statements that return boolean values, e.g. (var0 && varl).

) Ul Design - GyroUL/Templates/root.template - Inflexion UI Express for Select i.MX Proces: sors.

File Edit View Navigate Search Project Window Help

-ERolE Dig Frin-ieoras 5 [UrDesign]
| | | | | | I |

s Project Explorer &3 ~ B[€ expression Editor ==} =

5

S - % Palet
. LB % "N advanced Value Editor | [pelmes " g
i controlsPalette B it Layout Manager -

it Expression.

[coeft_adiRoughly: cocffAdjEnRoughly
o

(5 Resources % ‘a = = 0| Prope
Search
All 74 Graphics (50)|

- bgWVGA._Lpng
Fig. 38) Inflexion Ul: Layout’s condition
. In case the layout is supposed to inherit the properties of another layout, that

layout needs to be selected as the parent within “Inherits” field. Child-layout
consists of interactive graphics designed within the parent one that can be
further modified.

e Variables can be used by Inflexion Ul internally or can be shared with Android
application code developed under Eclipse IDE.

" Internal variables — add/modify/delete access enabled through “Settings” view
of the root.template. Internal Inflexion Ul variables are not available for
Android application code developed in Eclipse IDE in JAVA, C/C++.

o “Name” defines the name, the particular variable is associated with
o “Data Type”: int, string, time, float, Boolean
o “Default Value” defines the value Inflexion Ul environment assumes for

a given variable without interaction with Android application.

o) “Expression” defines the constant value the variable, shown in Fig. 39, is
set to

39

f P -~ . - F EI 1
{0 UI Design - GyroUl/Templates/root.template E!ﬂexlon UEE)(pras;for Sel-e-cl i.MX Processors & . al e — S|

File Edit View Mavigate Search Project Window Help

|:vL|:|_|uJ_n_|l=;J| atd

Layouts | Settings
All (74) _Graphics (50) |

-
- bgWVGA_L.png Property
-~ || «

EJ Console | | Properties 52

| @ o] | | | | |
2 Project Explorer 52 = B|| *roottemplate 53 =8
=
B%~ :
g controlsPalette -
2 effectsPalette
= GyrolI [Generic] Variables
(= Graphics
B bgWVGA_Lpng MName Data Type Default Value Expression
gyro_ring.dae coeffAdjEn boolean false L
gyro_sphere.dae = coeffAdjEnRoughly boolean false
gyro_wings.dae
R ring_bckgrnd.png
Ra| sphere_bckgrnd.png
R wings_face.png
(= Menus ~ Timings & Focus
= Output Timings Focus
& Templates Terminal time: 500 = Profile: - Default focus: -
[;] roottemplate
= TRl = Layout time: 300 = Profile: -
(57 Resources &% B~ =0
T 2 ~ Miscellaneous -

T

0% Bl Classes of type "graphic” display graphical content such as bitmaps

E@=c -0

Fig. 39) Inflexion Ul: Local variables

" Shared variables connect Inflexion Ul with Android application JAVA code
being developed in Eclipse IDE. Inflexion “modules” are used to link both
environments through application dependent set of variables, and are defined
as XML files that include “module fields” that represent particular shared
variables. It's meant by “shared” that those variables can be read/modified in
both, Inflexion Ul IDE as well as Android application JAVA code being
developed in Eclipse IDE. Those variables constitute peculiar interface
between both development environments (graphics and application), through
which graphical interactive user interface can be controlled based on current
status of the application being executed. Shared variables can be created in the

following, exemplary way:

o) Create “module” XML file.

. To simplify,
<GyroAppCode> src” and paste into the same location under
different name (“pitchbank.module” will be used in this example).

copy “ifxui_template.module” from “<Eclipse>

o Open created module in Inflexion Ul text editor (right click and
select “Open With > Text Editor”) in order to modify it.

. Enter “pitchbankmodule” as a name that Android application
uses to launch the module.

40

Enter required fields (one field per variable) in the following
fashion, as shown in Fig. 40: “<field name="pitch"
mode="inputOutput™ previewValue="0" dataType="int"/>",
where “filed name” defines variable's name, “mode” defines
whether the variable is to be read/written by both Inflexion Ul
and Android application , “previewValue” sets the value the
variable assumes in Inflexion Ul environment without
interaction with Android application, and a “dataType” assigns
one of available types (int, string, time, float, boolean) to the
variable. Save the file.

e

=
L

% Packoge Explorer 52
'_.S GyroAppCode

& ad

B sic
A com.GyroAppCode
[com.mentorgraphics.ifuitemplate
B com.mentorgraphics.pitchbankmodule
2] ifxui_template.module
|=| pitchbank.module

2 gen [Generated Java Files]

=, Referenced Libraries

=i Android 2.2

e\@ assets

= jni

e\@ libs

& res

|5 Android.mk

A| AndroidManifestxml

|=| Application.mk

default.properties

3] makeNDKxml

|2/ proguard.cfg

1= InflexionUlRuntime

v 0~ Q-

= 5 ¥ = 0| B pitchbank.module 57

File Edit Run MNavigate Search Project Refactor Window Help

B LR SR R = EY @) DDMS %5 Debu; ™
=55 =7
3
1<?xml version="1.0" encoding="UIF-8"?2> - ol 9"‘ &
2 <'-— Copyright Mentor Graphics Corporation 2008
211 Rights Reserved.

& THIS WORK CONTAINS TRADE SECRET
7 BAND PROPRIETARY INFCRMATION WHICH IS THE
& PROPERTY OF MENTOR GRAPHICS
9 CORPORATION OR ITS LICENSORS AND IS5
10 SUBJECT TO LICENSE TERMS.
11 —>
12 <module name="pitchbankmodule™ xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance™ =si

ot

MR MR R R e e
(R & o m N

26 </module>

<fields> I
<field name="pitch" mode="inputOutput" previewValue="0" dataType="int"/>
<field name="bank"
<field name="zero"
<field name="varO"
<field name="varl"

9 <field name="var2"

<field name="var3"

<field name=
<field name="var7"
</fields>

previewValue="0" dataType="int"/>
previewValue="false" dataType="boolsan"/> |
dataType="int"/>
W
WS |
">
">
e

el
W

mode="inputCutput™
mode="inputOutput™
mode="inputOutput™
mode="inputOutput"™
mode="inputOutput"™
mode="inputCOutput™
inputCutput™
inputCutput™
" mode="inputCutput™
mode="inputCutput™

previewValue="0"
previewValue="0" dataType="int

previewValue="0" dataType="int
"

previewValue="Q"
previewValy
previewValuy
previewValue:
previewValue=

dataType="int
" dataType="int

4

L‘L Problems | @ Javadoc @) Declaration | Bl Console &2
<terminated> GyroAppCode [Ant Builder] C:\Program Files (86]\Andreid\android-ndk-r5c\apps\GyroAppCodeimakeNDKaxml

Fl

m »

3 Progress| (= Variables | % Debug | E Properties =

% %|GaEEE 22 -9-

3

Fig. 40) Inflexion Ul: Shared variables

Register the module in Android application so that Inflexion Ul
can access it, by modifying “android.application” file as
follows:

Navigate to “<Eclipse> Package Explorer >
<GyroAppCode> jni > android.application” and open the
file in Text Editor available from Eclipse IDE.

Add “<support module="..\src\pitchbank.module"
programminglLanguage="java"/>" line and save the file,
to create a link between a “module” file and Android

41

application as well as to make the module available for
interactive graphical interface being developed in
Inflexion Ul Express. Fig. 41 depicts the registration
module.

-
2 Java - GyroAppCode/jni/android.app - Eclipse SD [EEREERs)

Eile Edit Run Mavigate Search Project Refactor Window Help
il = BRHE $-0-A- - &S~ O H-F-mera- Ef @DOMS %5 Debu
[£ Package Explorer i RS android.application &5 =8 N’l =8
=
15 GyroAppCode - 1«?xml version="1.0" encoding="UTF-8"2> sk & B D ®
5B src B 2 <applicationDefinition name="Android application” GUID="ifxui android" deviceDefiniti x &
H com.GyroAppCode 3 <supporteddodules> N
18 com.mentorgraphics.ifxuitemplate <support module="..%\srchifxui_template.module" programmingLanguage="java"/>
[com.mentorgraphics.pitchbankmodule E <support module="..\src\pitchbank.module" programmingLanguage="java"/>
|2 ifxui_template.module 6 </supportedModules>
|2 pitchbank.module = 7</applicationDefinition>
] gen [Generated Java Files]
=, Referenced Libraries
=i Android 2.2
E'@ assets
(= jni
(= native -
(= samplepackages 4| n G
droid.applicati =
J andro!d :pp.ICE o0 [Prob\ems(@ Javadoc r@) Declaration FE Console &I &3 Progress | &)= Vanablaq 3 Dabug} =] Propemes} 8
=| android.device
B A <terminated> GyroAppCode [Ant Builder] C:\Program Files (x36)\Android\android-ndk-r5c\appsiGyroAppCode\makeNDKxml
|=| Android.mk - .
& libs L Xk GHEE B3~
| I G v
e
u | Wiritable ‘ Insert | 1:1

13

Fig. 41) Inflexion Ul: Module registration

Create JAVA interface class that contains prototypes of
functions used to read/write to variables shared between
Inflexion Ul environment and Android application being
developed in Eclipse IDE and defined as fields of the
module(s) file(s). JAVA interface class is created automatically
every time the project is built. To build the project, navigate to
“Project > Clean...” in Eclipse, select the project to build and
click “OK”. Generated Pitchbankmodulelnterface.java
interface class will be located @ “<Eclipse> <GyroAppCode>
src > com.mentorgraphics.pitchbankmodule >

/***

* % %k % X

Copyright 2006 Mentor Graphics Corporation
All Rights Reserved.

THIS WORK CONTAINS TRADE SECRET AND PROPRIETARY

WHICH IS
* THE PROPERTY OF MENTOR GRAPHICS CORPORATION OR ITS LICENSORS AND IS

* SUBJECT TO LICENSE TERMS.

*

INFORMATION

**/

42

* WARNING: This file is automatically generated. Any changes made to this
* file may be lost.

*

**/

package com.mentorgraphics.pitchbankmodule;
import java.nio.ByteBuffer;

import com.mentorgraphics.inflexionui.modules.Handle;
import com.mentorgraphics.inflexionui.modules.Module;
import com.mentorgraphics.inflexionui.modules.l1fxModule;

public interface Pitchbankmodulelnterface extends IfxModule {

[* Link enums */
public abstract int initialize(
int hModuleld);

public abstract int shutDown();

public abstract int getFieldIntData_pitch(
Handle<Integer> pData);
public abstract int setFieldIntData_pitch(
int value,
int isFinal);

...remaining fields follow:

public abstract int getFieldintData_next\VariableName(
Handle<Integer> pData);

public abstract int setFieldIntData_nextVariableName(
int value,
int isFinal);

o Create module's JAVA implementation class
“Pitchbankmodule.java” based on JAVA interface file
already created automatically. This file will be further
modified manually to meet application dependent
requirements and won't be affected by subsequent
project's builds as JAVA interface file will be.

43

“Pitchbankmodule.java” contains part of actual Android
application code. To create the file follow the steps below:

. Right click “Pitchbankmodulelnterface.java” and
select “New > Class”

o Set the values as shown in Fig. 42, and click
“Finish”:

= New Java Class_—-_

Java Class ~
Create a new Java class. @

Source folder: GyroAppCode/src
Package: com.mentergraphics.pitchbankmodule

[] Enclosing type: com.mentergraphics.pitchbankmodule,Pitchbankmodu Browse...

Name: PitchBankMadule
Modifiers: @ public) default private protected
[T abstract [final static
Superclass: Javalang.Object
Interfaces: (1} com.mentorgraphics.pitchbankmodule.Pitchbank... Add..

Remove

Which methad stubs would you like to create?
[7] public static void main(String[] args)

Inhemted abstract methods
Do you want to add comments? (Configure templates and default value here)

|:| (Generate comments

®) (o

Fig. 42) Inflexion Ul: Java class
J Modify “PitchBankModule.java” to incorporate
Inflexion Framework into Android JAVA code and
implement the module.

Open “Pitchbankmodule.java” in JAVA editor available through Eclipse IDE and add import
lines as shown in the Fig. 43 manually:

44

= Java - Gyrofpp ‘mentorg) Ban| ulejava ipse SDK

File Edit Run Source Mavigate Search Project Refactor Window Help
il BAE #-0-&- #@6- &F~ PAEN S~ ora-~ T #3DDMs %5 Debu
[% Package Explorer 2 = i’:g) ¥ =08 ‘m Pitchbankmedulelnterface java (‘m PitchBankMedulejava & =8 N’L =B

1% GyroAppCode = 1 package com.mentorgraphics.pitchbankmodule; :E % & B O 7
i src 2 = = & d
f [com.GyroAppCode 3= import android.os.Environment; i i
I B com.mentorgraphics.ifiuitemplate 4 import android.util.Log: i I
/B com.mentorgraphics.pitchbankmody 5 , =
G0 Rk R R R R R R AR A AR R AR AR AR AR AR AR AR AR AR AR AR AR AR AR AR R AR

|41] PitchBankModule javal

m Pitchbankmodulelnterfacejava
= ifxui_template.module
= pitchbank.module
s gen [Generated Java Files]
=), Referenced Libraries

The following lines have been added manually to
* import Inflexion Framework related sections:

o

m

o o

import com.mentorgraphics.inflexionui.IfxFramework;
import com.mentorgraphics.inflexionui.modules.Handle;
import com.mentorgraphics.inflexionui.modules.Module;

-
P
b
b
p
b
b
b
b
p
b
b
p
b
b
p
b
b
b
b
b
b
b
p
p
b
p
p
b
p
b
b
p
b
b
p
b
b
b
b
p
b
b
p
b
b
p
b
b
b
b
b
b
b
p
b
-
(I | [[

2
=\ Android 2.2 3
G@ assets “n %
= jni L il »
a, =
(:‘I@ libs [£! Problems (@ Javadoc (@) Declaration (E Console &2 3 Progress | ()= Variable;] 3 Debug] = Properties] O
E? :;d idmk <terminated> GyroAppCode [Ant Builder] C:\Program Files (x86)\Android\andreid-ndk-ric\apps\GyroAppCode\makeMDKxml
|= Android.m I et > [~
@] AndroidManifest.ml ® &| G BE[E dEI' e~
e . T || ndkExists:
a m] » 4 3
o° com.mentorgraphics.pitchbankmodule.PitchBankModule java - GyroAppCode/src

Fig. 43) Inflexion Ul Inflexion framework imports

Add manually the member of the class as well as its initialization constructor as shown in the
Fig. 44, then save the file:

Nk java | [J] Pi java 52 =a
2¢ public class Pi le impl ts Pi leInterface { -0
25
26= private IfxFramework mIfxFramework: /= e =
27 * Manually added Inflexion framework re

class

Lo

private int moduleId:
private int startup_n = 0;
private int pitch = 0;

private int pitchOffses = 0; =
private int bank = 0; =
private int bankOffset = O;

private int var0 = 0; //gockpif vibration filter programmable coeffi

private int varl = 0;
private int varz = 0;
private int var3 = 0;

private int var4 = 0; =
private int vars = 0; =
private int varé = 0; =
private int varl = 0;
private Socket socket_; =
private ServerSocket server_;
bCommHandler ush2MPUS000CH 1
=
DUDLLC PACChBANKMOGULE (TEXFLAMEUOTE FrAMAWTI) { /%% %% % s s sssssssssssssnsnssssssssnsnssnssven =
* Manually added Inflexion framework related =
* variable initialization comstructor in order * =
* ko use methods that come with the framework * =
.. 7 E
TODO Zuto-generated constructor stub =
nlfxFramework = framework; =
} <

Fig. 44) Inflexion Ul: Class member

Integrate module implementation class with Android application by adding lines into
“GyroAppCode.java” as shown in Fig. 45 and save the file:

45

J] Pitchbankmedulelnterface java] PitchBankModule java [J] GyroAppCedejava &3 . [J] GyroAppCedeActivityjava =g

45 import com.mentorgraphics.ifxuitemplate.lfxuitemplateModule;
import com.mentorgraphics.inflexionui.IfxFramework;

16 import eom.mentorgraphics.inflexionui.modules.IfxModule;

17% iNpOTt COM.MENTOrgraphics.pitchbankmodule. PITCHBANKMOGULE; /%% %% # s s s s s s s s raa s s a sk mm s mnam R nan s
8 der to *

23 public class GyroAppCode extends IfxFramework {

@Override
public IfxModule getInflexionModule (String moduleName) { /errssssssssssasnssmrssnnns
* Method i

if (moduleName . equalsIgnorsCase ("ifxuitemplate”)) {
return new IfxuitemplateModule (this);

if (moduleName.equalsIgnoreCase ("pitchbankmodule”)){

return new PitchBankModule (this);

throw new RuntimeException("Unknown module name”);

< I »

Fig. 45) Inflexion Ul: Integration of the module implementation class with Android app
" In order to build Inflexion Ul project select the project to

clean with “Start a build immediately” option checked as
shown in Fig. 46:

46

[~ Bl
G} Ul Design - GyroUl/Templates/root template - Inexion UL Exprass.. (x| o=l i S

File Edit View Mavigate Search [Project] Window Help
Fi~ | m B Open Project
o 5] v kD O - - Close Project
a o
fEE X £F 2H 3 Build Al Ctrl+B
= . - 2
T Project Explorer &2 m Build Project Ij_
2| @ & ¥ BuidWorking Set v [2
)
- 2 controlsPalette - Clean... [— B
s T2 effectsPalette Build Automatically b
a ?5 GyrolUl [Generic]) L
4 [~ Graphics ——— L
] bgWVGA_Lpng o L .
El| « [m
\=| gyro_ring.dae . L
{ R B FER)
q) Clean - I
"j Clean will discard all build problems and built states. The next |
4| time a build occurs the projects will be rebuilt from scratch,
. B R () Clean all projects @ Clean projects selected below I
> = Q| | O 2 controlsPalette |
4 (=7 ['[geffectspalette |]
'El‘ TgGyrDUI
['[gmenusPaIette i
[] Start a build immediately |

(2 Build the entire workspace

@ Build only the selected projects:

[ok || Ccancel

TyTOOT

Fig. 46) Inflexion Ul: Project build
o Export modified Inflexion Ul project into Android Eclipse IDE.

. Link Android application project being developed under Eclipse
with Interactive 3D Graphics being developed in Inflexion UL.

. Copy the path to the “jni” folder in Eclispse IDE as shown in
Fig. 47, and click “Cancel”:

47

2 Java - Eclipse SDK l=lal x|
Fie Edit Run Source Navigate Search Project Refactor Window Help
o Baild $-0-Q@- HGE- &S~ H-F-0E-D- & @ DoMs ”
2 Package Explorer & EE SO)|(#kax\ 2 -0
12 GyroAppCode - ~ L5
‘7;5 e & Properties for jni 1 - = | |
gen [Genersted Javs Files] .
filter text v
4 Referenced Libraries fypefiter Resource
= Android 2.2 Resanrce) Path: /GyroAppCodejni
& assets Run/Debug Settings
Type: Folder
Bg " Location: [C:\Program Files (86)\An
native

= somplepacksges Last modified: July 17, 2011 %:48:18 AM Undo

% android.application Attributes: Cut

) android.device [Read only o
o B Androidmk [Archive Paste
& libs
& res [Derived Delete
[Androidamk Test file encoding et
o AndroidManifestxmi inherited from container (Cp1252) clect Al
|2 Application.mk © Other: [Cp1252 Right to left Reading order

default.properties
%] makeNDKxml
[2) proguard.cfg

32 InflexionUIRuntime

Show Unicode control characters

Insert Unicode control character » Apply
OpenIME

@ Cancel
Reconversion

h e

o jni - GyroAppCode

Fig. 47) Inflexi

File Edit View Navigate Seard

md | &
£ x| -]
s Project Explorer 52 =
=K

on Ul / Eclipse integration — “jni” folder in Eclipse

Paste the path to the “jni” folder previously copied in Eclispse
IDE into “Inflexion Ul Express > GyroUI > Properties >
Theme > Application Definition > Location” to link both
environments the project is being developed in as shown in the
Fig. 48:

“—_
[Propertis for GyroUl M. (I

P& controlsPalette
T effectsPalette
B2 GyroUl [Generic]

(& Graphics

] bgWvGA_Lpng

[5] gyro_iingdae
gyro_sphere.dze
[5] gyro_wings.dae
] ring bekgrmd.png
1] sphere_bekgmad.png

1] wings face.png
& Menus
& Output
(= Templates

() roottemplate
& UlFlow

15 alltokens

menusPalette

Al (74]_Graphics (50)| 3

type filter text Theme MR
Resource & [UiDesign
Packager Application Definition: Android application
Palettes I =85
Project References)
Refactoring History) Application Definition ', s
Run/Debug Settings
TaskTags Choose Application Definition
Theme Choose an Application Definition for this project from a list of installed or custorn definitions.
Validation
Search Application Definitions: GuD:
Description:
Android application A |
Details: .I

Choose from directory

Py

(5 Resources &1 = Location: C:\Program Files (@8)\Android\android-ndk-r5c\apps\GyroAppCode\jni|
Search: i @
® =
e -

~ || Info Application Definition|

[Gyrour

Fig. 48) Inflexion Ul / Eclipse integration — “jni” folder in Inflexion

. Copy the path to the “samplepackages” folder in Eclispse IDE as in
the Fig. 49, and click “Cancel”:

48

2 Java - Eclipse SDK

=l % |

File Edit Run Source

Novigate Scarch Project Refactor Wind

=0 Q- B G S

dow Help

5 & DOMS.

w5 8 ald

Run/Debug Settings

(= samplepackages
(= AndroidTemplatll
17| GyroUI-1.0.0_Filell
|| GyroUI-1.0.0_Fildl|

2 Packege Bxplorer 24) 2 Properties for samplepackages . | 5
12 GyroAppCede ‘type filter text Resource a4
e Resource

Path: /GyroAppCode/jni/samplepackages

Select All

ng
® Inherited from container (Cpl252)

ges - GyroAppCode/jni

Other: | Cpl252 Right to left Reading order
Show Unicode control characters
Insert Unicode control character » I
(6] AndroidManifestxml S Open IME
)
2 Application.mk @ Reconversion]
default propert
] makeNDK el ™Y v —
2 - |[[EL Problem | @ Javadoc | [€), Declarati | EJ Console 52 =3 Progress| 9= Variable | 5 Debug| = Properti | = O

Fig. 49) Inflexion Ul / Eclipse integration — “sample packages” folder in Eclipse

Export .c and .dat files generated by Inflexion Ul Express to Eclipse

as a ROM package as depicted in Fig. 50. Interactive graphics
developed under Inflexion Ul becomes immediately available in
Eclipse IDE and gets integrated with Android application JAVA code
through the set of variables.

7 =y
{J Ul Design - GyroU/Templates/root.template - Inflexion UL Express for Select LMX Processors |
File Edit View Navigate Search Project Window Help
o4 - | & Big¢ i EEIR A RCR AR £ [0 UDesign
2 x| | | | | |
& Project Explorer 22 = O|[@ rocttemplate 3T =
]
=&~ W T I N Palett b
R contiosps New . v
» L effectsPale Go lnt © Epon Enoughly
4 [i Gyroun [Ge Open in New Window Select A
4 (= Graphi /
bg) (2 Copy Packages a Ul design project nto an Inflexion Ul theme. L
B oy i paste
SO % Delete Select an export destination:
EEY
Move, I
ting
pf Rename il
wir| (D Packaging the Ul design project o]
» & Menus -
. & Outpul Inflexion UI Package Export Wizard
4 > Temply Packaging the Inflexion Ul design project. Select the appropriate
0 roq option of export format and location
» & UlFlow ©
= Al Available projects:
> & menusPalq & GyroUl [Generic] selectll | |
I
I @
(B Resources &1 N <Back |[_Net>]
Search =
Al (74 Graphiq r
»
- bgWVG| Restorefrom Local History..
I Source »
| &Y ovon Show in Previewer frition
0% [l Gyrol i
yrol
] i Properties _ i
@ [Ccmse] et [finsh | [Conca] ||

Fig. 50) Inflexion Ul: Package wizard

Android application JAVA code interface between both development environments,

Inflexion Ul and JAVA in Eclipse.

“PitchBankModule.java” includes functions to serve as a mid-men between

Eclipse and Inflexion Ul environments as follows:

o

Function called by Inflexion framework to fetch the value of the variable.

49

In this example “pitch” is that variable:

public int getFieldIntData_pitch(Handle<Integer> pData) {

©)

pData.value = pitch_eclipse; /* pData.value represents
“pitch” variable accessed by Inflexion UI through the
module */

return O;

Function called by Inflexion framework whenever the variable is
modified by the Inflexion Ul In this example “zero” is that variable:

public int setFieldBoolData_zero(boolean value) {

o

pitchOffset += pitch;

pitch = 0;

mifxFramework.ifxiRequestFieldRefresh(moduleld, 0, -1,
"pitch™);

bankOffset += bank;

bank = 0;

mifxFramework.ifxiRequestFieldRefresh(moduleld, 0, -1,
"bank™);

return O;

Function called by the Android application to inform Inflexion Ul that
the wvariable is being updated, so that Inflexion Ul can call
getFieldIntData zero (for variable “zero”) to refresh the value.

mifxFramework.ifxiRequestFieldRefresh(moduleld, 0, -1, "zero");

Debugging.

In Eclipse open “AndroidManifest.xml” using Android Manifest Editor
(accessible through right clicking and selecting from the list)

Navigate to “Application” tag

Set “Debuggable” option to “true”

Save the file

Set the breakpoint at desired line of desired file including JAVA code by right
clicking on the line number and clicking “Toggle Breakpoint”

In “Eclipse > Package Explorer” right click on the project top folder and select
“Debug As > Debug Configurations...”

Select configuration corresponding to a given project.

Click “Debug” button and select device currently connected via ADB
(Android Debug Bridge) protocol.

Click “OK” in order to download and launch application on the physical

50

device (i.MX53).
Perform a proper action on the target device to cause the stop of debugging at
the breakpoint.

Downloading into Android device (running onto Android)

Right click on Gyro in “Eclipse IDE > Package Explorer”

Select “Run As > Run Configurations...”

Click on the icon “New Launch Configuration” if desired configuration does
not exist yet.

Enter desired name of the configuration

Click “Browse” button and select the project to run

Navigate to “Target” tab

Pick “Manual” as “Deployment target selection mode”

Click “Run”

Choose a running Android device from the list that corresponds to the device
under development (i.MX53)

Click “OK” to install and run application on the target device

51

Chapter 5

Development of 3D Objects and their integration with Inflexion Ul

5.1. 3D Format

5.1.1. Collada (COLLAborative Design Activity) format.
Collada files describe 3D objects using XML (Extensible Markup Language) and
support sharing digital resources among independent graphical applications through
standardization. Collada files are extended with “.dae”, which stands for “digital
asset exchange”.

5.1.2. Graphics interface between Blender suite and Inflexion Ul.

Inflexion Ul accepts 3D objects in Collada format (COLLAborative Design
Activity) that defines interchange rules for interactive 3D applications that might
include animations.

At the time of developing graphics interface for this project, Inflexion Ul accepted
Collada files that include features exported by Blender v. 2.49, which used, already
obsolete, user interface (the last “old” version of Blender) and API (Application
Programming Interface). Therefore, 3D objects were created in Blender v. 2.5, with
modern GUI and API, then imported by Blender 2.49 and finally exported as .dae
files to be used by Inflexion Ul. Blender is a tool that utilizes OpenGL library for
drawing graphics interface. It uses scripts written in Python (popular interpreted
programming language), that calls on its routines in order to extend existing
functionalities. “Blender is the free open source 3D content creation suite, available
for all major operating systems under the GNU General Public License.” [29].

5.1.3. XML (Extensible Markup Language)
XML constitutes flexible, self-descriptive (tags are defined by developer) text
format markup language, designed to handle the challenges of electronic publishing
(transporting and storing data) and its interchange among independently developed
applications, even on incompatible platforms.

J Features of XML [30]:

Used to simplify data storage and sharing.

Separates Data from HTML.

Stores data in separate XML files.

External XML files can be read and modified using JavaScript

Simplifies Data Sharing

XML creates a bridge between systems with data in incompatible
formats. Simplifies Data Transport between incompatible systems over
the Internet.

" Stores data in plain text format, thus providing software/hardware
independent mechanism of storing data.

52

. Simplifies Platform Changes (data described using XML stays

untouched).

" Makes data available across different applications (HTML pages and
XML data sources)

. Used to define new Internet languages, e.g:

o A lot of new Internet languages are created with XML, e.g:

XHTML

WSDL for describing available web services

WAP and WML as markup languages for handheld devices
RSS languages for news feeds

RDF and OWL for describing resources and ontology

SMIL for describing multimedia for the web

5.2. 3D IDE.

5.2.1. Blender (Due to the complexity of the tool, only essential information related to
this project has been emphasized, without providing step by step guidance.
Documentation, including manuals and tutorials is available at
http://www.blender.org).

. Key features [31]:
" Rendered and post-processed image

" Fully integrated creation suite with broad range of essential tools for the
creation of 3D content , like:

. Modelling.
Base objects in Blender are added to the project through menu.
Depending on the application they may be further modified.
Basic operations in Blender are: changing the position of the
object, resizing the object and rotating the object (available

i
through Hot-Keys or icons as follows: 'L“-- --).
Modelling in Blender is shown in Fig. 51 and basic elements of
the 3D object(s) are depicted in Fig. 52.

53

http://www.blender.org/

—_—
) Blender* [DADIR\COURSE\GradPrjct\CODE\GyroApp, ¢

Fig. 51) Modelling in Blender v. 2.5

3D obijects consists of different elements as follows:

_.-—-—"‘

~E@uoe

vertices edge faces polygons surfaces

Fig. 52) Editable elements of the 3D objects [33]

Particular meshes are positioned using “Object Mode” and modified
further using “Edit Mode”. Basic operations used to create desired shape
include mirroring and extruding.

Texturing, which connects triangles that make up a 3D object with
the image, and UV-mapping shown in Fig. 53, defined as the process
of making a 2D image representation of a 3D model. Popular
nomenclature uses X, Y, Z letters to describe 3D object in the model
space, and to differentiate, U, V letters to describe 2D mesh
coordinates in the model space, as shown in Fig. 54.

54

e 9°%

Fig. 53) UV mapping of the cube 3D object [32]

3-D Model UV Map

Texture

Fig. 54) 3D object texturing through UV mapping [32]

55

Fig. 55-58 illustrate the elements of the Attitude Indicator 3D object:

.
7% Blender* [DADIR\COURSE\GradPrjct\CODE\GyroApp\ Gyro283DGraphics\GyroBlender\B25\qyro2 blend] TLEI&M

Al H - 1 Blender Render ¥

13

User Ortho

(-+ S+ R 4 4)
o <1 <1 <1 <1 <1 <1<
¢ e e e e e e

ERENERENENENENE]

i
ape
L=

XYZ Euler -

(15) Sphere

® Object Mode

Fig. 55) Attitude Indicator 3D representation created in Blender v. 2.5 with 2D picture used to
UV map the sphere part of the 3D object.

56

5 Blender [d:\DIR\COURSE\GradPrict\CODE\GyroApP\ Gyro283DGraphi denB2A3\gyro_sphere blend] TR W S T T e
@v File Add Timeline Game Render Help | =|SR:2-Model X || =|SCE:Scene x_ Ve82 | Fa:512 | Ob:3-1 [La:1 | Mem:1.25M (1.18M) | Time: | gyro3_sphere

(1) gyro3_sphere

By~
¥ View Select Object | & Object Mode =
~ Panels

£33

(&) Object
o (Elmatmaterial __ [X[6]][nodes |
l] s NETETIMG ST e T n?
[iomist | eow | choolorfshada on] uESMossohed oo JTIT 2 et |
u Col
o] EE! Render Pipeline

[| [ios | v [svands |z |
[e] padio Traceable

Fig. 56) Partial (sphere) mapping of the Attitude Indicator 3D object (imported by Blender v.
2.49)

=) Blender [d:\DIR\CO OD! PP\ Gyro28:3DGraphic

\gyro_ring bl

[§ ¢ = File a&dd Timelne Game Render Help | =|SR:z-nodel X | | =[sCE:Scene X |- wawwblender.org 249 Ve:194 | Fa:226 | Ob:3-0 | Lt | Mem:1.06M (1.85M) | Time: |

~ View Select Object [Object Mode =] 4 [o @ aoa =] FHHFHHHHE] [~ Wiew Image [[#[IMring_bokgma png X [a]fale] [a]
~ Panels |&|=|@ k- 1

Fig. 57) Partial (ring) mapping of the Attitude Indicator 3D object (imported by Blender v. 2.49)

57

1+) Blender [¢ADIR\COURSE\GradPrict\ CODE\GyroApp\. Gyro2&:3DGraphic §2\gyro_wingsbiend] I T T i
[4 ¢/ = File &g Timeline Gome Render Help [_=SF:2-Model % | [2[5CEScene X | - wwwhlenderory 243 ved153 | Fa2vzs | Obd-3 | Lat | Mem:1.83M (1.86M) | Time: | gyrod_wings
i i . 1

My q
Wiew Select Object
Panets [e[H[@[El@] [1]

=[MEgwes_winas | F|@Biao3_wings [—_sate Smooth | [Teshtesh:

nodifiers Shapes
[A tlfires | [Add mhodifer | Te: quro3_winas

1
TS aterisl ENT I e
wuTeshre
ECInE
Qluvres (s

new | oelefe i Dulete T e
CopyGroup: Selact | Deselect

Assian

o d

Fig. 58) Partial (wings) mapping of the Attitude Indicator 3D object (Blender v. 2.49 import is
shown in Fig. 59)

,
5 Blender [d:\DIR\COURSE\GradPrict\CODE\Gy o S = e
\[f | ¥ File Add Timeline Game Render Help [<[5F/

ﬂ: = Wiew Select Ohjec | Wiew Image |

(@ v serpts [«]0] [=[coLLapa1aqdas)]
Collara 1.4.0 plugin for Blender

Wersion: 0.3.161

If this plugin is valuable totyou ar your company, please consider a donatig
http:licolladablender iluzoft.com to support this plugin. Thanks a lot!

Export

Ewxport file: §s

Only Export Selection]

Sample &nimation

[Disable Physics]

Only Current Scene
Use Relative Paths

Use UY Imag

Apply modifiers

| Cancel | |Exp0r1 and Close| | Export |

Fig. 59) Export of the 3D object from Blender v. 2.49 to Collada (.dae) file using settings

58

acceptable by Inflexion Ul (shown)
" Rigging — a computer animation technique that groups elements in
an animated 3D computer model. Object is represented by two
elements: object's surface (mesh) and interconnected skeleton (rig).

" Skinning - the process of creating the link between the rig and the
mesh
" Animation created in Blender has not been used for this project.

Animation has been incorporated into the Android application solely
using Inflexion Ul Express.

" Simulation — the process of imitating physical phenomena
. Scripting — the way to extend Blender’s functionalities
. Rendering — the process of converting object’s model into the image

of its 2D representation
. Compositing — combining separate elements into single object

. Game creation — using integrated Blender’s gameengine to build
interactive 3D applications

. Uses OpenGL GUI that, uniform on all platforms and customizable
through python scripts. Supported OS: XP, Vista, Win7, Linux, OS X,
FreeBSD, Sun and others.

" High quality 3D architecture enabling efficient work-flow

" User community support by forums for questions, answers, and critique at
http://BlenderArtists.org and news services at http://BlenderNation.com

. Small executable size and easy distribution
o Blender’s Hot-Keys (used as the primary tool to access Blender’s
functionalities). In-depth reference is available at

http://download.blender.org/documentation/BlenderHotkeyReference.pdf

5.3. Using 3D objects within Inflexion Ul environment
5.3.1. Import.
In order to make 3D objects created in Blender and exported to Collada (.dae)

format available from within Inflexion Ul Express environment, those files simply
need to be copied into “<Project Directory> Graphics” folder using file manager

59

http://download.blender.org/documentation/BlenderHotkeyReference.pdf

(e.g. Windows Explorer). Accompanying images used for UV mapping earlier need
to be copied into the same location. After copying, right click on “<Inflexion UI>
GyroUI” shown in Fig. 60 and select “Refresh”.

= Project Explorer 51 = B|[@ roottemplate 53 =0
1 =
ol &g || ETEETTIR U | 6 palette b
. &2 controlsPalette B | 0 Layout Manager - I
P [
» (2 effectsPalette ol & [coeff_adjRoughly: coeffAc

4 i GyroUI [Generic] [coeff_adj: coeffAdjEn
4 (= Graphics) —— [} defaljt: TRUE
1] bgWVGA_L.png
=l gyro_ring.dae
= ayro_sphere.dae
=l gyro_wings.dae 3
| 1] ring_bckgrnd.png - TTIT LT LI LT

-50

1| sphere_bckgmd.png 2 K] 3
1] wings_face.png - Element M . -
» = Menus - i B .
I . & Output gl b il gyro_ring &
4 [= Templates ' i gyro_sphere
l & roottemplate - _é i [l gyro_wings i
> (= UFlow -1 P N) —— v
B Resources 53 %} = = [| Layouts| Settings
Search: K B Conscle | & Properties 52 =’:=::> = =0
Al (74)™_Graphics (50)| 3 Property Value

Info

- bgWVGA_Lpng

~ || Info | Application Definition
o® [k Gyrolll

Fig. 60) 3D objects available from within Inflexion Ul (.dae and .png files under
“Project Explorer”)

5.3.2. Once 3D objects become available in Inflexion Ul, they can be dragged and
dropped at the desired locations on the “Screen/Page” (select through “Element
Manager”) of the “root.template”.

5.3.3. 3D object’s Properties.

Fig. 61 illustrates the primary 3D object’s properties include its original location
(X,Y, Z) on the layout the object is placed on, and its spatial orientation (Azimuth,
Elevation, Roll).

60

B Console | £l Properties &2

Property
Element Type
- In all layouts
a In this layout
Color
. Extent
Frame
4 Location
X
Y
z
- Offset
Opacity
a Orientation
Azimuth
Elevation
Rell
- Scale
Visual Effect Uniforms

Value

Graphic

(330.11084, 330.11084, 330.11084)

(4.0, -15.0, -70.0)
40

-150

700
(0.0,0.0,0.0)

(180.0, 0.0, 0.0)
1800

00
(1.27,1.27,1.2)

Fig. 61) Primary 3D object properties available in Inflexion Ul
5.3.4. Animation.

An animation of the 3D object that constitutes the part of the user interface created
in Inflexion IDE can be realized through its displacement. That way the object’s
original position (location and orientation, but also size, etc.), and hence appearance
in the layout, can be interactively modified through updating assigned variable(s)
values that control particular displacement. Those values are usually dynamically
defined by Android application, outside the Inflexion Ul, but also they can be set by
Inflexion Ul if variables are defined as local to that environment.

In order to setup 3D object’s displacement and assign it to a given variable to
following steps can be taken as an example:

e The variable to be used to displace a 3D object needs to be defined. It can
be ecither Inflexion’s UI local variable, not available from Android
application developed in Eclipse IDE or a variable defined in Eclipse
available for Inflexion Ul. The process of defining variables has been
described in Chapter 4 “Android Application” of this report.

e Using an Inflexion nomenclature, so called “Touch Region” needs to be
created. The user gains a control over a 3D displacement through that
“Touch Region”. The “Touch Region” needs to be added as a component
of the Page and placed, by dragging and dropping, on the active layout
including that Page afterwards, as shown in Fig. 62.

61

. — —————— e N
[U1 Design - GyroUl/Templates/root.template - Infexion Ul Express for Select i MX Processors E=Hal

File Edit View Navigate Search Project Window Help

[=) ko p - - mnumm;..

|) 100% ~ |[@)o0 180" 270°

- B & e~

T Project Explorer U [rooktemplate 5 =
| @4 = || L. 400 + 350 + 300 + 250 + 200 + A5 |3 palette b [5
PE effectsPalette N * | Layout Manager -
% R
&2 Gyroll [Generic] Rilg Y coeff_adjRoughly: cosffAdjEnRoughly
| (& Graphics =lf. [coeff_adj: coeffAdiEn |
4] bgWVGA Lpng N >) default: TRUE i
gyro_ting.dae E
gyro_sphere.dae -]
gyro_wings.dae 2 "
fina bckomd.ona 7 Hement Manager -
| Resources &1 W~ =0 |
Search: | &
= ~ Switch Coordinate Space
All (74) _Graphics (50)| 5
B New Text
- bgWVGA_L.png - 3 New Graphic
gl New Plugin
‘‘‘‘‘ y -
gyro._ting.dae - | [
& | i New Touch Region
% 4 e " 7 New Light Bulb -
h
guro-spheredee Layouts| Settings New Directional Light
E Console | = Properties 5% Ll | New Component Fo i
gyro_wings.dae
Property Value Copy
) Element Type Page placement Paste
ring_bekgmd.png In all lzyouts Delete
— In this layout -
~ 1 Properties

[£0 Each layout specifies the placement (position and appea... first “active’ layout found in this lst will be used.

Fig. 62) Placement of a “Touch Region” component on the active layout
using “Element Manager”

e The “Touch Region” has to be configured. Access to its properties is
available through “Element Manager”, as shown in the Fig. 63. The crucial
properties of the “Touch Region” are the variable assigned to define its
“Drag Field” and the operating range it would affect.

' Ul Design - GyroUl/Templates/roat template - Infiexion Ul Express for Select | MX Processors =S
Fle Edit View Navigate Search Project Window Help
|t Project Explorer % =00 roottemplate di=
EE _i_ 100 150 200 : 250 300 1 |4k paette b E |
B Bk Q
PE effectsPalette Layout Manager -
2 GyroUl [Generic) g T P PO —
& Graphics = | Blement Manager - |
= hngcA_:png [Slider_pitch -
10_ting.dae
arre-nng < touchRegion_bank &
| ayro _sphere.dae A &
gyro_wings.dae < touchRegion_pitch
rina bekamd.ona ™ « © touchReaion rinaRank = |
— == o) Layouts| Setti
(5 Resources (3 A (=] ye ng
= . B % =T =
Search: 4 || Console | properes 3 [BE g
P 1!
Al (745" Graphics (501 s pely; el
Drag Type relative
- bGWVGA L png Name touchRegion_bank
Parent
Tappable
|| gyro_fing.dae Tep Tolerance
4 X Drag Field Sensitivity=100.0
[Deceleration
| % gyro_sphere daz 4 Field bank (-1800 - 1800)

Field

Max % 1800
gyro_wings.dae o e poed
Inverted
ting_bekgmd.png Max Velocity
Sensitivity 1000
T Theachald j
|

o° [Fied

Fig. 63) Access to “Touch Region” properties through “Element Manager”

After the variable to control displacement and the “Touch Region” are both
set up, the “displacement” itself needs to be created and configured. The
function of the “displacement” is to link the object’s placement, which
describes its appearance on the layout, with the variable that controls it
dynamically (at runtime) within predefined range of movement. The

62

displacement is created through “Layout Manager” as depicted in the Fig.
64:

o S "
L} Ul Design - GyroUl/Templates/root.template - Inflexion UI Express for Select i MX Processors SHACEl X
File Edit View MNavigate Search Project Window Help
- & Bie g~ -Gl vk o & (@ UlDesign
| | | | 100% - |[07]o0r 1800 270"

1 Project Explorer 52 = O [E rosttemplate &3 =8

a8
B8 7 ||t 0. 120 0 2000 3% Palette b o
2 effectsPalette e ” | Layout Manager -
b 2
&2 Gyrout [Generic] Elg » [coeff_adjRoughly: coeffAdiEnRoughly
(= Graphics = » [cosff_adj: coeffAdiEn
] bgWVGA_Lpng . 4 [defoult: TRUE
[gyro_ring.dae = » 4} Events
|2 gyro_sphere.dae -4 F 4 7., Displacements
| 5] gyro_wings.dae 5 9 pitch | [¥ Newlayout
fina bekamd.ona ™ S bank
(5 Resources 2 &~ =0 > 2. Animation New Event '
[o e Transition De New Guard
Search: w |f i
N R New Assignment
Al (78) ™ Graphics (50)| 2 = - Hement Manager New Command 2
- “ . =] h
gyro_sphi
- bgWWGA Lpng Timeline Marker Position @l gyro_win| o Diplacement

New Transition Decaration

[2] pitchEditd
| gyro_ing.dae [2 Slider_bar Cut
[T Siider nity Copy
Layouts | Settings.
% gyro_sphere.dae L = e
i

I Console | = Properties £2 Delete

Property Value
gyre_wings.dae 1 Properties

ting_bekgmd.png

Classes of type "touchRegion” allow regions of the di..tap events, modifying the value of one or two fields.

1@
W

Fig. 64) Displacement setup access through “Layout Manager”

In order to assign the variable to drive the particular
“displacement®, it needs to be entered as a displacement’s property along
with corresponding range. Fig. 65 illustrates those settings.

T U1 Design - GyroUl/ Templates/roat template - Inflexion Ul Express for Select i MX Processors | =] & i

File Edit View Navigate Search Project Window Help

S o~ - 5 [© Ul Design |

(n g s - ¥ - vl v

¥ Project Explorer 51 = 0D roottemplate 2 =
| - 100 T 01 M0 0 F0]| g palette bl g
Layout Manager -
" coeff_adjRoughly: coeffAdjEnRoughly
Y coeff_adj: coeffAdjEn |

P& effectsPalette
&# GyroUl [Generic]
(= Graphics

| () baWVGA_Lpng % default: TRUE
gyro_sing.dae [Events
gyro_sphere.dae 3 Displacements

| gyro_wings.dae .., pitch

| rina bekomd.ona bank

| & Resources &2 A~ -0 %i 7, Animation

(s . | B8 = Transition Decorations

1ing_bekgmd.png

ANl (74) " Graphics (50)) s L - | Hement Manager e
- J I E [2] pitchEditBox &
- bGWVGA Lpng Timeline Marker Position -1800 [Sider_bank &
! 2 75 [0 Siider_pitch * |
0 sy ing o [] oo e b Sy P
O\ bonbDoning nibob & ad
Layouts Settings.
% gyro.sphere.dse [Console |) Properties £ [GEEEERELE
Property Value
gyro_wings.dac — % pitch
Max Value 18000
@ Min Value 18000
—
B

Expression

Fig. 65) The assignment of the variable “pitch” to drive a displacement in
the range of -1800 + 1800, i.e. 360deg in both directions with 0.1 degree
resolution for smooth transitions within a real range of -180 + 180 degrees.

The displacement needs to be finally configured to drive the particular
object, as depicted in Fig. 66. To do so, the displacement needs to be single

63

clicked on, followed by single clicking on the object to create the link
with. This enables an access to a different properties set then when object
is accessed separately. The animation can be simulated using the
“Timeline” feature at the bottom of the layout editor.

WD U1 Design - GyroUl/Templates/root.template - Inflexion Ul Express for Select iMX Processors [P
[File Edt View MNavigate Search Project Window Help —
< = 5 UiDesig
15 Project Explorer &3 = OV/@ roct.template 2 =0
[]
=S vt 0t 190, 2, 3500200, 02505 | 5 Palette b
m . - Y
[Layout Manager -
i [coeff_adiRoughly: coeffAdiEnRoughly -
| i8] coeff_ady: coefiAdjEn
i [defaule: TRUE . |
ol 1 Events
i o Displacemen ts
i e
<l pitch
Page ;
Ll 2R “,- bank
= o)« '
EHement Manager -~
Timeline & Marker Position -1500 —
- [FilterPicker
) N 1500 14¢ $00.550-300 5 a5 5
Al 74) ™ Graphics (50)| 73 S P I &l gyro.sing -
- =] [l gyro_sphere &
bgWVGA_Lpn = =
o -pna Layouts | Settings
= —_ G @ 7 =0
0 ayro.sing.dse] Console |~ Propesties (EE
Property Value
Offset
© oo o
Rotation 360, 10,00,00)
Angle 3600
v
ring_bckgrnd.png 4 |
. Scale

Fig. 66) Linking “pitch” displacement with “gyro_sphere” 3D object and
defining 360 degrees rotation of the object around its X axis to be
controlled by the variable previously assigned to that displecement.

Finally the object can be seen in action

using previewer which provides a

developer to the direct access to all the variables, those local and those set

by the Android application at runtime.

Fig. 67 illustrates the previewer.

Previewer allows the test of the interactive user interface before installing

it on the physical Android device.

Gyrel
R R 5 Yl Y A 5 Nl A" Yl

Rl X0 S

1 (0w

& =6

Fig.67) Inflexion Previewer

64

6.1. Overview

Chapter 6

USB Interface

6.1.1. USB (Universal Serial Bus) is a popular standard interface used by USB devices
(e.g. Android tablets) to communicate with a USB host (e.g. PC).

With the introduction of microcontrollers incorporating the USB OTG (On-The-
Go) module by Microchip, it became possible for embedded applications to utilize
the wide range of USB devices as a USB embedded hosts, using their chips.

Per USB standard specification, USB devices cannot communicate directly with
each other as they need to communicate with USB host that controls the USB bus
through which one or more devices exchange data. [34]

The USB host has to learn about the USB device and assign a device driver to
handle further communication over a USB bus. USB device enumeration process is
defined by the following steps[37] :

Device is plugged into host’s USB port

USB hub detects the device

Host gets notified about new device attached to the bus through an
interrupt

Hub determines if the device is a low or high speed

Hub resets the device

Host learns if full speed device supports high speed

Hub establishes the signal path between USB device and the bus
Hosts sends a request packet to learn the maximum packet size of
the default pipe. It uses Get_Descriptor request for this purpose.
Host assign an address to the device

Host learns about device’s features

Host assigns a device driver

Host loads a device driver

The driver selects device’s configuration and its interface(s) are
enabled ever since for communication

6.1.2. USB interface optional implementations.

Tethering Android device to USB device, i.e.: .MX53 as a USB host and
uController as a USB device interoperated via USB bus.

Majority of Android devices acts as USB devices that must be connected to

and controlled by USB host (e.g. PC) via star USB bus. Through tethering, an
Android device becomes a USB host that controls USB devices on the bus.
Such a host can connect to USB devices, in the contrary to the USB device that
cannot connect to other USB devices. Fig. 68 depicts USB Host-Device

65

topology.

T B

- —

a) b)

Fig. 68) Android device as a USB device (a). Android device as a USB host

(b). [35]

In order to transform a standard USB device running on Android OS, its
drivers need to be modified to support USB OTG interface. In case such
modification is made by an independent developer, it would be lost after
uploading the new revision of the operating system to the Android device by its
vendor, who does not maintain that driver as a part of device’s OS kernel.
Therefore custom USB OTG solution involves the following challenges [35] :

USB host has to supply 5VDC to USB devices per its
specification. Standard Android device is not equipped in the
hardware to support this requirement, so customization is
necessary.

In Android environment, USB services are supported by device
drivers, as depicted in Fig. 69, and Linux kernel. USB host
uses number of drivers that logically communicate with a given
device driver that handles external, physical USB equipment.
Each Android device is built out of a device-specific hardware,
with unique registers, data buffers, intra-hardware
dependencies, etc. The hardware of each, vendor/PN/revision
dependent chipset, differs and hence requires specific host
controller driver to handle each particular device, with its
unique features and without affecting the remaining,
standardized part of the USB stack, i.e. host core driver that
incorporates common, across host core drivers, solutions to
handle standard USB functions like buffer management,
devices’ attachment and configuration, data transfers, etc.

66

USB Function Driver

Z — 4 [(Deviceinterface)

; Class Drivers _

S Host Device

= Core Driver Core Driver

© I |

] Host Device

Controller Driver d:'.:> ControllerDriver
Host Controller Device Controller

Hardware Hardware

|
|
]
L USB Host ;r % USB Device y

- o —
L U U U SRR U —

Fig. 69) USB driver architecture [35]

Function drivers encapsulate device interfaces. USB host needs to access
USB device interface(s) to obtain information about device’s capabilities. USB
core driver and host controller, both handle devices enumeration, connection
procedures and data exchange. Enumerated USB device reports to the host its
configuration(s) that describe(s) device’s interface(s) and endpoint(s) to
connect to. USB function drivers serve the USB host as access solutions to
device functionalities. USB host has host class drivers implemented, which it
uses to communicate with USB device function drivers. Linux OS supports
standardized, e.g. HID, CDC, etc. class drivers for the number of interfaces.
New capabilities that come with USB OTG specification require new driver
architecture that needs to support host and device mode during and after
having a USB communication channel established. In order for the Android
device to provide USB host capabilities, the processor running OS has to have
USB host controller hardware built-in or at least available through available
on-board interfaces. Also, the processor needs a driver for Linux in order to act
as a USB host. BSP (Board Support Package) with Android OS used for this
project, provided by Adeneo includes USB host controller drivers, but access
to those drivers is not available from the Android API level, and therefore such
implementation would involve additional Android OS level modifications and
kernel recompilation. These changes would negatively impact future
generations of the solution, if any, as Adeneo would possibly provide new
(higher) API levels of Android OS designed for i.MX53 platform that would
not include those custom modifications. Thus, every OS update would involve
further kernel modifications and recompilations. For those reasons this
approach was dropped.

“Open Accessory API or Open Accessory Framework - this is the

APIl/framework in the Android development environment that allows the
Android applications to transmit data in and out of the available USB port.

67

This is provided by Google through the Android SDK.” [36] The Open
Accessory solution seemed to be the simplest and the most direct with full
support in the Android development environment, but at the time of developing
this project, Adeneo was providing BSP with Android 2.2 which did not
include Open Accessory framework. For that reason the approach was
dropped.

o ADB (Android Debug Bridge) interface, i.e.: i.MX53 as a USB device
interoperated via USB bus and uController as a USB host. ADB has been
implemented on every Android device since its early introduction. It defines
de-facto standard for debugging Android devices. It was found that all features
of the ADB would not be needed for the purpose of implementing
communication channel between i.MX53 and external board with uController
and MPU-6000 populated on it. ADB functionality of port forwarding via TCP
(Transmission Control Protocol) channel has been implemented on i.MX53
Android device configured as a USB device and ADB server and on
uController configured as a USB host and ADB client. Existing USB
debugging socket on the i.MX53 board has been used for communication
purposes over ADB channel.

6.1.3. USB Hosts and Peripheral Devices.

Per USB specification, USB host is responsible for supplying 5VDC to the USB
device(s) on the other end over the USB cable to announce that it is connected to
that(those) device(s). Linux OS constitutes the core of Android OS, and hence
services provided by Android devices use Linux services and kernel. Android
device’s hardware uses Linux kernel as well as its drivers and libraries. Therefore
Android JAVA USB applications actually access Linux drivers to implement
communication via USB channel.

A typical USB system consists of one host and one or more peripheral devices.
Per common nomenclature they are referred to as USB devices. Particular USB
device can communicate directly with the host that acts as a centre of USB tiered
star network topology. Thus, USB devices have no way to establish and maintain
communication channel with each other.

USB devices have a mechanism implemented to send data to the host only after
the host requests it. The host indicates to the device when it’s ready to accept data
and at the same time the device needs to be capable to accept data incoming from
the host.That way all communication on the bus is always initialized by the host
controlling the traffic.

USB devices are usually divided into categories. Those categories are called
classes within USB terminology. Classes have special requirements as for their
communication format so that the USB host can recognize them. The host needs to
meet the requirements of the given class in order to establish USB communication

68

session. Device drivers provide API to handle classes on the application level.
Classes might be standard (e.g. HID-Human Interface Device like mouse or
keyboard) or vendor specific that require special (non-standard) drivers that require
separate USB client drivers.

“The number of devices that can attach to a host can be expanded through the use
of hubs. Typically, a hub allows four or seven devices to attach to a single port. A
maximum of five hubs can be chained together, creating up to five tiers. A
maximum of 127 devices (including the hubs) can be connected on the bus. A full
USB host uses a Type-A receptacle, and must be able to communicate with any
device. This support may be provided via special drivers that must be installed on
the host prior to attaching the device. Hubs must be supported, and each port must
be able to deliver a minimum of 100 mA.” [34]

6.1.4. Host Mode

USB devices respond to requests initiated by the USB host, which controls all the
traffic on the bus. USB devices are not capable of initiating data transfers.

The USB OTG (On The Go) module, that PIC24FJ256GB106 is equipped with,
has been used in the host mode adequate for this project. In general, it could be
configured as a USB device as well per OTG specification.

USB transfers consist of, usually, multiple transactions, that on the other hand
consist of multiple packets. Control transfers in most cases require all transactions.
Interrupt, isochronous and bulk transfers do not use neither “SETUP” token nor the
status transaction. Bulk transfers allow for the transference of up to 64 bytes within
single data stage transaction. [34] Fig. 70 illustrates a USB transfer state machine.

69

O

DETACHED
STATE

Attach
Interrupt

ATTACHED
STATE

Validation
Failed

Validation
Successful

Deattach
Interrupt

Deattach
Interrupt

Deattach
Interrupt

Deattach

Interrupt ADDRESSING

STATE

Address
Assigned

Device
Deconfigured

CONFIGURING
STATE

Device
Configured

Fig. 70) USB embedded host state machine - Format of a single USB transfer [34]
6.2. ADB (Android Debug Bridge).

ADB is a debugging protocol implemented on all Android OS since Android’s
introduction. ADB defines the rules that control data exchange between ADB client (e.g.
PC) and ADB server running on actual Android device via USB interface. Through
ADB, the Android device can provide ADB client with a shell access, and hence direct
execution of the command(s) defined in ADB specification available at [7]. The feature
of TCP ports forwarding via sockets enables the establishment of bidirectional pipes
between an Android device and ADB client. In that case, an Android application listens
on the port acting as an ADB server, while the PIC24 connects to that port as an ADB
client. In this case embedded application corresponds to the PC. ADB provides the set of
communication channels that enable the host to open a session with Android device
physically connected to it via USB cable. Android devices use ADB communication
channels to access services ADB provides, such as:

J Data forwarding over ADB channel to a TCP socket, also called “port
forwarding”.

The service enables the process running on Android OS to use TCP sockets
API, so it can listen and accept connections on the particular TCP port. This
feature of the ADB protocol has been used to implement USB communication
between microcontroller by Microchip on board, serving as a mid-man

70

between MPU-6000 chip and an Android device, and i.MX53 acting as an
Android device itself.

Port forwarding service forwards communication data supposed to target
localhost on the specified port to the external Android device with ADB server
running on it via USB interface. It works the similar way in an opposite
direction, while port numbers do not need to match. ADB bridge may be seen
as a link between client TCP socket on the host (e.g. PC) side and server TCP
socket on the Android device side. Server socket implemented on
PIC24FJ256GB106 listens for incoming connection establishment requests.

Attitude Indicated developed for this project uses communication
interfaces as depicted in Fig. 71.

MPU-6000
Gyro Accel

12¢ USB (ADB)

Fig. 71) Chain of interfaces utilized in the Aircraft Attitude Indicator
application

Linux shell
File system access (shown in Fig. 72)

EX C\Windows\system32icmd.exe - adb shel\"’ — — - o o S S

IC:sProgram Files {(xBb6>“Androidsandroid-sdksplatform—tools>adb shell
* daemon not punning. starting it now on port 5037
* daemon started successfully ==

Fig. 72) Linux shell and file system access on Android device through
Windows “cmd” and ADB service

Debugging functions

In order to receive the full list of functions/options "adb" command should be
executed without any arguments. Some of the ADB functions are:

Listing connected devices (shown in Fig. 73-74)

¥ C\Windows\system32iemd exe

IC:“Program Files (x86) \Androidandroid-s dksplatform—tools >adh devices
List of devices attached
A1 23456789ABCDER device

C:sProgram Files {(x86)“Androidvandroid-sdksplatform—tools>
-

Fig. 73) ADB launch through Windows’ “cmd”

71

= Android Device Chooser Lﬁ
Select a device compatible with target Android 2.2,
@ iChoose a running Android device

Serial Mumber AVD Name Target Debug State

[0123456789ABCDEF N/A + 233 Yes Online

Launch a new Android Virtual Device

AVD Name Target Name Platform API Level CPU/AB]

mix53_emulator Android 2.2 22 8 ARM (armeahi)

adeneo_233 Android 23.3 L 10 ARM (armeabi)

accessory_mx53 Google APIs (Google Inc.) 233 10 ARM (armeahi)

Cancel

Fig. 74) Access to Android device serial number via ADB protocol through
Windows “cmd” and through Eclipse

. Connecting/disconnecting to/from a device via TCP/IP (if no port
specified, 5555 is assumed)

. File operations, including root access

. Running remote shell

. Viewing device’s log (corresponds to Eclipse's logcat)

. Forwarding socket connections

" Pushing package files into the device

. Removing app packages from the device

. Returning all information from the device

. Starting/Killing of the ADB server

6.3. Debugging feature of the Android device.

In order to use ADB, a debugging needs to be enabled on the Android device,
usually through running “Settings>Applications>Development>USB debugging” on that
device.

6.4. Main components of the Android implementation of the USB device ADB server.
The implementation of the ADB interface for Android application is straightforward and
relies on regular TCP communication implementation similar to the following in brief
(part of PitchBankModula.java):

private class usbCommHandler implements Runnable {
public void run() {

72

server_ = new ServerSocket(PORT_NO);
while (true) {
socket_ = server_.accept();

\./.\}hile ((socket_.getInputStream().read(input_data)) !'=-1) {
...socket_.getOutputStream().write(output_data);

6.5. Embedded implementation of the USB host / ADB client

The firmware for this project has been written for the PIC24 series processor by
Microchip. It constitutes a modification of the IOIO (pronounced yo-yo) project
available at [39] . ADB (Android Debug Bridge) specification itself is available at [7].
Information regarding the implementation of the ADB on the embedded platform
available at [38] was found very helpful along with the resources accessible from [39]
and Microchip’s USB library that had a direct impact on the final shape of the
communication-via-USB-interface related part of the firmware.

Microchip's library provides USB host stack, i.e. an implementation of the USB
host driver that includes handler for USB embedded host hardware interface and
application interfaces for client drivers. The library defines constants, data types,
structures and macros, common to the multiple layers of the Microchip USB Firmware
Stack and the USB Device Framework protocol described in a Chapter 9 of the USB 2.0
specification. 1010 [7] provides Android driver for a USB embedded host device as well
as support for ADB protocol. For the purpose of this project, the driver files had been
modified to support PIC24FJ254GB106 processor. Moreover the driver defines common
ADB layer types and implements an ADB packet transfer mechanism and API on top of
the USB layer that enables data exchange between ADB server and client.

On the top level, the ADB protocol is handled by the state machine. The main part
of the handler is as follows (the part of “main.c” file):

switch(state) {
case MAIN_STATE_WAIT_CONNECT:
if (connected) {
printO("ADB connected!");
h = ADBOpen("tcp:4356", &ChannelRecv);
state = MAIN_STATE_WAIT_READY;
}

break;

case MAIN_STATE_WAIT_READY:
if (ADBChannelReady(h)) {

73

state = MAIN_STATE_RUN;

}

break;

case MAIN_STATE_RUN:
if (mpu6000_data.pitch 1= mpu6000_data.pitch_mem |
mpu6000_data.bank I= mpu6000_data.bank_mem |

delta(&ADBReconnect_dwinternal Ticks_mem, FALSE) > 1.0) {
ADBWrite(h, &mpu6000_data, 4);
mpu6000_data.pitch_mem = mpu6000_data.pitch;
mpu6000_data.bank_mem = mpu6000_data.bank;
state = MAIN_STATE_WAIT_READY;

}
break;

default: break;

k
¥

ADBOpen() — opens a channel for the remote ADB server, with the TCP port
defined during the call. ChannelRecv() serves as a receive handler (handles data
incoming from i.MX53). In case the connection request is refused by the remote end, the
ADBChannelReady() returns appropriate value to indicate it through the API as it does
in case the request to establish a communication channel via ADB results in a "ready"
state. The role of ADBChannelReady() function is to indicate the success or the failure
in opening the channel between ADB server and client, and to notify the APl whether the
channel is ready for a data transmission. ADBWrite() writes data to the remote end
(1.MX53) via open channel and indicates whether the data have been received on that
end or not through the acknowledge mechanism.

74

Chapter 7

Conclusions

The project demonstrates the implementation of the Aircraft Attitude Indicator that uses
USB ports to interface Android application with the cutting edge MPU-6000 gyroscope /
accelerometer from Invensense. An Android based implementation of the Aircraft Attitude
Indicator has been presented with the source code and all design details including hardware
schematic. An extensive research was done in order to combine application specific
requirements, including 3D graphics and its animation, with the outputs of the processor. Those
outputs were calculated during motion processing of the readings from the gyroscope and the
accelerometer. Android Debug Bridge protocol was studied to establish a communication link
between an external board designed for this project with gyroscope/accelerometer populated on it
and an i.MX53 development board with Android OS loaded onto.

Android platform has been found suitable for an aircraft instrument application as it
provides wired USB interface, virtually limited merely by designer’s imagination graphics
development environment in conjunction with Inflexion IDE from Mentor Graphics and might
possibly be equipped with a large touch screen.

It has been found vital for the success of the Attitude Indicator implementation to develop
reliable Motion-Fusion algorithm that combines the readings of the gyroscope and accelerometer.
A digital filter design was identified as the most difficult part of that phase of the project. To
reliably combine gyroscope’s and accelerometer’s readings with simultaneous removal of the
linear acceleration in order to obtain pure gravity for further motion processing, turned out to be
crucial for the development of the device that could be proven to work in the field. It was
assumed that Invensense delivered the solution that provides a near “perfect” estimate of the
spatial position of the aircraft, i.e. Motion-Fusion library that in part runs in encrypted form on
the MPU (Motion Processing Unit). The main problem encountered throughout the completion
of the project was the Invensense IP in the form of the library and its migration to the target
PIC24 platform. At some point Invensense removed the library from their website. It can only be
assumed that complains from the developers forum might have triggered it to happen.
Consequently, due to problems with Invensense’s IP, the approach had to be changed and some
concrete steps taken in order to finalize the project in the timely manner. As the result, motion-
fusion algorithms were formulated and entered into the PIC24 processor firmware that handled
processed data exchange between MPU-6000 and i.MX53. The final solution chosen for this
project is independent from Invensense and can interface with a different gyro / accel device(s)
with few modifications as it handles MPU-6000 now, but does not utilize Invensense library. As
the future consideration, it is worth to note that modifying and integrating the library for Atmel
processor that Invensense currently makes available on their website, might turn out beneficial
for the Attitude Indicator performance as Invensense is perceived to possess an extensive
experience in the field and therefore might be able to provide the best solutions available at the
moment.

Working on the project let practice JAVA and C/C++ programming for the prolonged time
and familiarize with most up to date development tools, which has been found extremely

75

beneficial for the future work in an engineering field. All the functional modules such as:
Android application with 3D graphics linked to particular variables, processor <—> i.MX53 data
exchange via USB interface, processor <—> MPU-6000 data exchange via I°C interface and a
motion processing including filtration of the signals were simulated and tested individually and
during the final phase of the design combined together.

Overall, considerable amount of knowledge was gained through the process of
developing the solution that involved integration of few separate development environments
such as in the area of 3D objects design using popular Blender, their animation and integration
with Android application in Eclipse through Inflexion Ul. The latter allows skipping Open GL
techniques and detailed knowledge necessary for efficient development of 3D user interface for
Android application and hence was found a very helpful tool to speed up a time to market.
Familiarity with Invensense cutting edge solutions, MPU-60XO0 in particular has been acquired
as well as detailed knowledge about motion processing.

76

References

[1] "Airplane Attitude Instrument Flying" Chapter 4, Section Il "Using an Electronic Flight
Display"

[2] http://en.wikipedia.org/wiki/Flight_instruments; March 2012

[3] “FTF-ENT-F0541.pdf” document by freescale

[4] "P1C24FJ256GB110 Family Data Sheet" by Microchip

[5] “MPU-6000/MPU-6050 EV Board User Guide” by Invensense

[6] http://www.invensense.com/; March 2012

[7] http://www.freescale.com/; March 2012

[8] http://www.mentor.com/; March 2012

[9] http://www.adeneo-embedded.com/; March 2012

[10] http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en531078; March
2012

[11] PS-MPU-6000A.pdf available @ [6]

[12] http://www.mathworks.com/help/toolbox/aeroblks/f3-22568.html; March 2012

[13] “Aircraft Motion Analysis” J.A.Thelander; March 2012

[14] http://www.flightlearnings.com/2010/09/30/attitude-indicator/; March 2012

[15] http://overtheairwaves.com/vol3-20final.html; March 2012

[16] “MPU-6000 and MPU-6050 Product Specification Revision 3.2” by Invensense

[17] http://www.adeneo-embedded.com/; March 2012

[18] http://invensense.com/mems/about.html; March 2012

[19] “Atmel UC3 Reference Implementation User Guide for InvenSense Embedded
MotionApps™ Platform Release 2.0.0” by Invensense

[20] http://invensense.com/mems/fag.html; March 2012

[21] http://en.wikipedia.org/wiki/Coriolis_effect; March 2012

[22] "DEVELOPMENT OF HIGH-PERFORMANCE, HIGH-VOLUME CONSUMER MEMS
GYROSCOPES" by Joe Seeger, Martin Lim, and Steve Nasiri

[23] “Android Development for Embedded Systems Beyond Mobile” by Colin Walls, Mentor
Graphics

[24] “Lab: Deploy the application on the device” by freescale & Adeneo Embedded

[25] “Android SDK and tools” by freescale and Adeneo Embedded

[26] “Android application files” by freescale and Adeneo Embedded

[27] http://www.arm.com/files/pdf/11mentor_android_gui_challenges.pdf; March 2012

[28] "How to Quickly Invigorate Your Device Utilizing 3D Ul Technology" by Mentor Graphics
[29] http://www.blender.org/; March 2012

[30] http://www.w3schools.com/xml/xml_usedfor.asp; March 2012

[31] http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction; March 2012

[32] http://en.wikipedia.org/wiki/UV_mapping; November 2011

[33] http://en.wikipedia.org/wiki/Polygon_mesh; November 2011

[34] “USB Embedded Host Stack” by Microchip www.microchip.com

[35] “Tethering an Android Smartphone to USB Devices” www.securecommconsulting.com;
November 2011

[36] “Microchip's Accessory Framework for Android(tm)” www.microchip.com; November
2011

77

http://en.wikipedia.org/wiki/Flight_instruments
http://www.invensense.com/
http://www.invensense.com/
http://www.freescale.com/
http://www.freescale.com/
http://www.mentor.com/
http://www.adeneo-embedded.com/
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en531078
http://www.mathworks.com/help/toolbox/aeroblks/f3-22568.html
http://www.flightlearnings.com/2010/09/30/attitude-indicator/
http://overtheairwaves.com/vol3-20final.html
http://www.adeneo-embedded.com/
http://invensense.com/mems/about.html
http://invensense.com/mems/faq.html
http://en.wikipedia.org/wiki/Coriolis_effect
http://www.arm.com/files/pdf/11mentor_android_gui_challenges.pdf
http://www.blender.org/
http://www.w3schools.com/xml/xml_usedfor.asp
http://wiki.blender.org/index.php/Doc:2.6/Manual/Introduction
http://en.wikipedia.org/wiki/UV_mapping
http://en.wikipedia.org/wiki/Polygon_mesh
http://www.microchip.com/
http://www.securecommconsulting.com/
http://www.microchip.com/

[37] "USB Complete Fourth Edition - The Developers Guide™ Jan Axelson

[38] http://code.google.com/p/microbridge/; October 2011

[39] https://github.com/ytai/ioio/wiki; November 2011

[40] http://developer.android.com/quide/developing/tools/adb.html; March 2012

[41] http://developer.android.com/resources/dashboard/platform-versions.html; March 2012
[42] "Instrument Flying Handbook™ by Federal Aviation Administration, Skyhorse Publishing

78

http://code.google.com/p/microbridge/
https://github.com/ytai/ioio/wiki
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/resources/dashboard/platform-versions.html

Appendix A

Development Software Installation Guide

The following installation guide applies to Win7(x64), and describes, step by step, how
the software components required to setup Eclipse IDE Android Development Environment and
embedded C compiler should be integrated with the system.

Links and webpage screenshots used in this guide were updated in February, 2012.

During the entire installation process AVD Manager, SDK Manager, Inflexion Ul and
Eclipse IDE must be launched with Administrator privilages (in Win7, right click and select
"Run as Administrator" instead of simply double clicking on the program's icon).

Internet connectivity should be available during installation process to allow automatic download
of any necessary dependencies by particular software.

Development Computer preparation:

1. Download Java Development Kit (JDK) from
"http://www.oracle.com/technetwork/java/javase/downloads/index.html" and install it on the
host, if not yet installed (check installation status by launching "cmd" in Windows
environment and executing a command: "java -version", as shown in Fig. 75.

B C:\Windows\system32\cmd.exe - — S il S|

Microsoft Windows [Version 6.1.760801
Copyright (c> 2889 Microsoft Corporation. All rights reserved.

C:“\Users“bo_acer>java —version
y s H

Jjava' is not recognized as an internal or external command,
operable program op batch file.

C:“\Users“bo_acer}java —version
java version “1.6.8_25"

(Java{TM> SE Runtime Envirenment <(huild 1.6.8_25-bh@6>

[Java HotSpot(TH> 64-Bit Server UM {build 28.8-bil, mixed moded

C:“\Users:\ho_acer>_

Fig. 75) Java version check

2. Let Installation Wizard for JAVA SE Development Kit (JDK) guide through the installation
process. Leave all the options as default.

3. Download Eclipse IDE (Interactive Development Environment) from
"http://www.eclipse.org/downloads/" and extract it to the desired destination folder. Eclipse
version supported by current Android SDK IS listed at

"http://developer.android.com/sdk/requirements.html”. At the time of writing this guide
Eclipse 3.6 (Helios) and greater are being supported. Google recommends to install one of
the packages for developing Android applications. Following this recommendation is needed
to properly integrate ADT (Android Development Tools) into suitable Eclipse IDE. Per

79

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.eclipse.org/downloads/
http://developer.android.com/sdk/requirements.html

"http://developer.android.com/sdk/eclipse-adt.ntml": "The Eclipse Classic version is

recommended. Otherwise, a Java or RCP version of Eclipse is recommended.":

e Eclipse Classic — a version used for this project. Eclipse Classic Package includes the
Eclipse Platform, Java Development Tools, and Plug-in Development Environment with
source and both user and programmer documentation.

e Eclipse IDE for Java Developers
e Eclipse IDE for Java EE Developers

Eclipse JDT plugin must be either included in Eclipse IDE package (it is included in Eclipse
Classic 3.6.2 used to develop Android application for this project) or it must be installed
separately. The JDT project provides the tool plug-ins that implement Java IDE supporting
the development of any Java application, including Eclipse plug-ins. It adds a Java project
nature and Java perspective to the Eclipse Workbench as well as a number of views, wizards,
editors and builders. Furthermore, it includes merging and refactoring tools. The JDT project
allows Eclipse to become a development environment for itself.

Launch Eclipse IDE and pick the location of the workspace as desired.

Download Android SDK from "http://developer.android.com/sdk/index.html" and intall it on
the host. During installation process use default options.

. Start SDK manager to install most up to date packages via internet. Use default selections.
(Add Android 2.2 platform as it is used to develop 3D app that runs on i.MX53 which uses
Android OS provided by Adeneo through BSP (Board Support Package). BSP related
information is provided in next point of this guide as well.

Install the ADT Plugin for Eclipse IDE (without this step Eclipse could not be used as a
development environment for Android applications). Per
"http://developer.android.com/sdk/eclipse-adt.ntml": Android Development Tools (ADT) is a
plugin for the Eclipse IDE that is designed to give a powerful, integrated environment to
build Android applications. ADT extends the capabilities of Eclipse to allow to set up new
Android projects quickly, to create an application Ul (User Interface), add components based
on the Android Framework API (Application Programming Interface), debug applications
using Android SDK tools, and export signed/unsigned .apk files in order to distribute given
application. ADT provides guided project setup, tools integration, custom XML editors,
debug ouput pane, and basically gives an incredible boost in developing Android
applications. Before installing or using ADT, a compatible version of Eclipse and at least one
development platform must be installed on a development computer, as explained above.
Revisions of Eclipse IDE as well as Android SDK must both match those enumerated for the
current ADT (16.0.1) at "http://developer.android.com/sdk/eclipse-adt.html™ URL location,
i.e. Eclipse Helios (Version 3.6) or higher and Android SDK Tools r16 (at the time of
writning this guide).

Use Eclipse Update Manager feature to install ADT:

80

http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/eclipse-adt.html
http://developer.android.com/sdk/eclipse-adt.html

Start Eclipse, then select "Help > Install New Software"...
Click "Add", in the top-right corner.

In the "Add Repository" dialog that appears, enter "ADT Plugin™ for the "Name" and the
following URL for the "Location™: "https://dl-ssl.google.com/android/eclipse/"

Click "OK". Note: If you have trouble acquiring the plugin, try using "http" in the

"Location” URL, instead of "https".

In the "Available Software™" dialog, select the checkbox next to "Developer Tools™ and

click "Next".

In the next window, a list of the tools to be downloaded will be enumerated. Click

"Next".

In order to prevent appearance of the message as shown in Fig. 76, the entries must be
added through "Eclipse/Help/Install New Software/Available Software Sites/..."

"Name: Helios
Location: http://download.eclipse.org/releases/helios"

"Name: The Eclipse Project Updates
Location: http://download.eclipse.org/eclipse/updates/3.6"

= Install - - 1]
Install Details
. D)
) The operation cannot be completed. See the details,)l
MName Version Id
¥| i+ Android DDMS 16.01.v201112150... com.android.ide.eclipse.ddms.feature.gr..,
7| i+ Android Development Tools 16.0.1.v201112150... com.android.ide.eclipse.adt.feature.group
7] L Android Hierarchy Viewer 16.0.1.v201112150... com.android.ide.eclipse.hierarchyviewer...
] ;:]‘:Andrmd Traceview 16.01.7201112150... com.android.ide.eclipse.traceview featur..,
r
SelectAll | [DeselectAll
Details
Cannot complete the install because of a conflicting dependency. -
Software being installed: Android Development Tools 16.0.1.v201112150204-238534 (com.android.ide.eclipse.adt.feature.group -~

Fig. 76) ADT plugin install details

81

https://dl-ssl.google.com/android/eclipse/
http://download.eclipse.org/releases/helios
http://download.eclipse.org/eclipse/updates/3.6

e Click "Finish". Note: If you get a security warning saying that the authenticity or validity
of the software can not be established, simply click "OK".

e When the installation completes, restart Eclipse IDE.

e After restarting Eclipse IDE, select "Use existing SDKs" and provide the path to SDK
installation on the host in order to modify ADT preferences. Follow an example as
shown in Fig. 77. Update the path to SDK installation if required.

r ~
= Welcome to Android Development { Gl &J

Welcome to Android Development
Configure 50K A :

To develop for Android, you need an Android SDK, and at least one version of the Android APIs to compile
against. You may also want additional versions of Android to test with.

Install new SDK
/| Install the latest available version of Android APIs (supports all the latest features)
Install Android 2.1, a version which is supported by ~87% phones and tablets
(You can add additional platforms using the SDK Manager.)
Target Location: | C:\Users\bo_acer\android-sdks

@ Use existing SDKs

Existing Location: C:\Program Files (x86)\Andreid\android-sdk Browse...

'(?:' < Bac MNext » Finizh Cancel

Fig. 77) ADT preferences

Optionally ADT preferences can be changed at any time by following the procedure:
e Select "Window > Preferences..." to open the "Preferences" panel

e Select Android from the left panel. Click "Proceed” after making the choice regarding
sending usage statistics to Google.

e Click "Browse..." and locate directory containing SDK.

e Click "Apply" followed by clicking "OK".

Add platforms and other components.

e In order to modify SDK setup use the Android SDK (Software Development Kit) and
AVD (Android Virtual Device) Manager (a tool included in the SDK starter

package) to download essential SDK components into your development environment.

The SDK uses a modular structure that separates the major parts of the SDK

82

Android platform versions, add-ons, samples, tools, and documentation into a set of
components installed separately. To develop an Android application, at least one
Android platform and the associated platform tools need to be installed. Other
components and platforms can be added as well. For this project Android application
uses Android Platform 2.2, API level 8 (one of the most popular Android platforms in
January-February 2012). Fig. 78 illustrates Android’s market popularity.

Android 2.1
75+ Android 2.2

~ " lAndroid 2.3.3

08/01 0815 0901 0915 10:01 10/15 1101 11115 20 1215 0101 01115 0201
" 20

Fig. 78) [41] Last hiétorical dataset collected during a 14-da[y periﬂoa ending on February 1, 2012
(based on the number of Android devices that have accessed Android Market)

e Launch the Android SDK, shown in Fig. 79, and AVD Manager in one of the following
ways:

From within Eclipse, select "Window > Android SDK Manager / AVD Manager." SDK and AVD
Managers has been separated in the newest revision of the SDK. AVD Manager setup is not
necessary in case a target Android device is availale (for this project i.MX53 was available to
begin with and therefore a virtual device has not been used). Debugging on bith virtual and real
devices is possible with the use of the same tools and approach so no particular benefit has been
noticed coming from using the virtual one. Add required platforms as follows:

-

Android SDK Manager = | B |

Packages Tools

SDK Path: C:\Prograrm Files (x86)\Android\android-sdk\

Packages

Name APl Rev. Status o
Android 3.2 (API13)
Android 3.1 (API12)
Android 3.0 (API11)
3 Android 233 (AP110)
a Android 2.2 (API8)
V| SDK Platform 8 3 PInstalled
v & Samples for SDK 8 1 &9 Installed
'E]- Google APls by Google Inc. 8 2 & Not installed
IE‘, Dual Screen APIs by KYOCERA Corporation 8 1 ¥ Not installed
'a, Real3D by LGE 2 1 & Not instolled
"fg GALAXY Tab by Samsung Electronics. 8 1 W Not installed
Android 21 (APIT)
3 Android 1.6 (APL4)
3 Android 1.5 (AP 3) o
Show: |¥|Updates/Mew [V|Installed Obsolete Select MNew or Updates Install 1 package...
| Sort by: @ API level Repository Deselect All Delete 2 packages... | |f|

Done. MNothing was installed.

Fig. 79) Android SDK Manager

10. Installation of Inflexion Ul (User Interface) by Mentor Graphics.

83

Inflexion makes use of native API application programming interface (written in C/C++)
in Android application(s), so that development of the application takes place directly on
the target platform without involvement of the virtual machine, and hence the Android
NDK (Native Development Kit) which is a toolset that allows generating libraries from
C/C++ sources and embedding them into an application package file (.apk) that can be
deployed on Android device needs to be integrated with Android SDK.

Install Cygwin 1.7 or higher in Windows. Cygwin is a Unix-like environment and
command-line interface for Microsoft Windows. Cygwin provides native integration of
Windows-based applications, data, and other system resources with applications,
software tools, and data of the Unix-like environment.

e Download Cygwin from "http://www.cygwin.com/" and launch "setup.exe". Use
default options during installation, except:

. select "awk" version 3.1.8 or newer under packages during Cygwin pre-
installation setup as shown in Fig. 80.

Fig. 80) Cygwin: awk setup

" select "make" version 3.81 or newer under packages during Cygwin pre-
installation setup as shown in Fig. 81.

84

http://www.cygwin.com/

&
£

R EIEEEEEIEIEEIEE

LR R R R R

7 b checete packages

Fig. 81) Cygwin: make setup
Note: Neither "awk™ nor "make" is included by default.

e Download NDK from "http://developer.android.com/sdk/ndk/index.html".
Extract the file to desired location. No further installation is needed. Tools will be updated with a
path to NDK directory later.
e Download Inflexion Ul from "http://www.mentor.com/embedded-software/inflexion/ui-
imx-processors”. For this project, i.MX53 Quick Start Reference Board by Freescale +
TFT LCD display with touchscreen (optionally VGA graphics could be used without
touchscreen capability) have been used as a target Android device.
e Install Inflexion Ul (Rev.2.3 has been used for this project). Follow installer's default
recommendations across installation process. Use settings as depicted in Fig. 82:

-
“m Inflexion UI 2.3 for Select i.MX Processors by Mentor Embedded =l —

Inflexion Ul Express
@ Inflexion Ul Express, Standalone

Select this option to install Inflexion UI Express as a standalone
application. Edipse 3.6.0 software is included as a convenience for
Inflexion UI Express customers and is licensed by Eclipse under their
EPL license.

© Inflexion Ul Express, Integrated with Eclipse

Select this option to install Inflexion UI Express into your existing
Edipse 3.6.0 environment.

Select this option to install Inflexion UI Runtime for Linux and Android.

Required Disk Space: 311,049,084 bytes
Available Disk Space: 853,114,105,856 bytes

Cancel | Previous

Fig. 82) Inflexion Ul: Express/Runtime installer launch

85

http://developer.android.com/sdk/ndk/index.html
http://www.mentor.com/embedded-software/inflexion/ui-imx-processors
http://www.mentor.com/embedded-software/inflexion/ui-imx-processors

11. Configuration of Inflexion Ul Android Environment.

Install Inflexion Android Plugin into the Eclipse IDE.

e Create "apps" folder under NDK installation directory.

e Copy "inflexionui™ folder from "<Inflexion Ul install
directory>/InflexionUIRuntime-2.3/Android/" to "<NDK install directory>/apps".
InflexionUIRuntime-2.3 directory might have different name depending on the
current revision of Inflexion Ul that has been installed previously.

e Launch Eclipse IDE and select "Help/Install New Software...". Click "Add...".

e Type "Inflexion Ul Project™ in the "Name" field

e Type "http://s3.mentor.com/inflexionplugin/freescale_2.2" in the "Location™ field,
and click "OK".

e Click on "?" in bottom left corner and then click on "Select All" after having
selected "Inflexion Ul Project - http://s3.mentor.com/inflexionplugin/freescale_2.2"
in "Work with™ combo box, in case "Next" button is not enabled (grayed).

e Click "Next" until "Finish" gets enabled, then click "Finish" button and follow
defaults until installation finishes. Restart Eclipse IDE after installation process is
over.

e In Eclipse IDE, select "Window/Reset Perspective” and click "OK" when
confirmation dialog box appears.

e Select "Window/Pereferences/Inflexion UI"

e Enter the root of NDK that contains “inflexionui” folder previously copied into it,
e.g. "C:\Program Files (x86)\Android\android-ndk-r7".

e Enter cygwin location, e.g. "C:\cygwin"

e Click "OK".

12. Install Inflexion Runtime Library (Inflexion engine) on a target device (i.MX53). In order to
install Android Application that includes User Interface/3D graphics integrated in Inflexion
Ul on the target Android device, Inflexion Engine (Runtime Library) needs first to be
installed on that device. Runtime Library installed on the device makes this device capable to
run applications created using Inflexion Ul (package commonly called Inflexion PC tool).
Any Inflexion Ul based Android Application loads Inflexion Ul Runtime Library at startup.

In Eclipse IDE, select File/Import.

Navigate to and select "General/Existing Projects into Workspace". Click "Next".

Select root directory by browsing to and selecting "<NDK install
directory>/apps/inflexionui/framework". Click "OK".

Make sure "InflexionUIRuntime" is selected in the "Projects list" and click "Finish".

In case the error message appears as shown in Fig. 83,

86

http://s3.mentor.com/inflexionplugin/freescale_2.2
http://s3.mentor.com/inflexionplugin/freescal
file:///C:/cygwin

Fig. 83) Inflexion Ul Runtime: Target error message

which depends on the current revision of Inflexion Runtime Library and Android API level
installed in SDK, install missing API level as follows:

Activate "Window/Android SDK Manager".

Pick a package to install per the following guide:
Unable to resolve target ‘android-1' ==> (Android 1.0) change the
"AndroidManifest.xml"
Unable to resolve target ‘android-2' ==> (Android 1.1) change the
"AndroidManifest.xml"

" Unable to resolve target 'android-3' - install SDK Platform Android 1.5

. Unable to resolve target ‘android-4' - install SDK Platform Android 1.6

" Unable to resolve target ‘android-5' - install SDK Platform Android 2.0

. Unable to resolve target ‘android-6' - install SDK Platform Android 2.0.1
" Unable to resolve target ‘android-7' - install SDK Platform Android 2.1

. Unable to resolve target ‘android-8' - install SDK Platform Android 2.2

" Unable to resolve target ‘android-9' - install SDK Platform Android 2.3

. Unable to resolve target ‘android-10' - install SDK Platform Android 2.3.3
" Unable to resolve target ‘android-11' - install SDK Platform Android 3.0

. Unable to resolve target ‘android-12' - install SDK Platform Android 3.1

" Unable to resolve target ‘android-13' - install SDK Platform Android 3.2

. Unable to resolve target ‘android-14" - install SDK Platform Android 4.0

" Unable to resolve target ‘android-15' - install SDK Platform Android 4.0.3

. Click "Install...".
e Try again.

In Eclipse IDE, select "File/Import"

Navigate to and select "General/Existing Projects into Workspace". Click "Next".
Select root directory by browsing to and selecting "<NDK install
directory>/apps/inflexionui/framework". Click "OK".

Right click on "InflexionUIRuntime™ in "Eclipse/Package Explorer" and Fix Project
Properties as shown in Fig. 84:

87

- —
= Java - Eclipse SDK - - . || e S
— 4 = - .
File Edit Run Source Navigate Search Project Refactor Window Help
il 37 B8 B BHd $-0 Q- H#EG- &~ o [@aa)
[% Package Explorer & E&~ =0 = 85 052 =g
2 2 Inflexiop 18-t An outline is not
. @B New » available,
> 88 g Golnto
> =) And
- & bin Open in New Window
s B in Open Type Hierarchy M
> & infl Show In Alt+Shifte W »
> E lib:
> G libs| B2 Copy Ctri-C
& res | B2 Copy Qualified Name
A And 2 paste Ctrl+V
P % Delete Delete
Build Path »
Source Al Shift+S »
Refactor Alt+ShiftT »
f2y Import.. =
4 | Exporte J5 New Test Project...
MNew ResourceFile..
P Refresh 5
Close Project Export Signed Application Package...
Assion Working Sets Export Unsigned Application Package...
. R Display dex bytecode
Debug As R Rename Application Package
T R Add Compatibility Library.. w8 -5-°0
Compare With R Fix Project Properties
Restore from Local History.. @ Run Lint: Check for Common Errors requires compiler compliance le~
» Clear Lint Markers
»
Alt-Enter “
0 v
o InflexionUIRuntim:

Fig. 84) Project properties automatic fix

In "Eclipse/Package Explorer"”, right click on the "InflexionUIRuntime™ and select
"Run As/Run Configurations...".

Select "Android Application" as shown in Fig. 85 and click on "New launch"
configuration icon (one of the icons shown right above filter text box):

5] Java Applet
(3] Java Application

Ju JUnit

L J% JUnit Plug-in Test
4 05Gi Framework

I Filter matched 8 of 8 items

l®

iai

% - Press the Filter’ button to configure filtering options.

- Edit or view an existing configuration by selecting it.

Configure launch perspective settings from the Perspectives preference page.

Run

|| Create. . and run ; .
S | B 3~ Configure launch settings from this dialog:
M | [[ew 1aunch configuration % - Press the 'New’ button to create a configuration of the selected type.
I [T Android Application =| - Press the 'Duplicate’ button to copy the selected configuration.
Ji7 Android JUnit Test
3 - Press the 'Delete’ button to remove the selected configuration.
& Eclipse Application

Close

Fig. 85) Run configuration

On the "Android" tab:

Enter "RuninflexionUIRuntime" into the "Name" field.
Click "Browse" button and pick "InflexionUIRuntime".

On the Target Tab:

Set "Deployment Target Selection Mode" to "Manual”.
Click "Apply".

88

= Click "Run".

Select one the the devices compatible with target Android platform by selecting "Choose
a running Android device" and then selecting the one actually connected via USB
interface. Normally it should be just one position on the list, unless more external
devices use ADB channel via separate USB interfaces. For i.MX53 the device Serial
Number is: 0123456789ABCDEF.

Provided i.MX53 is physically connected via USB interface with the host PC, the library
will be loaded onto the target device (loading the library onto the device need to happen
only one time per device), otherwise the message will appear informing the user that no
compatible targets were found. Click "OK".

Target Android Device (i.MX53) is now ready to launch Android Applications with user
interface/graphics developed in Inflexion PC tool and integrated with Android
application code (JAVA, C/C++) in Eclipse IDE. Now, a developer needs to launch
Inflexion Ul, develop desired user interface using imported (custom) 3D object(s),
previously developed in Blender and exported into Collada format, and/or objects
available through Inflexion Ul library. Then he needs to integrate Inflexion output files
with Android application developed in Eclipse and load it onto Target device using
Eclipse IDE features.

13.i.MX53 ("http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB")
preparation as an Android device. The following steps apply only to i.MX53 development
board by Freescale and need to be done only once for each board:

14.

i.MX53 development board is out the box VGA ready. In order to use LCD instead,
connect i.MX53's RS-232 port to host PC (in case PC is not equipped with RS-232 port,
use RS-232/USB concverter).

Launch "Hyper Terminal™ or other program to communicate via serial port, power up
1.MX53 board and press any key when "AUTOBOOT WILL BEGIN IN:" appears.

After the prompt, type: "set bootargs base 'set bootargs console=ttymxc0,115200
${lcd}™

Press "Enter"'.

Type "saveenv" and press "Enter"” to save changes on the microSD card.

Type "boot™ and press "Enter" to continue boot up procedure.

1.MX53 comes with Linux UBUNTU on SD card. To use Android OS, BSP (Board Support
Package) from Adeneo "http://www.adeneo-embedded.com/iMX53" needs to be used to copy
Android Image onto SD card that would be used to boot up i.MX53 from. If Android OS was
already running on the target device this step would not be required.

Per "http://www.adeneo-embedded.com/iMX53": "Adeneo Embedded ported Android

and Windows Embedded Compact 7 operating systems into the Freescale i.MX53 Quick
Start board (QSb), a low cost development platform ($149 only) based on an ARM® Cortex-
A8 1 GHz processor. The i.MX53 QSb includes a display controller, hardware-accelerated

89

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX53QSB
http://www.adeneo-embedded.com/iMX53
http://www.adeneo-embedded.com/iMX53

graphics, 1080p video decode and 720p encode as well as numerous connectivity options
ideally suited for applications such as human machine interface in embedded consumer,
industrial and medical markets."

Download VMware player from "http://www.vmware.com/products/player/" and install
it on the host PC. Use default options. This will be used to prepare SD card with Android
OS in Linux Ubuntu environment (in case of using Windows OS to create SD card with
bootable Android OS).

Restart host computer.

Copy "VM_UBUNTU.zip" from the DVD that came with i.MX53 board and extract it to
desired directory on host PC.

Launch VMware through double clicking "Ubuntu.vmx™ file under ".../vm_Ubuntu"
directory.

When "VMware Player" asks whether the virtual computer was "moved" or “copied"”,
choose "copied".

Log into the virtual machine with the following credentials:

e username= lucid

e password= lucid

Download I.MX53_Android Source BSP from "http://www.adeneo-
embedded.com/iMX53" (this will be installed on SD card that i.MX53 will later use to
boot from). In case of downloading it under Windows, instead of under Ubuntu, Store it
temporarily on the 4GB SD card after downloading it, in order to copy it from that SD
card onto a storage device (harddrive) managed by Ubuntu accessed via Vmware later.

If 1.MX53_Android Source BSP (for this project i.MX53-QSB-Android-Gingerbread-
Release4.0.zip) was downloaded under Ubuntu and stored on the storage device
accessible via Ubuntu skip next step, otherwise:

Log into Ubuntu. Insert previously prepared SD card to SD card reader or to USB port
using SD/USB converter.

Under Ubuntu, extract i.MX53-QSB-Android-Gingerbread-Release4.0.zip from SD card
onto the hard drive and extract to desired directory as shown in Fig. 86.

gpu-sdk1008.tgz

File Edit View Go Bookmarks Help

b C AEE & 100%) |lconview ¥ v

% < 3.9 GB Filesystem/

i.MX53-QSB-
Android-

90

http://www.vmware.com/products/player/
http://www.adeneo-embedded.com/iMX53
http://www.adeneo-embedded.com/iMX53

e Learn the Linux name of the SD card storage device. Use "Disk Utility" to verify it, as
shown in Fig. 87.

™ @lucd &

© © @ single Flash Reader (Single Flash Reader) [/dev/sdb] — Disk Utility

File Help
Storage Devices Drive
[Loco! Storage Model: single Flash Reader Serial Number: 058F63356336
G5, PATA Host Adaptar Fimware Version: 1.00 World Wide Name: -
82371AB/EB/MB PIX4 IDE Location: = Device: /dev/sdb
>/ :%:‘Innvglunmsnaw Write Cache: = Rotation Rate: -
Q5 5€S1 Host Adaprer capacity: 4.0 GB (3,951,034,368 bytes) Connection: USB at 480.0 MB/s
53c1030 PCIX Fusi..Dual UIra320 SCS1 | partitioning: Master Boot Record SMART Status: # Not supported
(4 Peripheral Devices

USB, FireWire and other peripherals & Format Drive [H safe Removal
Erase or partition the drive Power down the drive o it can be removed

Floppy Drive
— Fioppy Drive
) 21 GB Hard Disk
VMware, VMware Virtual 5

Single Flash Reader
= Single Flash Reader Volumes

S Benchmark
Measure drive performance

Usage: Filesystem Device: Jdev/sdbl
Partition Type: W95 FAT32 (0x0b) Partition Label: -

Partition Flags: - Capacity. 3.9GB (3,946,840,064 bytes)
Type: FAT (32-bit version) Available

Label: - Mount Point: Mounted at /media/3182-FEFD

= unmount Volume (@ Format Volume
Unmount the volume Erase or format the volume

[B¥ Check Filesystem # Edit Partition
Check and repair the filesystem Change partition type, label and flags

@® Delete Partition

Delete the partition

FEFD - File Brow... [Single Flash Reader (Si...

FRELETIFE vmware

Fig. 87) SD (Secure Digital) as a Linux device
In this example, the name is: "/dev/sdb".

e Find "flash_prebuilt_android.sh™ script under "i.MX53-QSB-Android-Gingerbread-
Release4.0/scripts/"

e Right click on "flash_prebuilt_android.sh", navigate to "Permissions" and check "Allow
executing file as program™ as shown in Fig. 88:

Fri 3,12:54PM Ty & B8 Qlucid O
@ flash_prebuilt_android.sh Properties
0 Bookmarks Help

Basic Emblems Permissions Open With Notes

owner: lucid|

Places v
& lucid .
@ Desktop Group:

Readandwite v
lucid |7
[File System §
i Network Access: (Readenly v
Beadonly v

Access:

|J cache

U data Others

U 2.3 GB Filesy... h Access:

[J 263 MB Files...
|J sdcards Execute: @ Allow executing file as program

— Floppy Drive

& Trash flash_prebuilt_ SELinux context: unknown

android.sh Last changed: Fri 03 Feb 2012 12:48:08 PM PST

(¥ Documents

[Music S

[Pictures. “
I

[iE Videos + "flash_prebuilt_android.sh" selecccuvzo oy
S B flash_prebuilt_android.s...

FOELEEE wware

Fig. 88) "flash_prebuilt_android.sh” script permission setup

91

Launch "Terminal”.

Type "cd Desktop/i.MX53-QSB-Android-Gingerbread-Release4.0/scripts”. Type Is and
hit enter to check the contents of the directory (look for "flash_prebuilt_android.sh™).
Type "./flash_prebuilt_android.sh /dev/sdb"”, which will format and install Android OS
on the SD card that will be used by i.MX53 device later. Fig. 89-90 show the process’
progress.

£ Applications Places System ‘Z) @ FriFeb 3, LO3PM T3 o Q lucid (O
—

1008.tgz

© & ® lucid@ubuntu: ~/Desktop/i.MX53-QSB-Android-Gingerbread-Release4.0/scrip

cd Desktop/ X53-Q5B-Android-Gingerbre: e4.0/scripts
@ ktop/i 3-QSB-Android-Gingerbread-Re .8/scripts$ 1s
apply_qsb_patch.sh fili flash_prebuilt_android.sh
m build_android.sh fix_android.sh patch_android.sh
tar.g download_android.sh flash_android.sh
5 11.01.00 luci untu:~/Desktop/i 3-0SB-Android-Gingerbread-Release4.8/scripts$./flash |
oc gz |prebuilt_android.sh /dev/sdb
/dev/sdb: not mounted
/dev/sdbl: not mounted
: not mounted
: not mounted
: not mounted
4: not mounted
not mounted
/dev/sdb6: not mounted
1+ records in
1+0 records out
'y (1.0 kB) copied, ©.0809885 5, 12.6 kB/s
ev/sdb doesn't contain a valid partition table
- 3951034368 bytes
CYLINDERS - 48@
Checking that no-one is using this disk right now ...

{3 Applications Places System » FriFeb 3, LOAPM Ty o Q lucid (H
-

© ©® ® lucid@ubuntu: ~/Desktop/i.MX53-QSB-Android-Gingerbread-Release4.0/scrip

m File Edit View Terminal Help

1008.tqz Creating journal (1024 blocks): done
RO0C 2 Writing superblocks and filesystem accounting information: dene

This filesystem will be automatically checked every 36 mounts or
180 days, whichever comes first. Use tune2fs -c or -i to override.
Copying u-boot...
173+1 records in
173+1 records out
178136 bytes (178 kB) copied, ©.238354 s, 747 kB/s
Copying kernel and ramdisk...
3+1 records in
3+1 records out
3260192 bytes (3.3 MB) copied, 0.663629 s, 51.2 MB/S
6+1 records in
©+1 records out
181779 bytes (182 kB) copied, 1.13242 s, 161 kB/s
Writing root filesystem...
c 262144+0 records in
35.zip 262144+0 records out
134217728 bytes (134 MB) copied, 129.967 s, 1.0 MB/S

(10 MB) copied, 3.18594 s, 3.3 MB/s
:~/Desktop/i.MX53-0SB-Android-Gingerbread-Release4.0/scripts:

To direct input to this virtual machine, press Ci+G. U R E vmware'

Fig. 90) "flash_prebuilt_android.sh™ script execution progress

SD card is ready to be inserted into i.MX53 (mini SD card slot). Android Gingerbread
OS will be launched after i.MX53 is powered up.

92

15.

16.

17.

18.

19.

Blender installation.

Download Blender version 2.49 (collada file exported by Blender v2.49 was tested with
Inflexion Ul PC tool used for this project). In the future newer and more user friendly
revisions of Blender might possibly become compatible with further revisions of Inflexion
ul.

e Download "Blender-2.49-win64.zip™ for Windows7(x64), or pick a suitable one for other
OS, from "http://download.blender.org/release/Blender2.49/"

e No installation is necessary. Simply launch "blender.exe" located in extracted directory
in order to create 3D objects for the design.

Target Android Device (i.MX53) is now ready to launch Android Applications with user
interface/graphics developed using Inflexion PC tool and integrated with Android application
code (JAVA, C/C++) in Eclipse IDE. Developer needs to launch Inflexion Ul, develop
desired user interface using imported (custom) 3D object (developed in Blender and exported
into Collada format) and/or objects available through Inflexion library. Then he needs to
integrade Inflexion output files with Android application developed in Eclipse and load it
onto Target device using Eclipse IDE features.

Download MPLAB, a graphical, integrated debugging tool set for all of Microchip’s: 8-bit,
16-bit and 32-bit MCUs digital signal controllers, and memory devices, from
"http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1406&dD

ocName=en019469&part=SW007002" and install using default settings. Microchip
development environment is needed to built C code to handle communication between MPU-
6000 (12C) and Android application (USB). Moreover, the C code implements MotionFusion
algorithms.

Download MPLAB C Compiler for Academic Use from
"http://www.microchip.com/stellent/idcplg?ldcService=SS_GET_PAGE&nodeld=1406&dD
ocName=en536656 " and install on the host machine using default settings.

e Navigate to "Project/Select Language Toolsuite” and pick "MPLAB C30 Toolsuite™ as
shown in Fig. 91. Click "OK".

93

http://download.blender.org/release/Blender2.49/
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469∂=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en019469∂=SW007002
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en536656

-
Select Language Toolsﬂv.’ - u

—

Active Toolsuite: lMicrcu:hip 30 Toolsuite vl

Tonlsuite Cantents

we] v 3,2
MF‘L!E.B LINKSD Db|en::t Llnker [p|c:30 |d.axe] v3.30

L i U YU POy e =N

Location

I "'-. |i|::EI|:|-|]|::|::_Ee:-:Ee BI’DWSE‘-‘...

] Stare tool locations in project

E ar.]’ Caricel]

Fig. 91) MPLAB Toolsuite setup

20. Plug in the programmer into USB port of the host PC in order to update the microcontroller
with the firmware built using C30 compiler (for this project ICD3 programmer has been
used). "Plug and Play" installation will be performed by Microchip tool and programmer will
immediately become available afterwards.

94

Appendix B
Schematic & PCB

oot
22y

(spow Igs=0)

<48
snan

(oremn— -0 _cou
Gomesn)—| +0 298

1950 2108, 4301714 90189%9r 4420

AL TS+
oL —IHHP_m FHNE

95

= [F—f "
= - A~ «@n
g S
¢ e [g
20y !
—{<10y s 2
—{¥12u g 8%
N !
D 55
mmmmmmmmmmmmmmmmﬁmu
TTTTTT TTT

H

zn
- T@TTLI00L LI

O
=0
O—

ASH

Fig. 92) MPU-6000 board circuit schematic

1.625

I-—- 1.835 »l

1.625

o Rev.
O HOOK =AND=LOOI O '
|-< 1.835 —l

Fig. 94) MPU-6000 PCB: Top side

Attached in an electronic form.

96

Appendix C

Bill of Materials

Item | Quantity | Reference Part PCB Footprint
1 1 D1 2 DUAL COLOR LED thruhole
2 6 C11 du 0603
3 C13
4 C14
5 C15
6 C16
7 C17
8 1 C18 2.2n 0603
9 1 c21 10n 0603
10 2 c4 47p 0603
11 C12
12 1 Cc20 10u 0805
13 1 C9 22u/6.3V SMD
14 1 D1 SMD
15 1 U2 MCP1700T3302 SOT-23
16 1 U4 MPU-6000
17 1 U3 PIC24FJ256GB106
18 1 R25 0 0603
19 1 R23 1k 0603
20 2 R20 2k 0603
21 R21
22 2 R7 10 0603
23 R9
24 R19 10k 0603
25 R14 27 0603
26 R15
27 R10 39k 0603
28 R22 100k 0603
29 R6 330 0603
30 R8

RESONATOR
31 1 Ul 8MHz
32 1 J5 ICSP RJ11-SMD
33 1 TVS 6V SMD
34 1 1 UART-PADS
35 1 J3 USB-Mini-B SMD

[36 |

USB-A

SMD

Fig. 95) BOM

98

Appendix D

Android Application Source Code

Attached in an electronic form.

99

Appendix E

Inflexion Source

Attached in an electronic form.

100

Appendix F

Firmware Source Code

Attached in an electronic form.

101

