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                                                                     ABSTRACT 

 

 

INTEGRATING FPGA WITH MULTICORE SDR DEVELOPMENT PLATFORM TO 

DESIGN WIRELESS COMMUNICATION SYSTEM 

 

 

                                                                 By 

                                             SANKET PRAKSH JOSHI 

 

      Master of Science in Electrical Engineering 

 

This project uses integrating FPGA with multicore Software Defined Radio 

development platform to design wireless communication system. It constructs the system 

on the Matlab/Simulink environment in the way of Model-based Design, and realizes 

transmitter section with FPGA. Finally it uses Hardware-in-the-loop co-simulation to 

observe the bits error rate of system under the white Gaussian noise channel disturbance 

of different SNR values. Software defined radio is a feasible solution for reconfigurable 

radios, which can perform different functions at different times on the same hardware. 

The baseband section of a wireless communication system is first simulated and 

then implemented in hardware. The performance of the baseband transmitter is analyzed 

using constellation and eye diagrams for different modulation techniques and different 

signal to noise ratios, while considering an additive white Gaussian noise channel. The 

performance of the receiver is analyzed by comparing the input and output waveforms. 

The performance of the system in real time is also analyzed by implementing the system 

in hardware using Xilinx Spartan 3E FPGA (XC3S500E-4FG320C). A comparison of the 

simulation results with the results obtained from implementing the system on Xilinx 

Spartan 3E FPGA (XC3S500E-4FG320C) hardware is presented and discussed. It is 

shown that the simulation results and experimental results are similar. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction: 

Modern society is increasingly becoming dependent on digital communication 

systems in order to function properly, with a growing number of applications relying on 

these devices, e.g., personal health/body networks, defense/homeland security, 

navigation/localization, social networking, vehicular transportation. There is a multitude 

of telecommunications standards in use  today, ranging from mobile communication 

standards such as GSM, PHS, and UMTS, to wireless LAN standards such as WiMAX 

and IEEE802.11x as well as future standards based  on UWB technology. Wireless 

communication networks have become more popular in the past two decades since the 

advent of cellular communications. The rapid growth in cellular communications has 

proved that wireless communication is viable for voice and data services. Traditional 

wireless devices are designed to deliver a single communication service using a particular 

standard. With the steady increase of new wireless services and standards, single purpose 

devices with dedicated hardware resources can no longer meet the user’s needs. It is also 

expensive to upgrade and maintain a wireless system each time a new standard comes 

into existence. 

A feasible solution to make communication systems more flexible and user 

friendly can be achieved through the software defined radio (SDR) concept, because as 

traditional transceiver technology requires users to have separate equipment for each 

standard however SDR offers the possibility of using one terminal to receive many 

standards through the use of wideband reconfigurable transceivers and software signal 

processing. The main challenge is to optimize the tradeoffs between performance, power 

consumption and cost. This is achieved through the use of readily available low cost 

mobile communications components and a standard laptop PC for data processing and 

configuration. Software defined radio refers to the class of reprogrammable or 

reconfigurable radios in which the same piece of hardware can perform different 

functions at different times. Software defined radio is an emerging technology, for multi-
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service, multi-standard, multi-band, reconfigurable radio systems, which are 

reprogrammable by software. A working definition of a software defined radio is a radio 

that is considerably defined in software and whose physical layer behavior can be 

significantly altered through changes to its software. Thus, the same piece of hardware 

can be used to realize different applications by modifying the software. Software defined 

radio has generated tremendous interest in the wireless communication industry because 

of the wide-ranging economic and deployment benefits it offers. 

Programmable hardware modules are increasingly being used in communication 

systems design at different functional levels. Software defined radio (SDR) technology 

can be used to take advantage of programmable hardware modules to build open system 

architecture based on software. In this case, a variety of transceiver functions such as 

automatic gain control, frequency translation, filtering, modulation and demodulation can 

be integrated on a single hardware platform. This could result in maximizing the number 

of radio functions for a particular application. Software defined radio offers the flexibility 

and upgradeability necessary to satisfy these requirements. 

1.2 Motivation 

Consider a typical communication system scenario where the user would like to 

have access to information through different wireless networks (e.g., wireless local area 

network (WLAN), Bluetooth, etc.), or a mobile phone user may be traveling between two 

regions around the globe, where the wireless technologies or standards are different. To 

utilize the services offered by the broad range of technology alternatives around the 

world, the user has to carry different devices due to incompatibility of systems and 

standards. The practical solution to overcome this problem is to use a single device that 

can adapt to different technologies. This could be possible using software defined radio, 

since it represents a radio that uses a reprogrammable hardware to create a generic 

hardware base. On top of the generic hardware platform, flexible software architecture is 

embedded. 
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The software allows for multiple protocols, fast upgrades, and complete 

reconfigurations of radio features and functions. Some of the attractive features of SDR 

are as follows: 

(1) Performance: 

The functionality of conventional radio architectures is usually determined 

primarily by hardware with minimal configurability through software. The hardware 

consists of the amplifiers, filters, mixers and oscillators dedicated to a particular mode of 

transmission. The software is confined to functions such as controlling the interface with 

the network, and error correction. Since the hardware dominates the design, upgrading a 

conventional radio design essentially means completely abandoning the old design and 

starting over again, resulting in a waste of time and resources. Software defined radio 

solves this problem by implementing radio functionalities as software modules running 

on generic hardware platforms. Since the radio functionalities are defined in software, 

when a new technology is introduced, it can be easily implemented by dynamic selection 

of parameters for its functional modules, i.e., reprogramming the software. Software 

defined radio provides a greater advantage to normal radio systems, since such radio 

systems can provide only fixed parameters with limited performance. 

 

(2) Flexibility: 

The inflexibility of conventional radio systems limits the ability to get the right 

information to the right users at the right time. Conventional radio systems do not provide 

the waveform agility necessary to achieve this objective. With software defined radio, 

modulation waveforms and multiple air interface standards are possible. Thus, SDR 

platforms can serve a range of applications including analog cellular, digital cellular, 

personal communications services (PCS), wideband systems, spread spectrum, navigation 

waveforms (e.g., global positioning system), emergency radio, public safety, and other 

radio systems. Depending on the waveform, architecture, and implementation, a single 

software radio platform has the flexibility or potential to support a broad range of 

communication services.  
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(3) Compatibility: 

The concept of seamless global coverage requires that the radio support two 

distinct features. (a) Global roaming or seamless coverage across geographical regions; 

(b) interfacing with different systems and standards to provide seamless services at a 

fixed location. Existing technologies for voice, video, and data use different packet 

structures, data types, and signal processing techniques. Integrated services can be 

obtained with either a single device capable of delivering various services or with a radio 

that can communicate with devices providing complementary services. The supporting 

technologies and networks that the radio might have to use can vary with the physical 

location of the user. To successfully communicate with different systems, the radio has to 

communicate and decode the signals from devices using different air interfaces. 

Furthermore, to manage changes in networking protocols, services, and environments, 

mobile devices supporting reconfigurable hardware also need to seamlessly support 

multiple protocols. Such radios can be implemented efficiently using software radio 

architectures in which the radio reconfigures itself based on the system it will be 

interfacing with and the functionalities that will be supported. 

(4) Cost: 

Every time a new technology evolves, it results in the migration of functions from 

an older design to the new design. Implementing a new design involves manufacturing 

and testing. The cost of this process increases since upgrading to a newer design is not 

always possible in conventional systems. Software based radio can reduce the cost of 

manufacturing and testing, while providing a quick and easy way to upgrade the product 

to take advantage of newer signal processing techniques and new service applications. It 

is evident from the above list of benefits that SDR technology is very beneficial and has 

wide applications. Fundamentally, SDR technology can be used in any device that uses 

radio frequency (RF) for communication, which encompasses a wide range of products 

including cellular base stations, military communications systems and public safety 

radios. Because of the above reasons, we are motivated to investigate the different system 

design and implementation processes for SDR based wireless communication system. We 
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believe that this could be a major thrust in the of wireless generation services, especially 

as we migrate from third generation (3G) to fourth generation (4G) wireless standards. 

1.3 Contribution 

The analysis presented in this project report has many features and several 

contributions to the current state of knowledge. The general and specific contributions 

include the following: 

 The development of a framework for the design and implementation of Integrated 

FPGA with multicore SDR development platform based wireless communication 

systems. 

 The analysis of a sample implementation of software defined radio based wireless 

communication system with coding (i.e. convolutional encoding), viterbi 

decoding, puncturing and depuncturing, modulation and demodulation, spreading 

and de-spreading. 

 The comparison of the performance of different modulation and demodulation 

techniques in a SDR implementation environment. The modulation techniques 

considered are Quadrature Phase Shift Keying (QPSK) and Binary Phase Shift 

Keying (BPSK). 

 Initiation of the development of a test bed for the design and implementation of 

multicore SDR platform based wireless communication system. 

 Presentation of results based on the simulation and actual experimentation. 

 Evaluation of the performance of the SDR system in terms of (SNR) signal-to-

noise ratio in an Additive White Gaussian Noise (AWGN) channel. 

 Evaluation of the performance for the simulation of an SDR system and real time 

implementation on the Xilinx Spartan-3E FPGA (XC3S500E-4FG320C) field 

programmable gate array (FPGA) platform part number HW-SPAR3E-SK-UNI-

G. The results obtained during simulation and experiments are compared. 
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1.4 Outline of the Project report 

In this report, the fundamentals of software defined radio are first presented in 

Chapter 2, which includes the general background information and various definitions for 

SDR. The presentation includes the difference between the SDR and conventional radio, 

architecture and advantages of SDR, adoption and chain value of SDR, SDR related 

technologies, possible design issues, and the platform choices for implementing 

integrated FPGA with multicore SDR based wireless communication systems. 

 In Chapter 3, the framework for the implementation of a wireless communication 

system in SDR is presented. This includes a brief introduction of wireless communication 

systems, with a block diagram of the end-to-end communication system architecture, and 

the methodology of implementation.  

An illustrative baseband communication system implementation, simulation and 

results are presented and discussed in Chapter 4. Results of the simulation including 

constellation diagrams, eye diagrams, and output waveforms, for different modulation 

techniques are presented and analyzed in chapter 5. The system is implemented on the 

Xilinx Spartan 3E FPGA (XC3S500E-4FG320C) platform. The results of the 

implementation are compared with the simulation results in chapter 6.  

Chapter 7 summarizes the content of the project report. Also, possible extensions 

of the report are discussed. 
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                                                       CHAPTER 2 

                  FUNDAMENTALS OF SOFTWARE DEFINED RADIO 

2.1 Introduction 

With the exponential growth in the ways and means by which people need to 

communicate - data communications, voice communications, video communications, 

broadcast messaging, command and control communications, emergency response 

communications, etc. - modifying radio devices easily and cost-effectively has become 

business critical. Software defined radio (SDR) technology brings the flexibility, cost 

efficiency and power to drive communications forward, with wide-reaching benefits 

realized by service providers and product developers through to end users. 

Cellular communication systems have undergone tremendous growth since the 

early 1980’s. As a result, mobile communication has become a major worldwide 

business. Because of this rapid growth, many analog and digital communication 

standards such as total access communication system (TACS), global system for mobile 

(GSM), digital cellular system-1800 (DCS-1800), interim standard-95 (IS-95), code 

division multiple access 2000(CDMA2000), have been developed. In fact, many 

competing standards have been introduced. The proliferation of standards is not only 

difficult for manufacturers but also for consumers. Manufacturers have to develop a new 

device for each technology or standard. This results in extra development costs and 

divided markets. It is also bad for consumers because users cannot use their mobile 

communication systems everywhere. 

Efforts to define a unique worldwide standard to overcome the above problems 

often results in a new standard. A unique common worldwide standard has its own 

advantages, but the industrial competition between different manufacturers introduces 

many difficulties. Therefore, software defined radio (SDR) concept is considered by 

many as an emerging technology that offers potential pragmatic solutions. For example, a 

software implementation of the user terminal will be able to dynamically adapt to the 

radio environment in which it is located. Software defined radio concepts can be viewed 
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as a means to make users, service providers, and equipment manufacturers more 

independent of standards. 

Software radio also describes radio functionalities defined by software. The 

possibility to define the typical functionalities of a radio interface by software will be an 

excellent opportunity to improve system performance. Currently the radio functionalities 

in communication systems are usually implemented by dedicated hardware. The presence 

of software defining the radio interface implies the use of digital signal processors 

(DSPs) replacing dedicated hardware to execute in real time, the necessary radio 

functions. To completely realize a digital programmable transceiver, it is necessary for 

the digital signal processors and the programmable logic such as field programmable gate 

arrays (FPGAs) to have a high processing power. Although advances have been made in 

digital signal processing since the 1980’s, the processing power of DSPs and FPGAs is 

still not enough to realize fully functional software defined radios. The required 

processing power is expected to become available in the near future. 

In this chapter, the definitions and meanings of the software defined radio are 

presented. The difference between SDR and conventional radio is highlighted, as well as 

the characteristics, advantages and disadvantages. Then, different hardware platforms 

available to implement SDR are discussed. The design issues in implementing SDR are 

highlighted. 

2.2 Definition of Software Defined Radio 

A number of definitions can be found to describe Software Defined Radio, also 

known as Software Radio or SDR. The Wireless Innovation Forum, working in 

collaboration with the Institute of Electrical and Electronic Engineers (IEEE) P1900.1 

group, has worked to establish a definition of SDR that provides consistency and a clear 

overview of the technology and its associated benefits. 

Simply put Software Defined Radio is defined as: 

"Radio in which some or all of the physical layer functions are software defined"  
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A radio is any kind of device that wirelessly transmits or receives signals in the 

radio frequency (RF) part of the electromagnetic spectrum to facilitate the transfer of 

information. In today's world, radios exist in a multitude of items such as cell phones, 

computers, car door openers, vehicles, and televisions. 

Traditional hardware based radio devices limit cross-functionality and can only be 

modified through physical intervention. This results in higher production costs and 

minimal flexibility in supporting multiple waveform standards. By contrast, software 

defined radio technology provides an efficient and comparatively inexpensive solution to 

this problem, allowing multi-mode, multi-band and/or multi-functional wireless devices 

that can be enhanced using software upgrades. 

SDR defines a collection of hardware and software technologies where some or 

all of the radio’s operating functions (also referred to as physical layer processing) are 

implemented through modifiable software or firmware operating on programmable 

processing technologies. These devices include field programmable gate arrays (FPGA), 

digital signal processors (DSP), general purpose processors (GPP), programmable 

System on Chip (SoC) or other application specific programmable processors. The use of 

these technologies allows new wireless features and capabilities to be added to existing 

radio systems without requiring new hardware. 
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                                 Figure 2.1-Generalized Functional Architecture  

One definition of SDR is provided by the SDR forum, is that SDR is the radio that 

accepts fully programmable traffic and control information and supports a broad range of 

frequencies, air interfaces, and application software. The SDR forum discriminates 

between different levels of flexibility in a radio. These are: 

(1) Hardware Radio (HR): In a HR, system attributes cannot be changed since the 

functionality of the hardware radio is fixed. However, this radio can use internal 

software as long as it cannot be changed externally. 

(2) Software Controlled Radio (SCR): This is the radio in which only the control 

functions are implemented in software. For example, the transmitted power level 

of a radio can be controlled by software, while all other functions are fixed in 

hardware. Current radio designs often fall under this category. 

(3) Software Defined Radio (SDR): These are radios that provide software control of 

almost every radio function, including modulation, multiplexing, amplification, 



11 
 

super heterodyne mixers, multiple access and other transmitter and receiver 

processes. The software should have the capability to add new air interfaces 

without reloading the entire set of software. 

(4) Ideal Software Defined Radio (ISDR): This radio has the same functionality as 

the SDR, but it does not have an analog front-end (amplification, mixers, etc.), 

thereby unable to eliminate analog noise and distortions. The analog front-end 

contains an antenna, analog-to-digital converters (ADCs) and digital-to-analog 

converters (DACs), directly attached to it. 

(5) Ultimate Software Radio (USR): The USR is an ideal, flexible, small, lightweight, 

low-power radio which is fully programmable. 

Software radios use digital techniques, but software controlled digital radios are 

generally not software radios. The difference between software controlled digital radios 

and software radios is the total programmability of software defined radio. This 

programmability includes programmable radio frequency bands, channel access modes, 

and modulation. 

It is obvious that unique definition for the software radio concept may not be possible. 

The most common definitions are summed up below and quoted from: 

 “Flexible transceiver architecture, controlled and programmable by software.” 

 “Signal processing able to replace, as much as possible, radio functionalities.” 

 “A system with air interface downloads ability. That is, it is possible to 

dynamically reconfigure radio equipment by downloadable software, at every 

level of the protocol stack.” 

 “Software realization of terminals.” 

 “A transceiver with frequency band and radio channel bandwidth, modulation and 

coding scheme, radio resource and mobility management protocols, and user 

applications.” 

It appears that in SDR, the parameters of interest can be adapted and changed by 

the network operator, service provider, and end users. A software defined radio system 

can operate in multi-service environments. This means that the system is able to offer 
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services of any already standardized systems or future ones, on any radio frequency band. 

The system is not constrained to a particular standard. For that reason the software radio 

system is very flexible. The compatibility of a software radio system with any defined 

mobile radio standard is guaranteed by its reconfigure ability, which is achieved by DSP 

processors. These processors implement in real time radio interface and upper layer 

protocols. 

A software defined radio not only transmits and receives signals but it does more 

in an advanced application. Before transmission, SDR can distinguish the available 

transmission channel, select suitable channel modulation, direct the transmit beam in the 

direction of interest, check for proper power level and then transmit the signal. Similarly, 

on the receive path, apart from just receiving the signal, SDR can characterize the energy 

distribution in the desired channel and adjacent channels, provide adaptive equalization, 

null interference, approximate the dynamic properties of the desired signal, decode the 

channel modulation using appropriate schemes, correct errors through forward error 

correction (FEC), and hence help in obtaining the desired signal with less bit error rate 

(BER). 

Finally, software radio supports incremental service enhancements through a wide 

range of software tools. These tools assist in analyzing the radio environment, defining 

the required enhancements, prototyping incremental enhancements via software, testing 

the enhancements in the radio environment, and finally delivering the service 

enhancements via software and/or hardware. 

2.3 Software Defined Radio Concepts 

In this section, the difference between conventional radio and software defined 

radio is presented. Also, the architecture of SDR, Rate of adoption, SDR related 

technologies, its advantages and disadvantages are discussed. 

2.3.1 Comparison of Conventional and Software Defined Radio 

To compare the functionalities of the conventional radio and SDR, we provide a 

tabulation of their functions in Table 2.1, and also provide benefits of SDR. 
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       Table 2.1-Comparison between conventional and software defined radios 

 

Benefits of SDR      

 A family of radio “products” to be implemented using a common platform architecture, 

allowing new products to be more quickly introduced into the market. 

 Software to be reused across radio "products", reducing development costs dramatically. 

 Over-the-air or other remote reprogramming, allowing "bug fixes" to occur while a radio 

is in service, thus reducing the time and costs associated with operation and maintenance. 

 New features and capabilities to be added to existing infrastructure without requiring 

major new capital expenditures, allowing service providers to quasi-future proof their 

networks. 

 The use of a common radio platform for multiple markets, significantly reducing 

logistical support and operating expenditures. 
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 Remote software downloads, through which capacity can be increased, capability 

upgrades can be activated and new revenue generating features can be inserted.  

 Reduce costs in providing end-users with access to ubiquitous wireless communications – 

enabling them to communicate with whomever they need, whenever they need to and in 

whatever manner is appropriate. 

2.3.2 Architecture of Software Defined Radio 

 

                          Figure 2.2-Block diagram of a generic digital transceiver 

The digital radio system consists of three main functional blocks: 

RF section, IF section and baseband section. 

The RF section deals with up conversion from IF to RF and down conversion 

from RF to IF. The ADC/DAC blocks interface between the analog and digital sections 

of the radio system. The ADC/DAC blocks perform analog-to-digital conversion and 

digital-to-analog conversion, respectively. DDC/DUC blocks perform digital-down-

conversion and digital-up-conversion, respectively.  

Additionally it performs modulation and demodulation of the signal. The 

baseband section performs baseband operations (connection setup, equalization, 
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frequency hopping, timing recovery, correlation) and also implements the link layer 

protocol. 

The DDC/DUC and baseband processor are implemented digitally in a SDR and 

they require large computing power. If the baseband section is implemented using ASICs, 

the function of the radio remains fixed reducing the flexibility of the radio. If DSPs are 

used for baseband processing, a programmable digital radio (PDR) system can be 

realized. In other words, in a PDR system baseband operations and link layer protocols 

are implemented in software. The limitation of this system is that any change made to the 

RF section of the system will impact the DDC/DUC operations and will require non-

trivial changes to be made in DDC/DUC ASICs. 

In comparison to that the software-defined radio (SDR) system is one in which 

the baseband processing as well as DDC/DUC modules are programmable. This is 

possible because of the availability of smart antennas, wideband RF front-end, wideband 

ADC/DAC technologies and ever increasing processing capacity of DSPs and general-

purpose microprocessors. 

In SDR system, the link-layer protocols and modulation/demodulation operations 

are implemented in software. If the programmability is further extended to the RF section 

(i.e., performing analog-to-digital conversion and vice-versa right at the antenna) an ideal 

software radio systems can be implemented. However, the current state-of-the-art 

ADC/DAC devices cannot support the digital bandwidth, dynamic range and sampling 

rate required to implement this in a commercially viable manner. Figure2.3 shows a 

parameter-controlled (Pac) SDR where the control bus supplies parameters for the 

desired operation. 
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                                     Figure 2.3-Transceiver of an Ideal SDR 

Figure 2.4 illustrates the architecture of software components in a typical SDR 

system. The system uses a generic hardware platform with programmable modules 

(DSPs, FPGAs, microprocessors) and analog RF modules. The operating environment 

performs hardware resource management activities like allocation of hardware resources 

to different applications, memory management, and interrupts servicing and providing a 

consistent interface to hardware modules for use by applications. In SDR system, the 

software modules that implement link layer protocols and modulation/demodulation 

operations are called radio applications and these applications provide link-layer services 

to higher layer communication protocols such as WAP (Wireless Application Protocol) 

and TCP/IP. 
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Figure 2.4-Architecture of software components of an SDR 

2.3.3 Rate of Adoption and value chain of SDR 

The Wireless Innovation Forum commissioned a number of research reports in 

2006 to evaluate the adoption of SDR technologies in various markets. The results of 

these studies demonstrated that, in certain markets, SDR is moving beyond the innovators 

and early adopters as defined by Geoffrey Moore in “Crossing the Chasm” into the early 

majority phase defining the mainstream market*. In this phase, adopters select a 

technology not because it is innovative or visionary but because it has been shown to 

successfully solve a problem within their specific market. 

Examples of SDR adoption illustrating the transition to the mainstream are abundant: 

 Thousands of software defined radios have been successfully deployed in defense 

applications 

 Cellular infrastructure systems are increasingly using programmable processing devices 

to create “common platform” or “multiband-multiprotocol”  base stations supporting 

multiple cellular infrastructure standards  
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 Cellular handsets are increasingly utilizing System on Chip (SoC) devices that 

incorporate programmable “DSP Cores” to support the baseband signal/modem 

processing 

 Satellite “modems” in the commercial and defense markets make pervasive use of 

programmable processing devices for intermediate frequency and baseband signal 

processing 

While these types of systems are often not marketed as “SDR’s”, they utilize and 

benefit from SDR technologies to solve market specific problems such as; cost of 

development, cost of production, cost of upgrades and maintenance, time to market in 

supporting new and evolving air interface standards, or problems associated with network 

interoperability. 

The benefits and anticipated opportunities for SDR technology are having a 

significant impact on the wireless industry’s value chain. This chain consists of product-

based and service-based providers, with value added at each stage, ultimately resulting in 

SDR end products and services that meet the needs of the end users and subscribers.  

Throughout the chain, the providers may be supported by external organizations 

such as educational institutions, research laboratories, industry standards bodies, 

investors, tests & verification and government. These supporting organizations provide 

critical input as development progresses through the chain, ultimately reaching the end 

user. The detail of the chain and the relationship within the context of the Wireless 

Innovation Forum membership is outlined below. 
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Figure 2.5-SDR Value Chain: Product and Service Based Providers and Supporting 

Organizations 

SDR has far reaching implications within the chain impacting a variety of 

organizations and industry sectors through the radio frequency (RF) chain (front end 

components, software developers, chips makers, etc) and throughout business modes 

(service providers, OEMs, IP holders, etc.). In order to provide viable products and 

services to meet the future development potential of SDR technology, organizations must 

look to structure SDR into all levels of the value chain. With successful applications seen 

in a number of markets, the opportunity to fully engage SDR at all levels of the chain is 

now. 

2.3.4 SDR related Technologies 

SDR can act as a key enabling technology for a variety of other reconfigurable 

radio equipments commonly discussed in the advanced wireless market. While SDR is 

not required to implement any of these radio types, SDR technologies can provide these 

types of radio with the flexibility necessary for them to achieve their full potential, the 

benefits of which can help to reduce cost and increase system efficiencies: 
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                 Figure 2.6-Venn diagram of advance wireless technology 

Adaptive Radio  

Adaptive radio is radio in which communications systems have a means of 

monitoring their own performance and modifying their operating parameters to improve 

this performance.  The use of SDR technologies in an adaptive radio system enables 

greater degrees of freedom in adaptation, and thus higher levels of performance and 

better quality of service in a communications link. 

Cognitive Radio 

Cognitive radio is radio in which communication systems are aware of their 

internal state and environment, such as location and utilization on RF frequency spectrum 

at that location.  They can make decisions about their radio operating behaviour by 

mapping that information against predefined objectives. 

Cognitive radio is further defined by many to utilize Software Defined Radio, 

Adaptive Radio, and other technologies to automatically adjust its behavior or operations 

to achieve desired objectives. The utilization of these elements is critical in allowing end-

users to make optimal use of available frequency spectrum and wireless networks with a 

common set of radio hardware. This will reduce cost to the end-user while allowing him 
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or her to communicate with whomever they need whenever they need to and in whatever 

manner is appropriate. 

There are two major subsystems in a cognitive radio; a cognitive unit that makes 

decisions based on various inputs and a flexible SDR unit whose operating software 

provides a range of possible operating modes. A separate spectrum sensing subsystem is 

also often included in the architectural a cognitive radio to measure the signal 

environment to determine the presence of other services or users. It is important to note 

that these subsystems do not necessarily define a single piece of equipment, but may 

instead incorporate components that are spread across an entire network. As a result, 

cognitive radio is often referred to as a cognitive radio system or a cognitive network. 

The cognitive unit is further separated into two parts as shown in the block 

diagram below. The first labeled the “cognitive engine” tries to find a solution or 

optimize a performance goal based on inputs received defining the radio’s current 

internal state and operating environment. The second engine is the “policy engine” and is 

used to ensure that the solution provided by the “cognitive engine” is in compliance with 

regulatory rules and other policies external to the radio. 

 

                                     Figure 2.7-Cognitive Radio Concept Architecture 
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Intelligent Radio  

Intelligent radio is cognitive radio that is capable of machine learning. This allows 

the cognitive radio to improve the ways in which it adapts to changes in performance and 

environment to better serve the needs of the end user. 

In addition to utilizing SDR technologies, adaptive radio, intelligent radio and 

cognitive radio systems may all support dynamic spectrum access (DSA), allowing the 

systems to select the frequency spectrum in which they will operate at a given location 

and over a given period of time to optimize the use of available spectrum and avoid 

interference with other radios or other systems. 

2.3.5 Advantages and Disadvantages of Software Defined Radio 

It is believed by many that the successful deployment of SDR will revolutionize 

the field of communication. One of the advantages of SDR is that it can be changed 

quickly to support multiple standards. The ability to configure devices, which may be 

used by many communication systems (e.g., cellular phones, wireless-fidelity (WI-FI) 

transceivers, frequency modulation (FM) and analog modulation (AM) radios, terminals 

of satellite communications), will be remarkable. 

With SDR, the same piece of hardware will be configured to perform different 

functions. The reconfigure ability of the platform will ensure hardware reusability. 

System reprogram ability allows hardware reuse until a new generation of hardware 

platforms is available. This will provide cost and time savings. Manufacturers will not be 

limited to reduced hardware platform set. As a consequence, mass production will allow 

lowered costs. 

Another advantage of SDR would be the possibility to improve the software in 

successive steps, and the correction of software errors and bugs discovered during the 

operation. In addition, SDR can enhance the interoperability of different systems in many 

applications such as the military, law enforcement, or search and rescue teams. 

Incompatibility of radio systems that has always hindered the seamless operation of the 

military, the law enforcement agencies and many rescue teams, will be eliminated. With 
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the increase of channel data rates through multiplexing and spectrum spreading, SDR 

could be used in cellular networks, GSM based PCS network, and future generation 

systems network. A new approach to wireless base station design using SDR has the 

potential of offering significant benefits such as reduced size, complexity, and power 

consumption. More importantly, SDR can support a variety of air interface standards, 

modulation schemes and protocols, simultaneously. Some commercial telephone service 

providers have begun expressing interest in the SDR economic benefits in long term. 

More highlights on the benefits of SDR are given in Section 1.2. 

While SDRs offer benefits as outlined above, there are drawbacks in the design 

and implementation of SDR. Those include: 

 The difficulty of designing software for various target systems or standards. 

 The difficulty of designing air interfaces to digital signals and algorithms for 

different standards. 

 The problem of poor dynamic range in some communication systems design. 

2.4 Software Defined Radio Implementation Platforms 

As indicated above, the global trend in the communication industry is to replace 

hardware by software, because of software flexibility. Real time software defined radio 

design can be implemented using a variety of digital hardware namely (a) field 

programmable gate arrays, (b) digital signal processors, (c) application specific integrated 

circuits and (d) general purpose processors. The different implementation platforms are 

shown in Figure 2.8. All the four platforms shown in Figure 2.8 possess a level of 

reprogram ability or reconfigure ability (i.e., the ability to modify the hardware or 

software). 

The DSP platform is essentially a microprocessor based system optimized for 

digital signal processing applications. DSPs can be programmed repeatedly with a high 

level language such as C, MATLAB. Modifications and upgrades to the design are 16 

made through these high level languages, thus reducing the design times for each 

iteration. The flexibility offered by the digital signal processor comes at the cost of 

efficiency. When there are several computations to be performed, parallel executions of 
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these computations will slow down the rate at which data is processed and this leads to 

the use of more than one DSP. This solution is limited since synchronizing several DSPs 

is difficult. 

 

 

 

 

 

 

                     Figure 2.8-Hardware implementation platforms for SDR 

A field programmable gate array is a general purpose integrated circuit that is 

programmed by the designer rather than the device manufacturer. A unique feature of 

FPGA is that it can be reprogrammed, even after it has been deployed into a system. Field 

programmable gate array is programmed by downloading a configuration program (bit 

stream) into the static on-chip random access memory. This is similar to the object code 

of a microprocessor, in which the bit stream is the product of compilation tools that 

translate the high level abstractions produced by a designer into equivalent but low level 

executable code. 

Field programmable gate arrays were designed for multilevel circuits to handle 

complex circuits on a single chip. Since they are reprogrammable, their configurations 

can be easily changed to upgrade systems or correct system bugs, making it ideal for 

prototyping. 

Field programmable gate arrays are now used in various configurations, as in 

multimode systems, and are very useful in meeting the needs of a software defined radio 

implementation. 

FPGA 
DSP GPP 

ASIC 

  Software Defined Radio 
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Application specific integrated circuits (ASICs) implement the system circuitry in 

fixed hardware, resulting in the most optimized implementation of the circuit in terms of 

speed and power consumption. However, ASIC design requires sophisticated circuit 

design and layout software tools. Also, as the name implies, their use are for specific 

application and not subject to modification at a later date. 

A general purpose processor is similar to DSP as a hardware platform in the 

design of software defined radio. Like DSP, it offers flexibility and ease of design. Radio 

functionalities can be implemented in high level languages such as C and C++. Designers 

can use the familiar approaches of object oriented programming and debugging to 

develop real time software radio systems. This increases productivity significantly and 

thus reduces system development time. 

Digital signal processor is the most generalized type of hardware that can be 

programmed to perform various functions, while ASIC is the most specialized and can be 

used only in specific application. Field programmable gate arrays offers a compromise in 

flexibility between ASIC and DSP platforms. 

In general, these hardware components constitute design spaces that trade 

flexibility, processing speed, and power consumption among other things. There should 

be a tradeoff between the maximum flexibility and high power consumption of DSP 

platforms to minimum flexibility and less power consumption of ASICs compared to 

FPGAs, which have good hardware optimization. Recently, FPGAs have become 

increasingly popular due to their ability to reduce design and development cycle time. 

Furthermore, latest FPGAs come with intellectual property (IP) cores, which are used for 

specific applications. 

There are other advantages of using FPGAs instead of DSPs for signal processing 

in commercial telecommunication systems. The power consumption is lower; the size is 

smaller, quicker to use and the costs are much lower in comparison to DSPs. Since the 

chip can be reused after fixing the bugs or upgrading a system, they are ideal for 

prototyping and testing the circuit design. Since FPGAs are reprogrammable, one chip 
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can be configured to perform more than one function and the configurations can be 

changed during run time. 

2.5 Technical Challenges 

This section discusses the technical issues, which have to be solved before 

software radio can be commercially available. The important technical issues involved in 

the development of a software radio system are as follows: 

 In transceivers, the border between analog and digital domain should be moved 

closer, as much as possible, towards the RF. This requires ADC and DAC 

wideband converters placed as near as possible to the antenna. Increasing the 

border between the analog and digital domain is not exclusively for software 

defined radio. Much research has been carried out in the wideband transceiver 

realization. The primary goal of this transceiver was to extend the digital domain 

at the IF stage and keeping the RF stage analog. 

 The process of replacement of dedicated hardware in communication systems 

with DSPs or FPGAs should be further developed. In other words, we need to 

define the radio functionalities as much as possible in software. This opens the 

way to two possible horizons: software implementation of baseband functions, 

such as coding, modulation, equalization and pulse shaping; and reprogram ability 

of the system to guarantee multi-standard operation. Though DSP technology has 

been used in implementing the baseband processing in base stations, it is not 

possible to categorize it as SDR since not all baseband functionalities are 

implemented in DSPs. Also, the software is limited and pre-loaded; therefore the 

system is constrained to a specific radio interface and cannot be reconfigured. 

Hence, implementing communication functions in software presents a major 

challenge in practical systems. 

 Analog-to-digital and digital-to-analog conversions for the ideal software defined 

radio are difficult to achieve. In practice, the selection requires trading power 

consumption, dynamic range and bandwidth. Current conversion technology is 

limited and is often the weak link in the overall system design. There are post 
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digitization techniques based on multi rate digital signal processing that can be 

used to improve the flexibility of the digitization process. 

 Power management is also a major challenge. For example, sleep modes of DSPs 

or other hardware save power but introduce a probability that the radio will be 

asleep during a paging message. A possible solution is a structured timing of 

paging messages, which reduces the probability of a miss, and further conserves 

battery life. 

 The clock generation and distribution is another challenge in SDR design. Every 

standard such as GSM or IS-95 has its own clock rate. Using one reference 

oscillator per standard may increase parts count, increase complexity, and 

therefore cost. A single master clock may use the least common multiple (LCM) 

of the required clocks, but this leads to a high clock rate, which is power 

inefficient. A possible solution is to use normalize standards to avoid clock rates 

with large LCMs. 

 Receiver complexity is typically four or more times the transmitter complexity. 

Thus, the receiver architecture has a first order impact on handset cost. The 

challenge is to develop a simple receiver. With the current technology, the support 

of many standards leads to complex and power inefficient solutions. Application 

specific integrated circuits are power efficient but inflexible. Field programmable 

gate arrays could be a possible solution. Hybrids of platform implementation 

could be utilized. 

 The ideal radio frequency stage for SDR should incorporate flexibility in selection 

of power gain, bandwidth, dynamic range, etc. Achieving strict flexibility is 

impractical and trade-offs must be made. These are the major challenges that must 

be addressed before full realization of SDR. Besides these important issues there 

are other challenges, which have to be solved like software architecture selection, 

hardware architecture selection etc., which are not discussed in this report. 

 



28 
 

2.6 Summary 

The fundamentals of SDR are presented in this chapter. It also dealt with 

definition and concepts of SDR. The difference between the conventional radio and SDR, 

characteristics, architecture were also presented. The choices of hardware available for 

real time implementation and technical challenges involved in implementation were 

discussed. 
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                                                         CHAPTER 3 

                               FRAMEWORK FOR SYSTEM DESIGN    

3.1 Wireless Communication System Model for Software Defined Radio 

The generic wireless communication system consists of a transmitter, channel and 

a receiver. The functional block diagrams of the digital transceiver are shown in Figure 

3.1. 

3.1.1 Radio Frequency Section 

The radio frequency (RF) section is responsible for transmitting and receiving the 

RF signal and converting the RF signal into an intermediate frequency (IF) signal. The 

RF section consists of antennas and analog hardware modules. The RF front-end is 

designed in such a way to reduce interference, multipath and noise. The RF front-end on 

the receive side performs RF amplification and down conversion from RF to IF. On the 

transmit side, the RF section performs analog up conversion and RF power amplification. 
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                         Figure 3.1-functional block diagrams of the digital transceiver 

 

3.1.2 Intermediate Frequency Section 

The ADC/DAC performs analog-to-digital conversion on the receive path, and 

digital to analog conversion on the transmit path. These blocks interface between the 

analog and digital sections of the radio system. Usually, the above conversion takes place 

in the IF stage. Digitizing the signal with an ADC eliminates the last stage in the 

conventional model, where problems such as carrier offset and imaging are encountered. 

As the names imply, the digital down converter (DDC) and digital up converter 

(DUC) perform digital down conversion on the receive path and digital up conversion on 

the transmit path, respectively. Digital filtering and sample rate conversion are often 

needed to interface the output of the ADC to the processing hardware at the receiver. The 

same happens in the reverse direction in the transmitter, where digital filtering and 

sample rate conversion are necessary to interface the digital hardware to the DAC that 

converts the modulated waveform to an analog waveform. 

3.1.3 Baseband Section 

The baseband section performs operations, such as error correction, equalization, 

frequency hopping, modulation, demodulation, and spreading, dispreading and timing 
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recovery. Forward error correction is a method of obtaining error control in data 

transmission in which the transmitter sends redundant data and the receiver recognizes 

only the portion of the data that contains no apparent errors. Equalization is done to 

counteract the inter symbol interference in the channel. Frequency hopping and spreading 

is used to minimize unauthorized interception or jamming of the communication system 

by repeated switching of frequencies during radio transmission using a specified 

algorithm. In a wireless communication system, many modulation techniques such as 

MPSK, QPSK, DPSK, etc., are used. In this report, the QPSK and BPSK modulation and 

demodulation techniques are dealt. More details on the specific blocks that were 

implemented in this report are provided in Chapter 4. 

The DDC, DUC and the baseband processing requires large computing power and 

these modules are generally implemented using DSPs, FPGAs, and ASICs. The 

advantages of using the above platforms in SDR were discussed in Chapter 2. 

3.2 Design Process for Reprogrammable Computing 

This section discusses the design process for reconfigurable computing, which 

helps in implementing a wireless communication system model in SDR. Field 

programmable gate arrays are currently being used in DSP applications, though there is 

no simpler way to create fast DSP applications using FPGAs. Combining FPGA and DSP 

technologies is difficult because DSP designers primarily use MATLAB or C/C++ to 

specify systems, whereas FPGA designers use very high speed integrated circuit 

(VHSIC) hardware description language (VHDL) or Verilog. The only common 

approach involves block diagram system model. 

Though the DSP algorithms and FPGA architecture are based on two different 

implementations backgrounds, they must work together to make an effective 

reconfigurable system. In FPGA design, the DSP algorithms may be modified to obtain 

the best possible FPGA implementation, and FPGA implementation must be verified to 

match the original specification given by the DSP algorithm. This requires a constant 

exchange of information about simulation results, design performance, DSP algorithm 

changes, and implementation results throughout the design process. Deciding on a single 
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tool and language that meets the requirements of SDR design specification can be 

difficult. 

A general overview of the design process for reconfigurable computing is given in 

Figure 3.2. 

 

 

 

 

 

 

 

 

 

                              Figure 3.2-Design process for reconfigurable computing 

3.2.1 High Level Simulation 

The algorithms and concepts used to define the system are modeled using high 

level software languages like MATLAB, SIMULINK and C. The Xilinx’s System 

Generator for DSP is a new tool, which comes with a predefined block set along with 

MATLAB SIMULINK software packet and can be used to implement the algorithms. 

These high level languages can also be used to verify the accuracy of the algorithms. 

However they do not directly aid in the hardware implementation. 

MATLAB is widely used by many DSP algorithm developers. It is considered the 

best environment for algorithm development and debugging because of its built-in 

functions and toolbox extensions for communications, signal processing and wavelet 
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processing. In addition to the intellectual property functions provided in MATLAB, the 

software packet is uniquely adept with vector- and array-based waveform data at the core 

of algorithms, which is suitable for applications such as wireless communications and 

image processing. MATLAB SIMULINK is fully integrated with the MATLAB engine 

for visual data flow environment for modeling and simulation of dynamic systems. In 

addition to the graphical block editor, event-driven simulator, and extensive library of 

parameterizable functions, it has block sets for DSP, communications, wavelets and many 

more. MATLAB SIMULINK is used in this report as the high level development tool in 

the design process. 

Xilinx System Generator is a system-level modeling tool that aids in FPGA 

hardware design. It extends SIMULINK capabilities in many ways to provide a modeling 

environment well suited for hardware design. System Generator for DSP is a tool for 

developing and debugging high performance DSP systems based on advanced Xilinx 

FPGAs. System Generator for DSP and MATLAB SIMULINK tool, provide the 

graphical design environment commonly used by DSP architects and FPGA designers. 

Xilinx’s System Generator for DSP tool was the first tool to bridge the gap 

between DSP and FPGA applications. System Generator along with SIMULINK is a 

powerful visual data flow environment ideally suited for modeling and simulating DSP 

algorithms, and allows the developer to automatically generate bit- and cycle-accurate 

hardware implementation from the system model. 

System Generator automates the design process, debugs, and implements and 

verifies the Xilinx-based FPGAs. It comes with DSP core libraries for high-level 

modeling and automatic validation code generation, and also provides a high-speed 

hardware description language (HDL) co-simulation interface, system-level resource 

estimation, and high-speed hardware co-simulation interfaces for design verification 

using FPGA hardware platforms. 

System Generator provides high-level abstractions that are automatically 

compiled into FPGA bit stream. It is delivered both with a predefined Xilinx block set 

library and other languages such as VHDL which are commonly used in FPGA 
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platforms. Finally, it facilitates the design at the system level, and allows simulation, 

implementation, and verification within the same environment, usually without writing a 

single line of HDL code or even looking at the Xilinx integrated software environment 

(ISE) tools. 

In spite of these advantages, System Generator fails to satisfy certain needs of the 

DSP algorithm developing functions like handling matrix operations and vector based 

processing. Examples of such algorithms include linear algebra, which involves matrix 

inverse and factorization operations, and complex number operations such as calculating 

magnitude and angle, and normalizing complex numbers. 

Test vectors can also be created using the System Generator. To construct test 

vectors, System Generator simulates the design in SIMULINK, and saves the values of 

the outputs.  These test vectors are later used to check the differences between the 

SIMULINK simulation, HDL simulation and hardware implementation of the model. 

3.2.2 VHDL Description 

The system that is modeled using System Generator can be compiled into low 

level representations. That is, the algorithms used to model the system can be broken into 

processes and coded in VHDL, which gives the description of the hardware. More 

precisely, it describes the architecture of the system i.e., its components and 

interconnections. The VHDL description results in a collection of HDL files that 

implement the design and are later used for HDL and hardware co-simulation. If 

required, test benches can also be created with other descriptions of the model. 

One of the most important applications of VHDL is to capture the performance 

specification for a circuit, in the form of a “test bench”. Test benches are VHDL 

descriptions of circuit inputs and corresponding expected outputs that verify the behavior 

of a circuit over time. Test benches are an integral part of any VHDL project and should 

be created in tandem with other descriptions of the circuit. 
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3.2.3 HDL Co-Simulation 

Simulation may be defined as the process of verifying the functional 

characteristics of models at any level of abstraction. VHDL simulation verifies the 

functionality of the system i.e., given the expected inputs and test whether the outputs are 

as expected or not. A VHDL test bench and data vectors, which has been created by 

System Generator for DSP represents the inputs and expected outputs seen in the 

MATLAB SIMULINK simulation, and allow the designer to easily see any discrepancies 

between the SIMULINK and VHDL simulation results. ModelSim is required, when 

HDL co-simulation is done. ModelSim provides a complete HDL simulation 

environment that enables to verify the functional and timing models of the design, and 

the VHDL source code. 

3.2.4 Hardware Co-Simulation 

Hardware co-simulation capability accelerates simulation and verification of 

design in hardware. System Generator’s hardware-in-the-loop co-simulation. Interfaces 

make a push-button flow and bring the full power of MATLAB and SIMULINK analysis 

functions to hardware verification. 

Once VHDL has been generated by System Generator and before the design is 

implemented in FPGA, it is necessary that it is synthesized for optimal FPGA 

implementations. In synthesis, the conceptual HDL design definition is used to generate 

the logical or physical representation for the targeted silicon device. That is, synthesis 

maps the HDL to the gate level representation. The VHDL modules can be transferred to 

the hardware using Xilinx synthesis technology (XST) synthesis tool, which comes with 

Xilinx’s ISE the next step, is to place and route the design in order to verify it on the 

FPGA. This is achieved using the Xilinx’s ISE implementation tools. The place and route 

function in FPGA design places the synthesized subsystems into FPGA locations and 

makes connections between these subsystems, enabling their operation as an integrated 

system. 
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Placing and routing is followed by hardware verification. The design is implemented on 

the desired hardware. Hardware verification checks if the module created in high level 

simulation works well on the desired FPGA device. Test vectors are used to check any 

discrepancies between the simulation and the hardware implementation. 

3.3 Test-bed Implementation 

 

                    Figure 3.3-Illustration of test-bed implementation process 

Using MATLAB SIMULINK along with Xilinx System Generator and the Xilinx 

ISE synthesis and implementation tool, it is possible to implement DSP designs in FPGA. 

As a plug-in to the MATLAB SIMULINK modeling software, the Xilinx System 

Generator provides a bit accurate model of FPGA circuits and automatically generates a 

synthesizable VHDL code including test bench. This synthesized VHDL design can be 

used for implementation in the Xilinx’s FPGAs platform. Figure 3.3 illustrates the test-

bed implementation of the design process for reconfigurable computing. The design 

implementation is described below. 
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3.3.1 Simulation with SIMULINK and System Generator 

In this report, the algorithm is designed and simulated using Xilinx System 

Generator system level tool. For an exact representation of the FPGA implementation, the 

Xilinx block set in MATLAB SIMULINK is used. The Xilinx block set enables bit-true 

and cycle-true modeling and includes common parameterizable blocks such as finite 

impulse response (FIR) filter, fast Fourier transform (FFT), direct digital synthesizer 

(DDS), multipliers, and much more. The following are the key steps in the design 

simulation process using MATLAB SIMULINK and System Generator. 

 Start the design by implementing the Xilinx blocks in the MATLAB SIMULINK 

model design. 

 Select the Xilinx System Generator block and add it on the top of the design 

hierarchy. 

 “Gateway In” and “Gateway Out” blocks are used to define the inputs and outputs 

to the Xilinx design. Xilinx gateway blocks automatically convert the double 

precision floating point numbers from the MATLAB SIMULINK environment 

into the fixed point numbers for the Xilinx environment. All the system 

components inside the gateway blocks should be Xilinx blocks only. However, 

any other MATLAB SIMULINK blocks such as scope, scatter plots and eye 

diagrams can be used to interface with Xilinx design and represented in system 

level. In this report, we used all three representations in the simulation. 

 Then the design can be simulated and the outputs can be verified using visual 

output blocks like scopes or by writing the output to the MATLAB workspace. 

3.3.2 HDL Co-Simulation procedure 

A system level design can be converted to the gate level representation using 

System Generator, which will automatically generate the VHDL code for all Xilinx 

blocks contained in the hierarchy. Additionally, automatic generation of test bench 

enables design verification upon implementation. The following are the key steps in the 

HDL co-simulation process. 
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 Double click on the System Generator block and bring up the graphical user 

interface (GUI). This is illustrated in Figure 3.4, which shows the System 

Generator dialog box. Set different options, such as targeted FPGA family, test 

bench generation and IP core generation. Notice that, the compilation type can be 

selected for HDL simulation or hardware co-simulation. The tool used for 

synthesis can be chosen from a choice of synthesis tools Xilinx’s XST, Simplify 

Pro and Mentor Graphics. Also, HDL can be chosen either as VHDL or Verilog. 

 

 

                             Figure 3.4-System Generator dialog box 
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 The next step is to run the System Generator by initiating the “Generate” button. 

This creates a top-level VHDL file, automatically generating IP cores using 

Xilinx Core Generator System or generates synthesizable VHDL. A VHDL test 

bench and data vectors are created if selected. These vectors represent the inputs 

and expected outputs stated in the MATLAB SIMULINK simulation step, and 

allow additional verification using a behavioral simulator. The design can be 

synthesized or a VHDL functional simulation can be run. 

3.3.3 Hardware Co-Simulation procedure 

The key steps involved in hardware co-simulation are similar to that in HDL co 

simulation. The System Generator will automatically synthesize, and place and route the 

design on the target FPGA platform upon selecting the appropriate options, such as 

compilation type, target FPGA, synthesis tool, and so on. The key steps in the hardware 

co-simulation process can be summarized as follows. 

 The hardware co-simulation platform can be chosen from the System Generator 

dialog box. When the compilation target is selected, the fields on the System 

Generator dialog box are automatically configured with settings appropriate for 

the selected compilation target. 

 After initiating the “Generate” button, the code generator is invoked and produces 

an FPGA configuration bit stream for the design that is suitable for hardware co-

simulation. System Generator not only generates the HDL and net list files for the 

model during the compilation process, but it also runs the downstream tools 

necessary to produce an FPGA configuration file. The compilation process using 

code generator is shown in next chapter 6. 

 After the FPGA configuration bit stream is created, a new hardware co-simulation 

block is created by the System Generator and stored in the MATLAB SIMULINK 

library. Hardware co-simulation blocks can be used in the design with other 

MATLAB SIMULINK blocks. When the hardware co-simulation block is 

simulated, it interacts with the underlying FPGA platform and facilitates the 

design implementation and verification of the desired FPGA. 
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In this report, only hardware co-simulation is performed using Xilinx Spartan 3E FPGA 

(XC3S500E-4FG320C) platform. 

3.4 Summary 

This chapter is a description of the general design and simulation processes for 

implementing a wireless communication system on a SDR. In this chapter, the frame 

work for system design used for SDR implementation was discussed. The design process 

involved in implementing the system on a reconfigurable platform has been presented. 

The steps involved in simulating and implementing the system in real time has been 

discussed. The actual implementation is presented in the chapter 6. 
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                                                        CHAPTER 4 

                          SYSTEM DESIGN AND IMPLEMENTATION 

4.1 Environment Required  

Before we start doing wireless communication system design for integrating 

FPGA with multicore SDR development platform, our computer must meet the 

requirements outlined below. 

                          Table 4.1-The hardware and software requirement 

Operating system  Hardware  

Windows 7 • IBM-compatible desktop or laptop 

• Processor: Pentium i3 or better  

• RAM: 3 GB  

• Hard disk drive: 40 GB of free 

space or more  

• Display: 800 × 600 pixels or more  

Software  

ARM/DSP development software  

• Texas Instruments, Code Composer Studio 

FPGA development software  

• Xilinx, ISE Foundation 

• Xilinx Synthesis Technology (XST)  

Model-based design software  

• The Math Works, MATLAB 7.11 (R2010b)  

• Simulink  

• Real-Time Workshop  

• Signal Processing block set and toolbox  

• Xilinx, System Generator for DSP 

 

4.2 System Model for Simulation 

In this report, software definable wireless communication system is designed, 

simulated and implemented. MATLAB SIMULINK and Xilinx’s System Generator are 

used as high level modeling tools in the design process. Simulation of the system with 

these tools forms the first step of the design process for reconfigurable computing as 

discussed in Chapter 3. The transmitter section of the baseband is implemented in Xilinx 
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Spartan 3E FPGA (XC3S500E-4FG320C) hardware board using the hardware co-

simulation process, which is used to analyze the system in real time. 

In the baseband section of the communication system, the transmitter consisting of the 

convolutional encoding, puncturing, modulation and spreading are simulated. The 

receiver side consists of dispreading, demodulation, depuncturing and Viterbi decoding. 

Figure 4.1 shows the software definable section of the communication system model 

implemented in this report. 

                                                                

   

 

 

 

 

 

 

           

   

 

                             Figure 4.1-Software definable baseband communication system 

4.3 The System Generator Design 

System Generator works within the Simulink model-based design methodology. 

Often an executable spec is created using the standard Simulink block sets. This spec can 

be designed using floating-point numerical precision and without hardware detail. Once 

the functionality and basic dataflow issues have been defined, System Generator can be 

used to specify the hardware implementation details for the Xilinx devices. System 

Generator uses the Xilinx DSP block set for Simulink and will automatically invoke 

Xilinx Core Generator to generate highly optimized net lists for the DSP building blocks. 
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System Generator can execute all the downstream implementation tools to product a bit 

stream for programming the FPGA. An optional test bench can be created using test 

vectors extracted from the Simulink environment for use with ModelSim or the Xilinx 

ISE Simulator. 

 

                             Figure 4.2-The System Generator design flow 

When designing a system including FPGA part, we have to add System Generator 

block when using Xilinx block set to construct a model. This block can let user set the 

frequency of FPGA and file saving dictionary …etc. The Resource Estimator block 

provides fast estimates of FPGA resources required to implement a System Generator 

subsystem or model. 
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               Figure 4.3-Basic architecture of design with Xilinx block set 

Two blocks called Gateway In and Gateway Out defines the boundary of the FPGA 

from the Simulink simulation model. The Gateway In block converts the floating point 

input to a fixed-point number, and the Gateway Out converts the FPGA outputs back to 

double precision. 

 

                       Figure 4.4-Three essential Xilinx blocks 

4.4 Convolutional Encoder & Virterbi Decoder 

The convolutional encoder of IEEE 802.16 Wireless OFDM PHY standard, which 

shall have native rate of 1/2, a constraint length equal to 7, and shall use the generator 

polynomials codes shown in Equation to derive its two code bits: 
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For the 7th mode of channel coding, the Convolutional Code (CC) code rate is ½ is 

used in this project. The puncture of code rate 1/2 is listed in the Table 4.2 

Table 4.2-The convolutional code with puncturing configuration 

 

Figure 4.5 and Figure 4.6 show the setting of convolutional encoder and viterbi 

decoder. 

 

                             Figure 4.5-Convolution Encoder setting  
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                                              Figure 4.6-Viterbi Decoder setting 

4.5 Transmitter Model 

At the transmitter, the data from the source is input to the forward error correction 

block, which comprises of the convolutional encoder and puncturing system. The 

convolutional encoder is used for error correction in data transmission and it encodes the 

data sequence by inserting redundant bits. In the convolutional encoder, values are 

encoded by a linear feed forward shift register, which computes modulo-2 sums over a 

sliding window of input data. 

In this report, a rate 1/2 convolutional encoder with constraint length 7 and code 

array 171 and 133 is used. Please note that the code array used is the optimal code array 

of constraint length 7. The constraint length denotes the number of shift registers over, 

the constraint length denotes the number of shift registers over, which the modulo-2 sum 

of the input data is performed. The rate 1/2 signifies that for every 1 bit input, the encoder 

will output 2 encoded bits. 
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Puncturing is a method of constructing new codes by removing the user-defined 

bits from the encoded data. The use of puncturing significantly reduces the number of 

bits to be transmitted over the channel. The puncture codes are a bit pattern that identifies 

the bits from the encoder to be transmitted and the codes used in this report are 10 and 

11. Based on the puncture code parameter, the binary vector decides the bits that are to be 

removed. In a puncturing sequence, 0 and 1 means that the corresponding code symbol is 

not transmitted or is transmitted, respectively. 

Figure 4.7 shows how the rate 1/2 convolutionally encoded output can be 

punctured with puncture code 10 and 11 to give a rate 2/3 punctured output. In Figure 

4.7, the puncture block 0 and 1 uses 10 and 11 as puncture codes respectively. Consider 

bits A, B, C and D as input to the convolutional encoder. Bit A input to the encoder is 

encoded as A0 and A1. Similarly bits B, C and D are encoded as B0, B1, C0, C1, D0 and 

D1. The encoded bits are now input to the puncture blocks. Since the puncture codes are 

10 and 11, two bits in parallel should be input to the puncture blocks. Thus, when A0 and 

B0 are input to puncture block 0, bit B0 is not transmitted because the puncture code 10 

will delete every second bit input to the puncture block 0. However, all the bits input to 

the puncture block 1 will be transmitted because the puncture code 11 will not delete any 

bits. 

Similarly, bit D0 will be deleted when C0 and D0 are input to the puncture block 

0 and bits C1 and D1 will be transmitted from puncture block 1. Thus, the output rate of 

the forward error correction block is 2/3, i.e., for every 2 input bits, 3 out of 4 encoded 

bits are transmitted. 
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                                                   Encoded data 0                                         Punctured  o/p 0 

 

                                                  Encoded Data 1  Punctured o/p 1 

 

                                                       

                   

                                             Figure 4.7-Example of puncturing rate 1/2 encoder 

The punctured data is modulated using QPSK modulation technique. The QPSK 

modulated data is then spread by pseudorandom noise (PN) sequence with a spreading 

gain of 16 before transmission. Please note that the spreading gain used in this thesis, is 

very small when compared with practical processing gains and is used only for 

illustrative purposes. The channel is modeled as an AWGN channel. Hence, only the 

AWGN model is considered in this report. Figure 4.8 shows the transmitter design for 

this project. 

 

                                             Figure 4.8-Transmitter design 
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4.6 Receiver Model 

At the receiver, the signal is first dispread and then demodulated. Then error 

correction is applied to the demodulated data. The signal is dispread with PN sequence 

generator with a spreading gain of 16 and demodulated using QPSK technique. The 

demodulated and dispread data is depunctured prior to decoding, by inserting null-

symbols in the punctured locations. The null-symbols are inserted according to the 

puncture code patterns. Figure 4.9 shows an example of depuncturing rate 2/3 punctured 

data.  

 

 

 

 

 

            Figure 4.9 Example of depuncturing rate 2/3 encoded data 

The depuncture blocks have the same depuncture codes as in the puncture blocks. 

Hence depuncture block 0 has a code of 10 and block 1 has a code of 11. Therefore, the 

null symbol is inserted after every other bit coming out of depuncture block 0. No 

symbols are inserted for block 1 as no bits were punctured. Since the bit B0 and D0 were 

punctured before transmission, null symbol is inserted in those locations and input to the 

Viterbi decoder along with the other bits. 

Viterbi decoder is used to decode the convolutionally encoded signal by finding 

an optimal path through all the possible states of the encoder. There are two steps to the 

decoding process. The first step is to weigh the cost of incoming data against all possible 

data input combinations. Either a Hamming or Euclidean metric may be used to 

determine the cost. The second step is to trace back through the trellis and determine the 

optimal path. The length of the trace through the trellis can be controlled by the trace 

back length parameter. 

C D 

C0 - 

C1 D1 

A B 

A0 - 

A1 B1 

Viterbi 

Decoder  

Depuncture code 0 

                 Encoder 

Depuncture code 0 

                 Encoder 

Input 0 

Input 1 

O/p 



50 
 

The constraint length of 7 and the code array 171 and 133 used for decoding are 

the same as in convolution encoder. The trace back length parameter, that is, the number 

of trellis states processed before the decoder makes a decision on a bit, is set to 48. The 

decoder outputs the data bits which are later grouped accordingly. Figure 4.10 shows the 

design for receiver for this project work. 

 

                                             Figure 4.10-Receiver design 
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                                                       CHAPTER 5 

                                                      SIMULATION 

5.1 System Simulation 

The simulation model for punctured convolution encoder is shown in Figure 5.1. 

In this thesis, punctured convolution encoder of rate 2/3 with constraint length 7 is used. 

The data source random integer generator, output is input to the “Gateway In” block. This 

block converts the data in double precision to the Xilinx fixed point representation. From 

the “Gateway In” block, the data is parallel-to-serial converted and given to the data input 

port of the convolution encoder. The output from the data output port 1 of the encoder is 

serial-to-parallel converted and given to the puncture block with puncture code 10. Every 

second, encoded output bit from data output port 1 is deleted by the puncture block after 

serial-to-parallel conversion. However, there is no puncture block on data output port 2 

since the puncture code is 11 and all the encoded bits from output port 2 are transmitted. 

A constant value of 1 is used as input to the input port (Vin) to specify to the 

encoder that the data on its input port is valid and is ready to be encoded. When there is 

valid output on the output ports of the encoder, the valid output port (Vout) output is set 

to high, which is sent to the Viterbi decoder valid input port. 
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             Figure 5.1-Encoding and puncturing using System Generator blocks 

Figure 5.2 shows the modulation and spreading design process. The punctured 

data from the two puncture blocks are concatenated and then modulated using QPSK 

modulator. The data from the concatenate passes through a ”Gateway out” block so that 

the Xilinx’s fixed point representation is converted to SIMULINK double precision since 

QPSK modulation and spreading is done with SIMULINK blocks. After modulation, the 

modulated data is then spread using PN sequence generator and passed through the 

AWGN channel. 

At the receiver, the signal is despreaded using the same PN sequence generator 

and demodulated using QPSK demodulator. This is shown in Figure 5.3. After 

demodulation, the input data to the two depuncture blocks is first passed through the 

”Gateway In” block converting it to Xilinx’s fixed point representation. Resulting data is 

then passed through the slicer to separate the encoded bits. 
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                             Figure 5.2-Modulation and spreading of the encoded signal 

 

               Figure 5.3-Despreading and demodulation of the received signal 

Recall that the purpose of depuncturing and decoding is for forward error 

correction.The same puncture code 10 and 11 used for puncturing is used for 

depuncturing. Figure 5.4 shows the depuncturing and decoding blocks used in the 

simulation. The decoder depunctures the received data, prior to Viterbi decoding, by 

inserting null-symbols in the punctured locations. 
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Figure 5.4-Depuncturing and decoding model using System Generator blocks 

 

The null-symbol is inserted after every input to the data input port 1 of the Viterbi 

decoder through the depuncture block and no null-symbol is inserted at the data input 

port 2 of the decoder as no bits were punctured during transmission. After depuncturing 

from block 1, the data is parallel-to-serial converted and input to the Viterbi decoder. 

The input to the second port of the Viterbi decoder and the input to the valid input 

port are given after few delays in order to synchronize with the output from depuncture 

block 1. At the decoder, the depunctured data is then decoded using a rate 1/2 Viterbi 

decoder. The decoder output is serial-to-parallel converted accordingly and the input and 

output waveform is compared. The other outputs from the Viterbi decoder (ber, 

ber_done, and norm) are used to check for the errors while decoding. 
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Figure 5.5 shows the circuit diagram of the full wireless communication system 

using system generator blocks from which we can simulate the circuit and get results and 

shows communication on integrating FPGA with multicore SDR development platform. 

 

Figure 5.5-Communication system model using system generator blocks 
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5.2 Simulation Results 

The results obtained from the simulation is presented and discussed in this 

section. The constellation diagram and eye diagram of the modulated signal from which 

conclusions about the modulated signal can be drawn is observed at the output of the 

channel. These diagrams reveal the modulation characteristics of the signal and help to 

depict the impact of impairments, such as pulse shaping or channel distortions. They are 

commonly used to evaluate the overall performance of the digital communication 

systems. Since the channel used in this thesis is AWGN, the extent to which the noise has 

affected the modulated signal can be seen from constellation and eye diagrams. 

5.2.1 Constellation Diagrams 

Figure 5.6 shows the constellation diagram of the modulated signal with signal-to 

noise ratio (SNR) of 20 dB. The figure shows that each constellation point becomes a 

cloud around the central point. When the noise is more in the channel, the constellation 

points spreads around the central point. While demodulating in the receiver, the chances 

of misinterpretation of one point as other is more and this leads to incorrect demodulation 

and error. 

Increasing the SNR of the AWGN channel will increase the performance of the 

system. The constellation diagram of modulated signal with SNR of 25 dB is shown in 

Figure 5.7. Since the SNR is high, the constellation points form a more dense cloud 

around the central point thus reducing the transmission error. 
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Figure 5.6-Constellation diagram for QPSK modulated signal with SNR = 20 dB 

 

 
 

Figure 5.7-Constellation diagram for QPSK modulated signal with SNR = 25 dB 
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Comparing Figures 5.6 and 5.7, it can be seen that the constellation points of 

Figure 5.7 are denser than in Figure 5.6. If the noise in the channel is smaller, then the 

constellation points will be denser, and thus the transmission error is less and the receiver 

output is more accurate. This is clearly reflected on Figure 5.6 compared to Figure 5.7 

The constellation diagram for BPSK is shown in Figure 5.8. Recall that the power 

spectral density (PSD) of a QPSK signal has a null-to-null bandwidth that is equal to the 

bit rate, which is half that of a BPSK signal. Therefore, QPSK has twice the bandwidth 

efficiency of BPSK, since 2 bits are transmitted in a single modulation symbol instead of 

1 bit for BPSK. Further, the bit error probability of QPSK is identical to BPSK, while 

twice as much data can be sent in the same bandwidth. Thus, when compared to BPSK, 

QPSK provides twice the spectral efficiency with exactly the same energy efficiency. 

 

     Figure 5.8-Constellation diagram for BPSK modulated signal with SNR = 25 dB 
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5.2.2 Eye Diagrams 

The measure of distortion, timing jitters and noise margin can be found from the 

eye diagrams. Figure 5.9 shows the eye diagram of the modulated signal with SNR of 20 

dB. From the figure, A shows the distortion which is equal to 0.5; B and C show the 

timing jitter and the noise margin which are equal to 0.2 and 0.5. Due to the noise in the 

channel, when the noise margin in the eye diagram decreases, the eye starts to close in, 

thus making the errors to increase. Since the SNR is less, it can be seen from the figure 

that the eye has more distortions and is not properly open due to the presence of noise in 

the channel. 

 

     Figure 5.9-Eye diagram for QPSK modulated signal with SNR = 20 dB 

Figure 5.10 shows the eye diagram for SNR of 25 dB. The eye diagram has less 

distortion given that the eye opening is more defined. The proper eye opening defines 



60 
 

less bit errors and hence less transmission error. Comparing Figures 5.9 and 5.10, it can 

be seen that the distortion in Figure 5.10 is 0.25 when compared with the distortion in 

Figure 5.10 which is 0.5. Similarly, the timing jitter is 0.1 for SNR = 25 dB and 0.2 for 

SNR = 20 dB. The other parameter noise margin is 0.65 and 0.5 for SNR = 30. 

 

Figure 5.10-Eye diagram for QPSK modulated signal with SNR = 25 dB 
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5.2.3 Output Waveform 

Another indicator of performance is the observation of the output waveform 

compared to the input waveform. Figure 5.11 shows the input signal to the transmitter 

and the output signal of the receiver when both are synchronized. Observe that the input 

and output signals are similar for the system specifications discussed above, showing that 

the received signal is demodulated and decoded without much of error. 

 

      Figure 5.11 Input and output waveforms of the communication system 
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                                                 CHAPTER 6 

         REAL TIME IMPLIMENTATION AND SIMULATION 

6.1 Real time Implementation and Simulation 

After simulation and analysis of the results, the system is implemented in real 

time via hardware co-simulation on Xilinx Spartan 3E FPGA (XC3S500E-4FG320C) 

platform. The Diligent D2-SB hardware board, which has a Spartan 3E FPGA 

(XC3S500E-4FG320C) chip on it, is used to implement the system in real time. The 

Spartan 3E (XC3S500E-4FG320C) is programmed through the joint test action group 

(JTAG) programming cable. 

The hardware co-simulation is performed by powering on the Diligent D2-SB 

board and connecting the JTAG cable from the board to the printer port of the personal 

computer (PC). 

The Diligent D2-SB circuit board provides a complete circuit development 

platform centered on a Xilinx Spartan 3E FPGA (XC3S500E-4FG320C) and is shown in 

Figure 6.1. The Diligent D2-SB is made by Diligent Inc., and is used for hardware co-

simulation. Some of the features of this board include, 

Key Features 

 Xilinx Devices:  

 Spartan-3E FPGA (XC3S500E-4FG320C) 

 CoolRunner™-II CPLD (XC2C64A-5VQ44C) 

 Platform Flash (XCF04S-VO20C) 

 Clocks: 50 MHz crystal clock oscillator 

 Memory:  

 128 Mbit Parallel Flash 
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 16 Mbit SPI Flash 

 64 MByte DDR SDRAM 

 Connectors and Interfaces:  

 Ethernet 10/100 Phy 

 JTAG USB download 

 Two 9-pin RS-232 serial port 

 PS/2- style mouse/keyboard port, rotary encoder with push button 

 Four slide switches 

 Eight individual LED outputs 

 Four momentary-contact push buttons 

 100-Pin expansion connection ports  

 Three 6-pin expansion connectors 

 Display: 16 character - 2 Line LCD 

 

       Figure 6.1-Spartan 3E FPGA hardware board for hardware co-simulation 
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The Spartan 3E FPGA and the 18V00 ROM on the Diligent D2-SB, and any 

programmable devices on peripheral boards attached to the Diligent D2-SB can be 

programmed via the JTAG port. In this thesis, only the Spartan 3E FPGA was used. The 

transmitter side of the model, which was simulated, is targeted to Spartan 3E FPGA 

through the JTAG programming chain. 

Hardware co-simulation makes it possible to incorporate SIMULINK simulation 

into FPGA hardware directly. Hardware co-simulation is invoked by activating the 

System Generator, which should be present in all models containing System Generator 

blocks. Hardware co-simulation targets are organized under the hardware co-simulation 

sub-menu in the compilation dialog box field. When the compilation target, Spartan 3E 

already installed, is selected, the fields on the System Generator block dialog box are 

automatically configured with settings appropriate for the selected compilation target. 

System Generator remembers the dialog box settings for each compilation target. Once 

the compilation target is selected, the System Generator code generator is invoked to 

compile the model for hardware co-simulation. 

The code generator produces a FPGA configuration bit stream for the design, 

suitable for hardware co-simulation. System Generator not only generates the HDL and 

net list files for the model during the compilation process, but it also runs the downstream 

tools necessary to produce an FPGA configuration file. A new command window is 

opened when the implementation tools are running to produce the configuration bit 

stream file as shown in Figure 6.2. This window shows the progress and output of each 

tool as it is runs. It can be seen from Figure 6.2 that the information about the completion 

of placing and routing of the system in hardware is also displayed. The figure shows that 

the placement routing and timing were successfully completed. The configuration bit 

stream contains the hardware associated with the model. 
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 Figure 6.2-Command window showing the progress of implementation tools 

Hardware co-simulation compilation targets automatically create bit streams and 

associate them with implementation blocks. When the design is simulated in SIMULINK, 

results for the complied portion are calculated in hardware. This allows the compiled 

portion to be tested in actual hardware, and can speed up simulation dramatically. System 

Generator creates a new hardware co-simulation block for the design once it has finished 

creating the FPGA configuration bit stream. A SIMULINK library is also created in order 

to store the hardware co-simulation block information. Figure 6.3 shows the hardware co-

simulation block generated for the transmitter stage of the model. At this point, the 

hardware co-simulation block can be copied out of the library and used in the 

SIMULINK simulations instead of the Xilinx blocks. In this report Figure 6.3 is used in 

the design and is simulated with other SIMULINK blocks. When simulation is complete, 

the hardware co-simulation block interacts with the underlying hardware and produces 

the output. A hardware co-simulation block consumes and produces the same types of 

signals as that of other System Generator blocks. When a value is written to one of the 

hardware co-simulation block’s input ports, the block sends the corresponding data to the 

appropriate location in hardware. Similarly, the block retrieves data from hardware when 

there is an event on an output port. 
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                           Figure 6.3-Hardware co-simulation library 

 

Figure 6.4 shows the constellation diagram output obtained by implementing the 

model in hardware. Comparing Figure 6.4 to the previous results, the output from 

simulation, it is evident that the two results are similar, with little or no difference. Thus 

we have shown that the hardware implementation result is the same as the simulated 

results. 

 

Figure 6.4-Constellation diagram for hardware co-simulation 
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                                              CHAPTER 7 

                                       SUMMARY AND CONCLUSION 

7.1 Summary 

This project report consists of a study of the software defined radio concept and, 

test bed development and implementation of integrating FPGA with multicore software 

defined radio development platform to design wireless communication system. 

In Chapter 3, a general description of wireless communication system is 

presented. The design methodology used for simulation and hardware implementation of 

the system was discussed. 

In Chapter 4, framework for the system that has been implemented, the simulation 

and the results are presented in Chapter 5. Results such as the constellation diagrams and 

eye diagrams at the output of the transmitter are used to quantify the performance of the 

system. Furthermore, the system is tested by comparing the input waveform to the 

transmitter and the output waveform from the receiver. The results obtained in Chapter 5 

and Chapter 6 indicate that the system produces similar results from simulation and 

hardware implementation. Several modulation techniques are used with similar results 

observed during simulation and hardware implementation. In this report I used the 

System Generator for DSP, a tool developed by Xilinx for implementing a model of a 

digital signal processing algorithm in a Xilinx FPGA platform. The Xilinx System 

Generator for DSP is compatible with MATLAB SIMULINK making it possible to 

provide design parameters, data path definition, bit- and cycle-true simulations, test 

bench generation, hardware co-simulation and VHDL code generation. System Generator 

is very helpful for system engineers without background in VHDL coding and FPGAs, 

since the generator automates the hardware implementation process. Though the 

automation seems to be helpful, there are few constraints encountered in this thesis while 

using System Generator. Not all the communication functions are available in the 

predefined library. This restricts the use of this tool to certain extent. But the 

functionalities can be written as code in MATLAB, C or VHDL and can be imported into 

the system using the black box features of the System Generator. The next constraint is in 
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the hardware implementation. There are chances that when the design is targeted in 

hardware it would not be placed and routed optimally. This could be a major problem if 

the system size is a requirement. In spite of these constraints, the automation facility of 

the System Generator proves to be useful for system implementation. 

7.2 Conclusion 

Designed and successfully implemented wireless communication system on multicore 

SDR development platform and also seen that during simulation if signal to noise ratio (SNR) for 

AWGN channel increased the system gave us more good results with less distortion. 

Although some modes’ BER are not good enough, here designed a model of wireless 

communication system on FPGA implemented SDR development platform. It’s particular that 

we integrate FPGA into our system. It is more difficult that design a system by using Xilinx 

block set and Simulink block set at the same time. Because there are several difference between 

these two kinds of block set such as the difference of data format, block architecture etc. This 

report could be helpful for model-based design of next generation, and using Model-based FPGA 

design in Simulink can shorten the time to market. 

7.3 Future work 

A complete communication system for any particular air standard (e.g., GSM, IS-95, or 

CDMA2000), can be defined in software. In this report, the receiver is not implemented in 

hardware due to the licensing issues of the Viterbi decoder block. A workaround for this problem 

would be to write a VHDL or C code for the Viterbi decoder and import it into the system and 

implement it in hardware. These are some of the ways this thesis could be extended in the future 
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                                                   APPENDIX – A 

ADC - Analog-to Digital Converter 

AM - Analog Modulation 

AMPS - Advanced Mobile Phone Service 

ASIC- Application Specific Integrated Circuit 

AWGN - Additive White Gaussian Noise 

BER - Bit Error Rate 

BPSK - Binary Phase Shift Keying 

CDMA - Code Division Multiple Access 

CORBA - Common Object Request Broker Architecture 

DAC - Digital-to-Analog Converter 

DCS - Digital Cellular System 

DDC - Digital Down Converter 

DDS - Direct Digital Synthesizer 

DSP - Digital Signal Processor 

DUC - Digital Up Converter 

FEC - Forward Error Correction 

FFT - Fast Fourier Transform 

FIR - Finite Impulse Response 

FM - Frequency Modulation 

FPGA - Field Programmable Gate Array 
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GPP - General Purpose Processor 

GSM - Global System for Mobile 

GUI - Graphical User Interface 

HR - Hardware Radio 

ISE - Integrated Software Environment 

ISDR - Ideal Software Defined Radio 

JTAG - Joint Test Action Group 

LCM - Least Common Multiple 

PN - Pseudorandom Noise 

PSD - Power Spectral Density 

QPSK - Quadrature Phase Shift Keying 

RF - Radio Frequency 

SCR - Software Controlled Radio 

SDR - Software Defined Radio 

SNR - Signal-to-Noise Ratio 

TACS - Total Access Communication System 

USR - Ultimate Software Radio 

VHSIC - Very High Speed Integrated Circuit 

VHDL - Very Hardware Description Language 

WI-FI - Wireless-Fidelity 

WLAN - Wireless Local Area Network 


