

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

VHDL “Digital Lock” design implemtntation on Altera DE2 board

AND

Area and Time optimization of ASIC “FIFO” design using Synopsys design compiler

A graduate project submitted in partial fulfillment of

The requirements for the degree of Masters of Science

In Electrical Engineering

By

Pranav Suryakant Biscuitwala

May 2012

ii

The graduate project of Pranav Biscuitwala is approved:

__ ______________

Dr. Ali Amini Date

___ ______________

Dr. Somnath Chattopadhyay Date

___ ______________

Dr. Ramin Roosta, Chair Date

California State University, Northridge

iii

ACKNOWLEDGEMENT

I would like to express my gratitude to the Electrical and Computer Engineering

Department Faculty at the California State University, Northridge for their time, guidance

and patience. I hope this project will be a good starting point from where students can learn

about Synopsys Design Compiler, VHDL code implementation on DE2 and they will be

able to move ahead of me.

I would like to thank Dr. Ramin Roosta for introducing me to the field of ASIC

Design and to learn the basics of Front end ASIC design flow, Types of ASIC Architecture

and allowing me to use Synopsys compiler for verification of my design.

I also want to thank Dr. Ali Amini and Dr. Somnath Chattopadhyay for their

valued attention and encouragement.

Most importantly, I would like to thank my parents, Mr.Suryakant G Biscuitwala

and Mrs. Ramilaben S Biscuitwala for giving me an opportunity to come to USA to pursue

a highly qualified technical education of Master’s Degree that has not only improved my

career but has also helped me in defining my long term career goals.

Special thanks to Shashank, Keyur, Mayur, Tejas, Naveen for their guidance and

motivation. I also want to thank all my friends and my brother back in my home country

and CSUN for supporting and believing in me.

iv

TABLE OF CONTENTS

Signature Page .. ii

Acknowledgement ... iii

List of Figures ... v

List of Tables .. vii

Abstract ... viii

Chapter 1: Inrtoduction to DE2 board .. 01

Chapter 2: DE2 C on t r o l P a n e l .. 06

Chapter 3: Using the DE2 Board ... 14

Chapter 4: Working of Design and Design Code ... 17

Chapter 5: FIFO structure and Design code ... 46

Chapter 6: Preparing Design Files for Synthesis .. 59

Chapter 7: Basic Commands ... 60

References ... 79

v

LIST OF FIGURES

Figure 1.1: The DE2 board ... 1

Figure 1.2: Block diagram of the DE2 board .. 2

Figure 1.3: The default VGA output pattern ... 5

Figure 2.1: Quartus II Programmer window .. 7

Figure 2.2: The DE2 Control Panel. ... 7

Figure 2.3: The DE2 Control Panel concept ... 8

Figure 2.4: Controlling LEDs and the LCD display ... 9

Figure 2.5: Accessing the SDRAM. .. 9

Figure 2.6: Flash memory control window ... 11

Figure 2.7: The DE2 Control Panel block diagram. ... 13

Figure 3.1: The JTAG configuration scheme. ... 15

Figure 3.2: The AS configuration scheme. .. 16

Figure 4.1: welcome display... 17

Figure 4.2: Enter code display .. 17

Figure 4.3: Unlocked display .. 18

Figure 4.4: Second trial display .. 18

Figure 4.5: Third trial display ... 18

Figure 4.6: Admin Mode display ... 19

Figure 4.7: Block diagram of Digital Lock ... 20

Figure 4.8: Schematic diagram of the LCD module. .. 23

Figure 4.9: Switch debouncing. .. 34

Figure 4.10: Schematic diagram of the pushbutton and toggle switches 35

Figure 4.11: Schematic diagram of the LEDs ... 35

Figure 4.12: STATE MACHINE FOR DIGITAL LOCK .. 40

Figure 5.1: Block diagram of FIFO ... 46

Figure 5.2: Write onto Memory ... 55

Figure 5.3: Read from the Memory ... 56

Figure 5.4: Empty Flag ... 57

Figure 5.5: Empty Flag Clear ... 57

Figure 5.6: Full Flag high ... 58

Figure 6.1: Top-Down Compile Directory Structure .. 59

Figure 6.2: Bottom-Up Compile Directory Structure ... 60

vi

LIST OF TABLES

Table 4.1: Pin assignments for the LCD module. .. 24

Table 4.2: Pattern for character-generator RAM ... 25

Table 4.3: Pin assignments for the toggle switches .. 36

Table 4.4: Pin assignments for the pushbutton switches. .. 36

Table 4.5: Pin assignments for the LEDs. ... 37

vii

ABSTRACT

VHDL “DIGITAL LOCK” DESIGN IMPLEMENTATION ON ALTERA DE2 BOARD

AND

AREA AND TIME OPTIMIZATION OF ASIC “FIFO” DESIGN USING SYNOPSYS

DESIGN COMPILER

By

Pranav Suryakant Biscuitwala

Master of Science in Electrical Engineering

Part 1: In this the main objective of the project was to produce a VHDL design which can

be programmed on Altera DE2 board. This project gives an overview of how different

components of DE2 board can be interfaced. This project uses the various part of DE2

board like LCD screen, LEDs , Push Buttons, 7-segment display etc.

Part 2: In this the main objective of the project was to produce ASIC design and optimize

the design using synopsys tool. This optimization is done using 90nm technology. The

target was to create design of asynchronous FIFO for n-bit wide (using parameter) data.

Whose default width is 16 bits. Since it is asynchronous it’s input clock chosen is 200 MHz

and output clock is 40 MHz. In this data arrive in 32 word (n-bit wide) bursts. This

interface signals to the transmitting device when it is clear to send a burst.

This design was synthesized and simulated at the gate level. This design was optimized for

time and area.

1

Chapter 1: Layout and Components of DE2 board

VHDL “DIGITAL LOCK” DESIGN IMPLEMENTATION ON ALTERA DE2 BOARD

Figure 1.1 The DE2 board

The following hardware is provided on the DE2 board:Altera Cyclone
®
 II 2C35 FPGA

device

• Altera Serial Configuration device - EPCS16

• USB Blaster (on board) for programming and user API control; both JTAG and

 Active Serial (AS) programming modes are supported

• 512-Kbyte SRAM

• 8-Mbyte SDRAM4-Mbyte Flash memory (1 Mbyte on some boards)

• SD Card socket

• 4 pushbutton switches

• 18 toggle switches

• 18 red user LEDs

• 9 green user LEDs

• 50-MHz oscillator and 27-MHz oscillator for clock sources

• 24-bit CD-quality audio CODEC with line-in, line-out, and microphone-in jacks

• VGA DAC (10-bit high-speed triple DACs) with VGA-out connector

• TV Decoder (NTSC/PAL) and TV-in connector

• 10/100 Ethernet Controller with a connector

• USB Host/Slave Controller with USB type A and type B connectors

2

• RS-232 transceiver and 9-pin connector

• PS/2 mouse/keyboard connector

• IrDA transceiver

• Two 40-pin Expansion Headers with diode protection

1.2 Block Diagram of the DE2 Board

Figure 1.2 gives the block diagram of the DE2 board. To provide maximum flexibility for the user, all

connections are made through the Cyclone II FPGA device. Thus, the user can configure the FPGA to

implement any system design.

Figure 1.2. Block diagram of the DE2 board.

Following is more detailed information about the blocks in Figure 1.2:

Cyclone II 2C35 FPGA

• 33,216 LEs

• 105 M4K RAM blocks

• 483,840 total RAM bits

• 35 embedded multipliers

• 4 PLLs

• 475 user I/O pins

• FineLine BGA 672-pin package

Serial Configuration device and USB Blaster circuit

3

• Altera’s EPCS16 Serial Configuration device

• On-board USB Blaster for programming and user API control

• JTAG and AS programming modes are supported

 SRAM

• 51 2-Kbyte Static RAM memory chip

• Organized as 256K x 16 bits

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

SDRAM

• 8-Mbyte Single Data Rate Synchronous Dynamic RAM memory chip

• Organized as 1M x 16 bits x 4 banks

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

Flash memory

• 4-Mbyte NOR Flash memory (1 Mbyte on some boards)

• 8-bit data bus

• Accessible as memory for the Nios II processor and by the DE2 Control Panel

SD card socket

• Provides SPI mode for SD Card access

• Accessible as memory for the Nios II processor with the DE2 SD Card Driver

Pushbutton switches

• 4 pushbutton switches

• Debounced by a Schmitt trigger circuit

• Normally high; generates one active-low pulse when the switch is pressed

Toggle switches

• 18 toggle switches for user inputs

• A switch causes logic 0 when in the DOWN (closest to the edge of the DE2 board) position

and logic 1 when in the UP position

Clock inputs

• 50-MHz oscillator

• 27-MHz oscillator

• SMA external clock input

Audio CODEC

• Wolfson WM873 1 24-bit sigma-delta audio CODEC

• Line-level input, line-level output, and microphone input jacks

• Sampling frequency: 8 to 96 KHz

• Applications for MP3 players and recorders, PDAs, smart phones, voice recorders, etc.

VGA output

• Uses the ADV7 123 240-MHz triple 10-bit high-speed video DAC

• With 15-pin high-density D-sub connector

• Supports up to 1600 x 1200 at 100-Hz refresh rate

• Can be used with the Cyclone II FPGA to implement a high-performance TV Encoder

NTSC/PAL TV decoder circuit

• Uses ADV7 181 B Multi-format SDTV Video Decoder

• Supports NTSC-(M,J,4.43), PAL-(B/D/G/H/I/M/N), SECAM

• Integrates three 54-MHz 9-bit ADCs

• Clocked from a single 27-MHz oscillator input

• Supports Composite Video (CVBS) RCA jack input.

• Supports digital output formats (8-bit/16-bit): ITU-R BT.656 YCrCb 4:2:2 output + HS, VS,

and FIELD

4

• Applications: DVD recorders, LCD TV, Set-top boxes, Digital TV, Portable video devices

10/100 Ethernet controller

• Integrated MAC and PHY with a general processor interface

• Supports 100Base-T and 10Base-T applications

• Supports full-duplex operation at 10 Mb/s and 100 Mb/s, with auto-MDIX

• Fully compliant with the IEEE 802.3u Specification

• Supports IP/TCP/UDP checksum generation and checking

• Supports back-pressure mode for half-duplex mode flow control

USB Host/Slave controller

• Complies fully with Universal Serial Bus Specification Rev. 2.0

• Supports data transfer at full-speed and low-speed

• Supports both USB host and device

• Two USB ports (one type A for a host and one type B for a device)

• Provides a high-speed parallel interface to most available processors; supports Nios II with

 a Terasic driver

• Supports Programmed I/O (PIO) and Direct Memory Access (DMA)

Serial ports

• One RS-232 port

• One PS/2 port

• DB-9 serial connector for the RS-232 port

• PS/2 connector for connecting a PS2 mouse or keyboard to the DE2 board

IrDA transceiver

• Contains a 115.2-kb/s infrared transceiver

• 32 mA LED drive current

• Integrated EMI shield

• IEC825-1 Class 1 eye safe

• Edge detection input

Two 40-pin expansion headers

• 72 Cyclone II I/O pins, as well as 8 power and ground lines, are brought out to two 40-pin

expansion connectors

• 40-pin header is designed to accept a standard 40-pin ribbon cable used for IDE hard drives

• Diode and resistor protection is provided

1.3 Power-up the DE2 Board

The DE2 board comes with a preloaded configuration bit stream to demonstrate some features of the

board. This bit stream also allows users to see quickly if the board is working properly. To power-up

the board perform the following steps:

1. Connect the provided USB cable from the host computer to the USB Blaster connector on the

DE2 board. For communication between the host and the DE2 board, it is necessary to install

the Altera USB Blaster driver software. If this driver is not already installed on the host

computer, it can be installed as explained in the tutorial Getting Started with Altera's DE2

Board. This tutorial is available on the DE2 System CD-ROM and from the Altera DE2 web

pages.

5

2. Connect the 9V adapter to the DE2 board

3. Connect a VGA monitor to the VGA port on the DE2 board

4. Connect your headset to the Line-out audio port on the DE2 board

5. Turn the RUN/PROG switch on the left edge of the DE2 board to RUN position; the PROG

position is used only for the AS Mode programming

6. Turn the power on by pressing the ON/OFF switch on the DE2 board

At this point you should observe the following:

• All user LEDs are flashing

• All 7-segment displays are cycling through the numbers 0 to F

• The LCD display shows Welcome to the Altera DE2 Board

• The VGA monitor displays the image shown in Figure 1.3.

• Set the toggle switch SW17 to the DOWN position; you should hear a 1-kHz sound

• Set the toggle switch SW17 to the UP position and connect the output of an audio player to

the Line-in connector on the DE2 board; on your headset you should hear the music played

from the audio player (MP3, PC, iPod, or the like)

• You can also connect a microphone to the Microphone-in connector on the DE2 board; your

voice will be mixed with the music played from the audio player

Figure 1.3. The default VGA output

pattern.

6

C h a p t e r : 2 DE2 Con t r o l P a n e l

The DE2 board comes with a Control Panel facility that allows a user to access various components

on the board through a USB connection from a host computer. This chapter first presents some basic

functions of the Control Panel, then describes its structure in block diagram form, and finally

describes its capabilities.

2.1 Control Panel Setup

To run the Control Panel application, it is first necessary to configure a corresponding circuit in the

Cyclone II FPGA. This is done by downloading the configuration file DE2_USB_API.sof into the

FPGA. The downloading procedure is described in Section 4.1.

In addition to the DE2_USB_API.sof file, it is necessary to execute on the host computer the program

DE2_control_panel.exe. Both of these files are available on the DE2 System CD-ROM that

accompanies the DE2 board, in the directory DE2_control_panel. Of course, these files may already

have been installed to some other location on your computer system.

To activate the Control Panel, perform the following steps:

1. Connect the supplied USB cable to the USB Blaster port, connect the 9V power supply, and

turn the power switch ON

2. Set the RUN/PROG switch to the RUN position

3. Start the Quartus II software

4. Select Tools > Programmer to reach the window in Figure 2.1. Click on Add File and in

the pop-up window that appears select the DE2_USB_API.sof file. Next, click on the

Program/Configure box which results in the image displayed in the figure. Now, click Start

to download the configuration file into the FPGA.

5. Start the executable DE2_control_panel.exe on the host computer. The Control Panel user

interface shown in Figure 2.2 will appear.

6. Open the USB port by clicking Open > Open USB Port 0. The DE2 Control Panel

application will list all the USB ports that connect to DE2 boards. The DE2 Control Panel can

control up to 4 DE2 boards using the USB links. The Control Panel will occupy the USB port

until you close that port; you cannot use Quartus II to download a configuration file into the

FPGA until you close the USB port.

7. The Control Panel is now ready for use; experiment by setting the value of some 7-segment

display and observing the result on the DE2 board.

7

Figure 2.1. Quartus II Programmer window.

Figure 2.2. The DE2 Control Panel.

The concept of the DE2 Control Panel is illustrated in manual. The IP that performs the control

functions is implemented in the FPGA device. It communicates with the Control Panel window,

which is active on the host computer, via the USB Blaster link. The graphical interface is used to

issue commands to the control circuitry. The provided IP handles all requests and performs data

transfers between the computer and the DE2 board.

8

Figure 2.3. The DE2 Control Panel concept.

The DE2 Control Panel can be used to change the values displayed on 7-segment displays, light up

LEDs, talk to the PS/2 keyboard, read/write the SRAM, Flash Memory and SDRAM, load an image

pattern to display as VGA output, load music to the memory and play music via the audio DAC. The

feature of reading/writing a byte or an entire file from/to the Flash Memory allows the user to develop

multimedia applications (Flash Audio Player, Flash Picture Viewer) without worrying about how to

build a Flash Memory Programmer.

2.2 Controlling the LEDs, 7-Segment Displays and LCD Display

A simple function of the Control Panel is to allow setting the values displayed on LEDs, 7-segment

displays, and the LCD character display.

In the window shown in Figure 2.4, the values to be displayed by the 7-segment displays (which are

named HEX7-0) can be entered into the corresponding boxes and displayed by pressing the Set

button. A keyboard connected to the PS/2 port can be used to type text that will be displayed on the

LCD display.

Choosing the LED & LCD tab leads to the window in Figure 2.4. Here, you can turn the individual

LEDs on by selecting them and pressing the Set button. Text can be written to the LCD display by

typing it in the LCD box and pressing the corresponding Set button.

The ability to set arbitrary values into simple display devices is not needed in typical design activities.

However, it gives the user a simple mechanism for verifying that these devices are functioning

correctly in case a malfunction is suspected. Thus, it can be used for troubleshooting purposes.

9

Figure 2.4. Controlling LEDs and the LCD display.

2.3 SDRAM/SRAM Controller and Programmer

The Control Panel can be used to write/read data to/from the SDRAM and SRAM chips on the DE2

board. We will describe how the SDRAM may be accessed; the same approach is used to access the

SRAM. Click on the SDRAM tab to reach the window in Figure 2.5.

Figure 2.5. Accessing the SDRAM.

A 16-bit word can be written into the SDRAM by entering the address of the desired location, specifying

the data to be written, and pressing the Write button. Contents of the location can be read by pressing the

10

Read button. Figure 2.5 depicts the result of writing the hexadecimal value 6CA into location 200,

followed by reading the same location.

The Sequential Write function of the Control Panel is used to write the contents of a file into the

SDRAM as follows:

1. Specify the starting address in the Address box.

2. Specify the number of bytes to be written in the Length box. If the entire file is to be loaded,

then a checkmark may be placed in the File Length box instead of giving the number of

bytes.

3. To initiate the writing of data, click on the Write a File to SDRAM button.

4. When the Control Panel responds with the standard Windows dialog box asking for the

source file, specify the desired file in the usual manner.

The Control Panel also supports loading files with a .hex extension. Files with a .hex extension are

ASCII text files that specify memory values using ASCII characters to represent hexadecimal values.

For example, a file containing the line 0123456789ABCDEF defines four 16-bit values: 0123, 4567,

89AB, CDEF. These values will be loaded consecutively into the memory.

The Sequential Read function is used to read the contents of the SDRAM and place them into a file as

follows:

1. Specify the starting address in the Address box.

2. Specify the number of bytes to be copied into the file in the Length box. If the entire

contents of the SDRAM are to be copied (which involves all 8 Mbytes), then place a

checkmark in the Entire SDRAM box.

3. Press Load SDRAM Content to a File button.

4. When the Control Panel responds with the standard Windows dialog box asking for the

destination file, specify the desired file in the usual manner.

11

2.4 Flash Memory Programmer

The Control Panel can be used to write/read data to/from the Flash memory chip on the DE2 board. It

can be used to:

• Erase the entire Flash memory

• Write one byte to the memory

• Read one byte from the memory

• Write a binary file to the memory

• Load the contents of the Flash memory into a file

Note the following characteristics of the Flash memory:

• The Flash memory chip is organized as 4 M (or 1 M on some boards) x 8 bits.

• You must erase the entire Flash memory before you can write into it. (Be aware that the

number of times a Flash memory can be erased is limited.)

• The time required to erase the entire Flash memory is about 20 seconds. Do not close the DE2

Control Panel in the middle of the operation.

To open the Flash memory control window, shown in Figure 2.6, select the FLASH tab in the Control

Panel.

Figure 2.6. Flash memory control window.

A byte of data can be written into a random location on the Flash chip as follows:

1. Click on the Chip Erase button. The button and the window frame title will prompt you to

wait until the operation is finished, which takes about 20 seconds.

12

2. Enter the desired address into the Address box and the data byte into the wDATA box. Then,

click on the Write button.

To read a byte of data from a random location, enter the address of the location and click on the Read

button. The rDATA box will display the data read back from the address specified.

The Sequential Write function is used to load a file into the Flash chip as follows:

1. Specify the starting address and the length of data (in bytes) to be written into the Flash

memory. You can click on the File Length checkbox to indicate that you want to load the

entire file.

2. Click on the Write a File to Flash button to activate the writing process.

3. When the Control Panel responds with the standard Windows dialog box asking for the

source file, specify the desired file in the usual manner.

The Sequential Read function is used to read the data stored in the Flash memory and write this data

into a file as follows:

1. Specify the starting address and the length of data (in bytes) to be read from the Flash

memory. You can click on the Entire Flash checkbox to indicate that you want to copy the

entire contents of the Flash memory into a specified file.

2. Click on the Load Flash Content to a File button to activate the reading process.

3. When the Control Panel responds with the standard Windows dialog box asking for the

destination file, specify the desired file in the usual manner.

2.5 Overall Structure of the DE2 Control Panel

The DE2 Control Panel facility communicates with a circuit that is instantiated in the Cyclone II

FPGA. This circuit is specified in Verilog code, which makes it possible for a knowledgeable user to

change the functionality of the Control Panel. The code is located inside the DE2_demonstrations

directory on the DE2 System CD-ROM.

To run the Control Panel, the user must first set it up as explained before depicts the structure of the

Control Panel. Each input/output device is controlled by a controller instantiated in the FPGA chip.

The communication with the PC is done via the USB Blaster link. A Command Controller circuit

interprets the commands received from the PC and performs the appropriate actions. The SDRAM,

SRAM, and Flash Memory controllers have three user-selectable asynchronous ports in addition to

the Host port that provides a link with the Command Controller. The connection between the VGA

DAC Controller and the FPGA memory allows displaying of the default image shown on the left side

of the figure, which is stored in an M4K block in the CycloneII chip.

The connection between the Audio DAC Controller and a lookup table in the FPGA is used to

produce a test audio signal of 1 kHz.

13

To let users implement and test their IP cores (written in Verilog) without requiring them to

implement complex API/Host control software and memory (SRAM/SDRAM/Flash) controllers, we

provide an integrated control environment consisting of a software controller in C++, a USB

command controller, and a multi-port SRAM/SDRAM/Flash controller.

Figure 2.7. The DE2 Control Panel block diagram.

Users can connect circuits of their own design to one of the User Ports of the SRAM/SDRAM/Flash

controller. Then, they can download binary data into the SRAM/SDRAM/Flash. Once the data is

downloaded to the SDRAM/Flash, users can configure the memory controllers so that their circuits can

read/write the SDRAM/Flash via the User Ports connected.

14

Chapter 3: Using the DE2 Board

This chapter gives instructions for using the DE2 board and describes each of its I/O devices.

3.1 Configuring the Cyclone II FPGA

The procedure for downloading a circuit from a host computer to the DE2 board is described in the

tutorial Quartus I Introduction. This tutorial is found in the DE2_tutorials folder on the DE2 System

CD-ROM, and it is also available on the Altera DE2 web pages. The user is encouraged to read the

tutorial first, and to treat the information below as a short reference.

The DE2 board contains a serial EEPROM chip that stores configuration data for the Cyclone II

FPGA. This configuration data is automatically loaded from the EEPROM chip into the FPGA each

time power is applied to the board. Using the Quartus II software, it is possible to reprogram the

FPGA at any time, and it is also possible to change the non-volatile data that is stored in the serial

EEPROM chip. Both types of programming methods are described below.

1. JTA G programming: In this method of programming, named after the IEEE standards Joint

Test Action Group, the configuration bit stream is downloaded directly into the Cyclone II

FPGA. The FPGA will retain this configuration as long as power is applied to the board; the

configuration is lost when the power is turned off.

2. AS programming: In this method, called Active Serial programming, the configuration bit

stream is downloaded into the Altera EPCS16 serial EEPROM chip. It provides non-volatile

storage of the bit stream, so that the information is retained even when the power supply to

the DE2 board is turned off. When the board's power is turned on, the configuration data in

the EPCS16 device is automatically loaded into the Cyclone II FPGA.

The sections below describe the steps used to perform both JTAG and AS programming. For both

methods the DE2 board is connected to a host computer via a USB cable. Using this connection, the

board will be identified by the host computer as an Altera USB Blaster device. The process for

installing on the host computer the necessary software device driver that communicates with the USB

Blaster is described in the tutorial Getting Started with Altera's DE2 Board. This tutorial is available

on the DE2 System CD-ROM and from the Altera DE2 web pages.

15

Configuring the FPGA in JTAG Mode

Figure 3.1 illustrates the JTAG configuration setup. To download a configuration bit stream into the

Cyclone II FPGA, perform the following steps:

• Ensure that power is applied to the DE2 board

• Connect the supplied USB cable to the USB Blaster port on the DE2 board

• Configure the JTAG programming circuit by setting the RUN/PROG switch (on the left side

of the board) to the RUN position.

• The FPGA can now be programmed by using the Quartus II Programmer module to select a

configuration bit stream file with the .sof filename extension

Figure 3.1. The JTAG configuration scheme.

Configuring the EPCS16 in AS Mode

Figure 3.2 illustrates the AS configuration set up. To download a configuration bit stream into the

EPCS16 serial EEPROM device, perform the following steps:

• Ensure that power is applied to the DE2 board

• Connect the supplied USB cable to the USB Blaster port on the DE2 board

• Configure the JTAG programming circuit by setting the RUN/PROG switch (on the left side

of the board) to the PROG position.

• The EPCS16 chip can now be programmed by using the Quartus II Programmer module to

select a configuration bit stream file with the .pof filename extension

• Once the programming operation is finished, set the RUN/PROG switch back to the RUN

position and then reset the board by turning the power switch off and back on; this action

causes the new configuration data in the EPCS 16 device to be loaded into the FPGA chip.

16

Figure 3.2. The AS configuration scheme.

In addition to its use for JTAG and AS programming, the USB Blaster port on the DE2 board can also

be used to control some of the board's features remotely from a host computer.

17

Chapter 4 :Working of the Design and Code

In this User gets tree attempts to open the lock. The length of the password is of 8 bit, 2 bit for each push

buttons. This can be modified to improve the safety .

Initially LCD screen display “WELCOME HOME ENTER YOUR PIN”

Figure 4.1 welcome display

Then as user start entering code following screen is displayed. Once the four digit code is entered, lock is

either unlocked or user gets another trial.

Figure 4.2 Enter code display

If the entered code is right. The following message is displayed on LCD screen. Which is “DOOR IS

UNLOCKED PLEASE COME IN”

18

Figure 4.3 Unlocked display

If the entered code is wrong. User gets second trial.

Figure 4.4 Second trial display

If the entered code is wrong in second trial, user gets one more trial.

Figure 4.5 Third trial display

If the entered code is wrong in the third trial. The program enters into Admin mode. In this mode Admin

Password has to be entered. This password is different than the normal user password. Unless the correct

Admin password is entered, program will stay in the same state. Once the correct code is entered,

program will get reset and user gets three trials again to enter the code.

19

Figure 4.6 Admin Mode display

Once the correct code is entered, LEDs on the board will blink in ring counter pattern.

20

Figure 4.7 Block diagram of Digital Lock

4.1 Design Code for Top level Module

TOP LEVEL DESIGN

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity digilock is

 port(clk, reset, N, S, E, W: IN STD_LOGIC;

 leds: out STD_LOGIC_VECTOR(7 DOWNTO 0);

 LCD_DATA: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 LCD_RW, LCD_EN, LCD_RS: OUT STD_LOGIC;

 LCD_ON, LCD_BLON: OUT STD_LOGIC);

end digilock;

architecture Behavioral of digilock is

--led_display

 COMPONENT led_display

 PORT(

 count : IN std_logic_vector(2 downto 0);

 clk : IN std_logic;

 mode : IN std_logic;

 unlock : IN std_logic;

 try : IN std_logic_vector(1 downto 0);

 led : OUT std_logic_vector(7 downto 0)

);

21

 END COMPONENT;

--FSM

 COMPONENT FSM

 PORT(

 Nin : IN std_logic;

 Sin : IN std_logic;

 Ein : IN std_logic;

 Win : IN std_logic;

 clk : IN std_logic;

 reset : IN std_logic;

 num_entered : OUT std_logic_vector(2 downto 0);

 state_out : OUT std_logic_vector(2 downto 0);

 try_out: OUT STD_LOGIC_VECTOR(1 DOWNTO 0);

 mode_out : OUT std_logic;

 correct : OUT std_logic

);

 END COMPONENT;

--LCDdigilock

 COMPONENT LCDdigilock

 PORT (

 Clk50Mhz, reset, unlock, mode: IN STD_LOGIC; --clk, mode, count, try,

unlock

 count_key: in STD_LOGIC_VECTOR(2 DOWNTO 0);

 try: in STD_LOGIC_VECTOR(1 DOWNTO 0);

 LCD_DATA: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 LCD_RW, LCD_EN, LCD_RS: OUT STD_LOGIC;

 LCD_ON, LCD_BLON: OUT STD_LOGIC);

 END COMPONENT;

--clk generator

 component clockGenerator

 port(

 sysClk: in std_logic;--50Mhz clock

 msClk : out std_logic;

 secClk: out std_logic);

 end component;

 SIGNAL msclk, secClk: STD_LOGIC;

 SIGNAL mode, correct: STD_LOGIC;

 SIGNAL count: std_logic_vector(2 downto 0);

 SIGNAL try: STD_LOGIC_VECTOR(1 DOWNTO 0);

 SIGNAL state_out: STD_LOGIC_VECTOR(2 DOWNTO 0);

begin

 clkgen: clockGenerator port map(sysclk=>clk, msclk=>msclk, secClk=>secClk);

22

state_machine: fsm port map(Nin => not(N), Sin => not(S), Ein => not(E), Win =>

not(W), clk => clk, reset => reset, num_entered => count, state_out => state_out,

try_out=>try, mode_out => mode, correct => correct);

led: led_display port map(count=>count, clk=>secClk,mode=>mode, unlock=>correct,

try=>try, led=>leds);

lcd: LCDdigilock port map(Clk50Mhz=>clk, reset=>reset, unlock=>correct,

mode=>mode,count_key=>count,try=>try,LCD_DATA=>LCD_DATA,LCD_RW=>LCD

_RW, LCD_EN=>LCD_EN, LCD_RS=>LCD_RS,LCD_ON=>LCD_ON,

LCD_BLON=>LCD_BLON);

end Behavioral;

4.2 desigh code for Clock Generator

CLOCK GENERATOR

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity clockGenerator is

 port(

 sysClk: in std_logic;--50Mhz clock

 msClk : out std_logic;

 secClk: out std_logic);

end clockGenerator;

architecture Behavioral of clockGenerator is

begin

 process (sysclk)

 variable cnt: integer range 0 to 50000 := 0;

 variable mscnt: integer range 0 to 1000 := 0;

 begin

 if(sysClk'event and sysClk='1')then

 cnt:=cnt+1;

 --generates msclk

 if (cnt=25000) then --half a millisecond?

 msClk<='1';

 elsif (cnt=50000) then --a full millisecond?

 msClk <= '0';

 cnt:= 0;

 msCnt:= msCnt + 1;

 end if;

 --generates secClk

 if (msCnt = 500)then --half a second?

 secclk<='1';

 elsif (mscnt = 1000) then --a full second?

 secClk <='0';

23

 mscnt:=0;

 end if;

 end if;

 end process;

end Behavioral;

4.3 Using the LCD Module

The LCD module has built-in fonts and can be used to display text by sending

appropriate commands to the display controller, which is called HD44780. Detailed

information for using the display is available in its datasheet, which can be found on the

manufacturer's web site, and from the Datasheet folder on the DE2 System CD-ROM.

A schematic diagram of the LCD module showing connections to the Cyclone II FPGA

is given in Figure 4.8. The associated pin assignments appear in Table 4.6.

Figure 4.8 Schematic diagram of the LCD module.

Signal Name
FPGA Pin No.

Description

LCD_DATA[0] PIN_J1 LCD Data[0]

LCD_DATA[1] PIN_J2 LCD Data[1]

LCD_DATA[2] PIN_H1 LCD Data[2]

LCD_DATA[3] PIN_H2 LCD Data[3]

LCD_DATA[4] PIN_J4 LCD Data[4]

LCD_DATA[5] PIN_J3 LCD Data[5]

24

LCD_DATA[6] PIN_H4 LCD Data[6]

LCD_DATA[7] PIN_H3 LCD Data[7]

LCD_RW PIN_K4 LCD Read/Write Select, 0 = Write, 1 = Read

LCD_EN PIN_K3
LCD Enable

LCD_RS PIN_K1 LCD Command/Data Select, 0 = Command, 1 = Data

LCD_ON PIN_L4
LCD Power ON/OFF

LCD_BLON PIN_K2 LCD Back Light ON/OFF

Table 4.1. Pin assignments for the LCD

module.

25

Table 4.2 Pattern for character-generator RAM

Character to be displayed are written in “chararray” in the code. Each character has 8 bit

value. This value is as per the table above.

For example to display character “W”, It’s upper four bits are 0101 and lower four bits are

0111. So it’s equivalent Hex value is 57.

26

So X”57” will display “W” on LCD screen.

This are the few predefined code by HITACHI for reset, set, Off , On etc for LCD

Reset Data_bus _value=x”38”

Fun_set Data_bus_value=x”30”

Display off Data_bus_value=x”08”

Display clear Data_bus_value=x”01”

Display On Data_bus_value=x”0C”

Mode_set Data_bus_value=X”06”

4.3.1 Design code for LCD controller

LCD display controller

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY LCDdigilock IS

PORT (

 Clk50Mhz, reset, unlock, mode: IN STD_LOGIC; --clk, mode, count, try, unlock

 count_key: in STD_LOGIC_VECTOR(2 DOWNTO 0);

 try: in STD_LOGIC_VECTOR(1 DOWNTO 0);

 LCD_DATA: OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

 LCD_RW, LCD_EN, LCD_RS: OUT STD_LOGIC;

 LCD_ON, LCD_BLON: OUT STD_LOGIC);

END LCDdigilock;

ARCHITECTURE FSMD OF LCDdigilock IS

 TYPE state_type IS (s1,s2,s3,s4,s10,s11,s12,s13,s20,s21,s22,s23,s24);

 SIGNAL state: state_type;

 CONSTANT max: INTEGER := 50000; --50000

 CONSTANT half: INTEGER := max/2;

 SIGNAL clockticks: INTEGER RANGE 0 TO max;

 SIGNAL clock: STD_LOGIC;

 SUBTYPE ascii IS STD_LOGIC_VECTOR(7 DOWNTO 0);

 TYPE charArray IS array(1 to 16) OF ascii;

 TYPE initArray IS array(1 to 7) OF ascii;

 -- LCD initialization sequence codes

 -- 0x38 init four times

 -- 0x06 Entry mode set: Increment One; No Shift

 -- 0x0F Display control: Display ON; Cursor ON; Blink ON

 -- 0x01 Display clear

 CONSTANT initcode: initArray := (x"38",x"38",x"38",x"38",x"06",x"0F",x"01");

 -- WELCOME HOME

 CONSTANT line1: charArray :=

27

(x"20",x"20",x"57",x"45",x"4c",x"43",x"4f",x"4d",x"45",x"20",x"48",x"4f",x"4d",x"45",x

"20",x"20");

 -- ENTER YOUR PIN

 CONSTANT line2: charArray :=

(x"20",x"45",x"4e",x"54",x"45",x"52",x"20",x"59",x"4f",x"55",x"52",x"20",x"50",x"49",x

"4e",x"20");

 -- _ _ _TRIAL_2/4_ _ _ _

 CONSTANT line3: charArray :=

(x"20",x"20",x"20",x"54",x"52",x"49",x"41",x"4C",x"20",x"32",x"2F",x"33",x"20",x"20",

x"20",x"20");

 -- _ _ _TRIAL_3/4_ _ _ _

 CONSTANT line4: charArray :=

(x"20",x"20",x"20",x"54",x"52",x"49",x"41",x"4C",x"20",x"33",x"2F",x"33",x"20",x"20",

x"20",x"20");

 -- _ _ _TRIAL_4/4_ _ _ _

 --CONSTANT line5: charArray :=

(x"20",x"20",x"20",x"54",x"52",x"49",x"41",x"4C",x"20",x"34",x"2F",x"34",x"20",x"20",

x"20",x"20");

 -- ENTER ADMIN CODE

 CONSTANT line6: charArray :=

(x"45",x"4e",x"54",x"45",x"52",x"20",x"41",x"44",x"4D",x"49",x"4E",x"20",x"43",x"4F",

x"44",x"45");

 -- DOOR IS UNLOCKED

 CONSTANT line7: charArray :=

(x"44",x"4F",x"4F",x"52",x"20",x"49",x"53",x"20",x"55",x"4E",x"4C",x"4F",x"43",x"4B"

,x"45",x"44");

 -- YOUR CODE *---

 CONSTANT line8: charArray :=

(x"20",x"59",x"4F",x"55",x"52",x"20",x"43",x"4F",x"44",x"45",x"20",x"20",x"2A",x"2D"

,x"2D",x"2D");

 -- YOUR CODE **--

 CONSTANT line9: charArray :=

(x"20",x"59",x"4F",x"55",x"52",x"20",x"43",x"4F",x"44",x"45",x"20",x"20",x"2A",x"2A"

,x"2D",x"2D");

 -- YOUR CODE ***-

 CONSTANT line10: charArray :=

(x"20",x"59",x"4F",x"55",x"52",x"20",x"43",x"4F",x"44",x"45",x"20",x"20",x"2A",x"2A"

,x"2A",x"2D");

 -- YOUR CODE ****

 CONSTANT line11: charArray :=

(x"20",x"59",x"4F",x"55",x"52",x"20",x"43",x"4F",x"44",x"45",x"20",x"20",x"2A",x"2A"

,x"2A",x"2A");

 -- PLEASE COME IN

 CONSTANT line12: charArray :=

(x"20",x"50",x"4C",x"45",x"41",x"53",x"45",x"20",x"43",x"4F",x"4D",x"45",x"20",x"49",

x"4E",x"20");

28

 SIGNAL count: INTEGER;

BEGIN

 LCD_ON <= '1';

 LCD_BLON <= '0';

 lcd_control: PROCESS(clock,unlock,try,count_key,mode,reset) --clk, mode,

count, try, unlock

 BEGIN

 IF(Reset = '1') THEN

 count <= 1;

 state <= s1;

 ELSIF(clock'EVENT AND clock = '1') THEN

 CASE state IS

 -- LCD initialization sequence

 -- The LCD_DATA is written to the LCD at the falling edge of the E

line

 -- therefore we need to toggle the E line for each data write

 WHEN s1 =>

 LCD_DATA <= initcode(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '0'; -- RS=0; an instruction

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s2;

 WHEN s2 =>

 LCD_EN <= '0'; -- set EN=0;

 count <= count + 1;

 IF count + 1 <= 7 THEN

 state <= s1;

 ELSE

 state <= s10;

 END IF;

 -- move cursor to first line of display

 WHEN s10 =>

 LCD_DATA <= x"80"; -- x80 is address of 1st position

on first line

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '0'; -- RS=0; an instruction

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s11;

 WHEN s11 =>

 LCD_EN <= '0'; -- EN=0; toggle EN

 count <= 1;

29

 state <= s12;

 -- write 1st line text

 WHEN s12 =>

 --

 if(unlock='0') then--locked

 if(mode='0') then --usr mode

 --led(7)<='1';

 if(try="00") then

 --led(6 DOWNTO 4)<="000"; -- welcome

home

 LCD_DATA <= line1(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s13;

 elsif(try="01") then

 --led(6 DOWNTO 4)<="001"; -- trial 2/3

 LCD_DATA <= line3(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s13;

 elsif(try="10") then

 --led(6 DOWNTO 4)<="011"; -- trial 3/3

 LCD_DATA <= line4(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s13;

 else--(try="11") then

 --led(6 DOWNTO 4)<="111"; -- trial 4/4

 --LCD_DATA <= line5(count);

 --LCD_EN <= '1'; -- EN=1;

 --LCD_RS <= '1'; -- RS=1; data

 --LCD_RW <= '0'; -- R/W'=0; write

 state <= s13;

 end if;

 else --admin mode

 --led(7 DOWNTO 4)<=X"F"; -- enter admin

code

 LCD_DATA <= line6(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

30

 state <= s13;

 end if;

 else

 --led<=temp_count; -- door is unlocked

 LCD_DATA <= line7(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s13;

 end if;

 -- if (unlock = '0') then

 -- LCD_DATA <= line3(count);

 -- LCD_EN <= '1'; -- EN=1;

 -- LCD_RS <= '1'; -- RS=1; data

 -- LCD_RW <= '0'; -- R/W'=0; write

 -- state <= s13;

 -- else

 -- LCD_DATA <= line1(count);

 -- LCD_EN <= '1'; -- EN=1;

 -- LCD_RS <= '1'; -- RS=1; data

 -- LCD_RW <= '0'; -- R/W'=0; write

 -- state <= s13;

 -- end if;

 WHEN s13 =>

 LCD_EN <= '0'; -- EN=0; toggle EN

 count <= count + 1;

 IF count + 1 <= 16 THEN

 state <= s12;

 ELSE

 state <= s20;

 END IF;

 -- move cursor to second line of display

 WHEN s20 =>

 LCD_DATA <= x"BF"; -- xBF is address of 1st

position on second line

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '0'; -- RS=0; an instruction

 LCD_RW <= '0'; -- R/W'=0; write

31

 state <= s21;

 WHEN s21 =>

 LCD_EN <= '0'; -- EN=0; toggle EN

 count <= 1;

 state <= s22;

 -- write 2nd line text

 WHEN s22 =>

 if(unlock='0') then--locked

 if(count_key="000") then

 --led(3 DOWNTO 0)<=X"0"; -- enter your pin

 LCD_DATA <= line2(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 elsif(count_key="001") then

 --led(3 DOWNTO 0)<=X"1"; -- your code *

 LCD_DATA <= line8(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 elsif(count_key="010") then

 --led(3 DOWNTO 0)<=X"3"; -- your code **

 LCD_DATA <= line9(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 elsif(count_key="011") then

 --led(3 DOWNTO 0)<=X"7"; -- your code ***

 LCD_DATA <= line10(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 elsif(count_key="100") then

 --led(3 DOWNTO 0)<=X"F"; -- your code ****

32

 LCD_DATA <= line11(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 end if;

 else

 -- Please Come In

 LCD_DATA <= line12(count);

 LCD_EN <= '1'; -- EN=1;

 LCD_RS <= '1'; -- RS=1; data

 LCD_RW <= '0'; -- R/W'=0; write

 state <= s23;

 end if;

 -- if (unlock = '0') then

 -- LCD_DATA <= line4(count);

 -- LCD_EN <= '1'; -- EN=1;

 -- LCD_RS <= '1'; -- RS=1; data

 -- LCD_RW <= '0'; -- R/W'=0; write

 -- state <= s23;

 -- else

 -- LCD_DATA <= line2(count);

 -- LCD_EN <= '1'; -- EN=1;

 -- LCD_RS <= '1'; -- RS=1; data

 -- LCD_RW <= '0'; -- R/W'=0; write

 -- state <= s23;

 -- end if;

 WHEN s23 =>

 LCD_EN <= '0'; -- set EN=0;

 count <= count + 1;

 IF count+1 <= 16 THEN

 state <= s22;

 ELSE

 state <= s1;

 END IF;

 WHEN OTHERS =>

 LCD_EN <= '0';

 state <= s1;

 END CASE;

33

 END IF;

 END PROCESS;

 ClockDivide: PROCESS

 BEGIN

 WAIT UNTIL Clk50Mhz'EVENT and Clk50Mhz = '1';

 IF clockticks < max THEN

 clockticks <= clockticks + 1;

 ELSE

 clockticks <= 0;

 END IF;

 IF clockticks < half THEN

 clock <= '0';

 ELSE

 clock <= '1';

 END IF;

 END PROCESS;

END FSMD;

4.4 Using the LEDs and Switches

The DE2 board provides four pushbutton switches. Each of these switches is debounced

using a Schmitt Trigger circuit.. The four outputs called KEY0, …, KEY3 of the

Schmitt Trigger device are connected directly to the Cyclone II FPGA. Each switch

provides a high logic level (3.3 volts) when it is not pressed, and provides a low logic

level (0 volts) when depressed. Since the pushbutton switches are debounced, they are

appropriate for use as clock or reset inputs in a circuit.

Figure 4.9. Switch debouncing.

There are also 18 toggle switches (sliders) on the DE2 board. These switches are not

debounced, and are intended for use as level-sensitive data inputs to a circuit. Each

34

switch is connected directly to a pin on the Cyclone II FPGA. When a switch is in the

DOWN position (closest to the edge of the board) it provides a low logic level (0 volts)

to the FPGA, and when the switch is in the UP position it provides a high logic level (3.3

volts)

There are 27 user-controllable LEDs on the DE2 board. Eighteen red LEDs are situated

above the 18 toggle switches, and eight green LEDs are found above the pushbutton

switches (the 9t h green LED is in the middle of the 7-segment displays). Each LED is

driven directly by a pin on the Cyclone II FPGA; driving its associated pin to a high

logic level turns the LED on, and driving the pin low turns it off. A schematic diagram

that shows the pushbutton and toggle switches is given in Figure 4.10. A schematic

diagram that shows the LED circuitry appears in Figure 4.11.

A list of the pin names on the Cyclone II FPGA that are connected to the toggle

switches is given in Table 4.3. Similarly, the pins used to connect to the pushbutton

switches and LEDs are displayed in Tables 4.4 and 4.5, respectively.

Figure 4.10 Schematic diagram of the pushbutton and toggle switches.

35

Figure 4.11. Schematic diagram of the LEDs.

Signal Name
FPGA Pin No.

Description

SW[0] PIN_N25 Toggle Switch[0]

SW[1] PIN_N26 Toggle Switch[1]

SW[2] PIN_P25 Toggle Switch[2]

SW[3] PIN_AE14 Toggle Switch[3]

SW[4] PIN_AF14 Toggle Switch[4]

SW[5] PIN_AD13 Toggle Switch[5]

SW[6] PIN_AC13 Toggle Switch[6]

SW[7] PIN_C13 Toggle Switch[7]

SW[8] PIN_B13 Toggle Switch[8]

SW[9] PIN_A13 Toggle Switch[9]

SW[10] PIN_N1 Toggle Switch[10]

SW[11] PIN_P1 Toggle Switch[11]

SW[12] PIN_P2 Toggle Switch[12]

SW[13] PIN_T7 Toggle Switch[13]

SW[14] PIN_U3 Toggle Switch[14]

SW[15] PIN_U4 Toggle Switch[15]

SW[16] PIN_V1 Toggle Switch[16]

SW[17] PIN_V2 Toggle Switch[17]

36

Table 4.3. Pin assignments for the toggle switches

Signal Name
FPGA Pin No.

Description

KEY[0] PIN_G26 Pushbutton[0]

KEY[1] PIN_N23 Pushbutton[1]

KEY[2] PIN_P23 Pushbutton[2]

KEY[3] PIN_W26 Pushbutton[3]

Table 4.4. Pin assignments for the pushbutton switches.

Signal Name
FPGA Pin No.

Description

LEDR[0] PIN_AE23 LED Red[0]

LEDR[1] PIN_AF23 LED Red[1]

LEDR[2] PIN_AB21 LED Red[2]

LEDR[3] PIN_AC22 LED Red[3]

LEDR[4] PIN_AD22 LED Red[4]

LEDR[5] PIN_AD23 LED Red[5]

LEDR[6] PIN_AD21 LED Red[6]

LEDR[7] PIN_AC21 LED Red[7]

LEDR[8] PIN_AA14 LED Red[8]

LEDR[9] PIN_Y13 LED Red[9]

LEDR[10] PIN_AA13 LED Red[10]

LEDR[11] PIN_AC14 LED Red[11]

LEDR[12] PIN_AD15 LED Red[12]

LEDR[13] PIN_AE15 LED Red[13]

LEDR[14] PIN_AF13 LED Red[14]

LEDR[15] PIN_AE13 LED Red[15]

LEDR[16] PIN_AE12 LED Red[16]

LEDR[17] PIN_AD12 LED Red[17]

LEDG[0] PIN_AE22 LED Green[0]

LEDG[1] PIN_AF22 LED Green[1]

LEDG[2] PIN_W19 LED Green[2]

LEDG[3] PIN_V18 LED Green[3]

LEDG[4] PIN_U18 LED Green[4]

37

LEDG[5] PIN_U17 LED Green[5]

LEDG[6] PIN_AA20 LED Green[6]

LEDG[7] PIN_Y18 LED Green[7]

LEDG[8] PIN_Y12 LED Green[8]

Table 4.5. Pin assignments for the LEDs.

4.4.1 Design code of LED display

LED DISPAY

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity led_display is

 port(count: in STD_LOGIC_VECTOR(2 DOWNTO 0);

 clk, mode, unlock: in STD_LOGIC;

 try: in STD_LOGIC_VECTOR(1 DOWNTO 0);

 led: out STD_LOGIC_VECTOR(7 DOWNTO 0));

end led_display;

architecture Behavioral of led_display is

 signal temp_count : std_logic_vector(7 downto 0);

begin

 process(clk, mode, count, try, unlock)

 begin

 if(clk'EVENT AND clk='1') then

 if(unlock='0') then--locked

 if(mode='0') then --usr mode

 led(7)<='1';

 if(try="00") then

 led(6 DOWNTO 4)<="000";

 elsif(try="01") then

 led(6 DOWNTO 4)<="001";

 elsif(try="10") then

 led(6 DOWNTO 4)<="011";

 elsif(try="11") then

 led(6 DOWNTO 4)<="111";

 end if;

 else --admin mode

 led(7 DOWNTO 4)<=X"F";

 end if;

 if(count="000") then

38

 led(3 DOWNTO 0)<=X"0";

 elsif(count="001") then

 led(3 DOWNTO 0)<=X"1";

 elsif(count="010") then

 led(3 DOWNTO 0)<=X"3";

 elsif(count="011") then

 led(3 DOWNTO 0)<=X"7";

 elsif(count="100") then

 led(3 DOWNTO 0)<=X"F";

 end if;

 else --unlcocked

 case temp_count is

 when "00000001" => temp_count

<="00000010";

 when "00000010" => temp_count

<="00000100";

 when "00000100" => temp_count

<="00001000";

 when "00001000" => temp_count

<="00010000";

 when "00010000" => temp_count

<="00100000";

 when "00100000" => temp_count

<="01000000";

 when "01000000" => temp_count

<="10000000";

 when "10000000" => temp_count

<="00000001";

 when others => temp_count <="00000001";

 end case;

 led<=temp_count;

 end if;

 end if;

 end process;

end Behavioral;

39

Figure 4.12 STATE MACHINE FOR DIGITAL LOCK

4.5 Design Code of FSM

FSM STATE MACHINE

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity FSM is

 port(Nin, Sin, Ein, Win, clk, reset: in STD_LOGIC;

 num_entered: out STD_LOGIC_VECTOR(2 DOWNTO 0);

 state_out: out STD_LOGIC_VECTOR(2 DOWNTO 0);

 try_out: out STD_LOGIC_VECTOR(1 DOWNTO 0);

 mode_out, correct: out STD_LOGIC);

end FSM;

architecture Behavioral of FSM is

 SIGNAL k0, k1, k2, k3: STD_LOGIC_VECTOR(1 DOWNTO 0);

 SIGNAL mode: STD_LOGIC;

 SIGNAL try: STD_LOGIC_VECTOR(1 DOWNTO 0);

 SIGNAL count: STD_LOGIC_VECTOR(2 DOWNTO 0);

 type STATE_TYPE is (usr_store, usr_wait4release, admin_store, admin_wait4release,

good);

40

 attribute ENUM_ENCODING: STRING;

 attribute ENUM_ENCODING of STATE_TYPE:type is "000 001 010 011 100";

 signal state: STATE_TYPE;

 CONSTANT usr_key: STD_LOGIC_VECTOR(7 DOWNTO 0):= "11100100";--

enter user key as desired in reverse order. 4ht3rd2nd1st

 CONSTANT admin_key: STD_LOGIC_VECTOR(7 DOWNTO 0):= "00011011";

begin

 process(state,clk, Nin, Win, Sin, Ein, reset, count, try, mode, k0,k1,k2,k3)

 variable temp: STD_LOGIC_VECTOR(1 DOWNTO 0);

 begin

 if(reset='1') then

 state<=usr_store;

 correct<='0';

 count<="000";

 try<="00";

 mode<='0';

 else

 if(clk'EVENT AND clk='1') then

 case state is

 when usr_store=>

 if(Nin='1') then

 temp:="00";

 count<=count+1;

 state<=usr_wait4release;

 elsif(Sin='1') then

 temp:="01";

 count<=count+1;

 state<=usr_wait4release;

 elsif(Ein='1') then

 temp:="10";

 count<=count+1;

 state<=usr_wait4release;

 elsif(Win='1') then

 temp:="11";

 count<=count+1;

 state<=usr_wait4release;

 else

 count<=count;

 temp:=temp;

 state<=state;

 end if;

 if(count="000") then

 k0<=temp;

 elsif(count="001") then

 k1<=temp;

41

 elsif(count="010") then

 k2<=temp;

 elsif(count="011") then

 k3<=temp;

 end if;

 when usr_wait4release=>

 if(Nin='0' AND Sin='0' AND Win='0' AND

Ein='0') then

 if(count="100") then --all

entered

 if(usr_key=(k3 & k2 &

k1 & k0)) then --correct key

 state<=good;

 else --wrong try

 if(try="10") then

 mode<='1';

 state<=admin_store;

 count<="000";

 else

 try<=try+1;

state<=usr_store;

 count<="000";

 end if;

 end if;

 else

 state<=usr_store;

 end if;

 end if;

 when admin_store=>

 if(Nin='1') then

 temp:="00";

 count<=count+1;

 state<=admin_wait4release;

 elsif(Sin='1') then

 temp:="01";

 count<=count+1;

 state<=admin_wait4release;

 elsif(Ein='1') then

 temp:="10";

 count<=count+1;

 state<=admin_wait4release;

 elsif(Win='1') then

42

 temp:="11";

 count<=count+1;

 state<=admin_wait4release;

 else

 count<=count;

 temp:=temp;

 state<=state;

 end if;

 if(count="000") then

 k0<=temp;

 elsif(count="001") then

 k1<=temp;

 elsif(count="010") then

 k2<=temp;

 elsif(count="011") then

 k3<=temp;

 end if;

 when admin_wait4release=>

 if(Nin='0' AND Sin='0' AND Win='0' AND

Ein='0') then

 if(count="100") then --all entered

 if(admin_key=(k3 & k2 & k1 & k0)) then --

correct key

 state<=usr_store;

 count<="000";

 mode<='0';

 try<="00";

 else --wrong try

 count<="000";

 state<=admin_store;

 end if;

 else

 state<=admin_store;

 end if;

 end if;

 when good=>

 correct<='1';

 state<=good;

 when OTHERS=> state<=usr_store;

 end case;

 end if;

 end if;

 end process;

43

 mode_out<=mode;

 num_entered<=count;

 try_out<=try;

 process(state)

 begin

 case state is

 when usr_store=> state_out<="000";

 when usr_wait4release=> state_out<="001";

 when admin_store =>state_out<="010";

 when admin_wait4release=> state_out<="011";

 when good=> state_out<="101";

 when others=> state_out<="111";

 end case;

 end process;

end Behavioral;

Pin Planner:

Flow summery:

44

Analysis and Synthesis Summary

45

Chapter 5: FIFO structure and Design code

AREA AND TIME OPTIMIZATION OF ASIC “FIFO” DESIGN USING SYNOPSYS DESIGN

COMPILER

Figure 5.1 Block diagram of FIFO

5.1 design code for Top level module

Top level Module

Filename: fifo_top.v

 This is the top module of FIFO design here the aysnchrnously received data from

 the one clock domain is transferred to the other clock domain. The data received

 from one clock domain is stored in FIFO and then the second domain reads the data

 that are stored in FIFO.

`timescale 1ns/1ns

46

module fifo_top(wrt_clk, wrt_rst, wrt_inc, full_flag, rd_clk, rd_rst, rd_inc,

 empty_flag, write_data, read_data, read_add, write_add,

 write_pointer, read_pointer);

 parameter length = 16;

 parameter addr = 6;

 input wrt_clk, wrt_rst, wrt_inc, rd_clk, rd_rst, rd_inc;

 input [length-1:0] write_data;

 output [addr-2:0] read_add, write_add;

 output [addr-1:0] write_pointer, read_pointer;

 output full_flag, empty_flag;

 output [length-1:0] read_data;

 wire full_flag, empty_flag;

 wire [length-1:0] read_data;

 wire [addr-1:0] write_pointer, read_pointer;

 wire empty_flg, full_flg, syn_empty_flg;

 wire [addr-2:0] wrt_addr, rd_addr;

 wire [addr-1:0] wrt_pntr, rd_pntr, rq2_wpntr, wq2_rpntr;

 wire wclk_en, wrt_rst_syn, rd_rst_syn;

full_flag #(addr) fl(.write_pointer(wrt_pntr), .read_pointer(wq2_rpntr),

 .full_flag(full_flg), .clk_en(wclk_en));

empty_flag #(addr) emt(.read_pointer(rd_pntr), .write_pointer(rq2_wpntr),

 .empty_flag(empty_flg));

memory #(16,5) mem(write_data, wrt_addr, wclk_en, wrt_clk, rd_addr,

 rd_clk, read_data);

//aasd #(1) empty(empty_flg, wrt_clk, wrt_rst, syn_empty_flg);

 // to synchronize the empty flag coming from read domain into the write domain

aasd #(1) read(rd_rst, rd_clk, rd_rst, rd_rst_syn);

aasd #(1) write(wrt_rst, wrt_clk, wrt_rst, wrt_rst_syn);

aasd #(6) aasd1(rd_pntr, wrt_clk, wrt_rst_syn, wq2_rpntr);

aasd #(6) aasd2(wrt_pntr, rd_clk, rd_rst_syn, rq2_wpntr);

write_pntr #(6) wpt(wrt_clk, wrt_rst_syn, wrt_inc, full_flg, empty_flg, wclk_en,

 wrt_pntr, wrt_addr);

read_pntr #(6) rpt(rd_clk, rd_rst_syn, rd_inc, empty_flg, rd_pntr, rd_addr);

47

assign empty_flag = empty_flg;

assign full_flag = full_flg;

assign read_add = rd_addr;

assign write_add = wrt_addr;

assign write_pointer = wrt_pntr;

assign read_pointer = rd_pntr;

endmodule

5.2 design code for Lower level module of AASD

This design consist of different modules as shown in above block diagram.

1. AASD (asynchronous assert and synchronouts deassert)

AASD reset synchrnoizer to avoid metastability state at the end of the reset output

Filename: aasd.v

`timescale 1ns/1ns

module aasd(in,clock,reset,aasd);

parameter width = 16;

 input clock, reset;

 input [width-1:0]in;

 output [width-1:0]aasd; // output aasd is of size 8

 reg [width-1:0]aasd;

 reg [width-1:0]temp; //temporary signal used as output of one register

 // and input to other register

 always@(posedge clock or negedge reset)

 begin

 if(!reset)

 begin

 temp = 'b0;

 aasd = 'b0; //when reseted output becomes 0

 end

 else

 begin

 temp = in;

 aasd = temp; //always on rising edge of clock if not

 //resetted the aasd will get the

 //input after one clock cycle delay

 end

 end

endmodule

48

5.3 design code for Lower level module of Full_flag

2. Full_flag

This code will generate the full flag after comparing the read pointer from the read

clock domain which will be synchronized into the write clock domain and then will

be compared with the write pointer

Filename: full_flag.v
 This code will generate the full flag after comparing the read pointer from

 the read clock domain which will be synchronized into the write clock domain and

 then will be compared with the write pointer

`timescale 1ns/1ns

module full_flag(write_pointer, read_pointer, full_flag, clk_en);

 parameter addr = 6;

 input [addr-1:0] write_pointer, read_pointer;

 input clk_en;

 output full_flag;

 reg full_flag;

always@(read_pointer, write_pointer)

begin

 if((write_pointer[addr-1] != read_pointer[addr-1]) &&

 (write_pointer[addr-2] != read_pointer[addr-2]) &&

 (write_pointer[addr-3:0] == read_pointer[addr-3:0]) || !clk_en)

 full_flag = 1'b1; //if the first two MSB's are opposite and

 //then all other bits are equal then full

 //flag will go high

 else

 full_flag = 1'b0;// else it will remain low

end

endmodule

5.4 design code for Lower level module of Empty_flag

3. Empty_flag

This code will generate the empty flag after comparing the write pointer from the

write clock domain which will be synchronized into the read clock domain and

then will be compared with the read pointer

Filename: empty_flag.v

This code will generate the empty flag after comparing the write pointer from

 the write clock domain which will be synchronized into the read clock domain and

49

 then will be compared with the read pointer

`timescale 1ns/1ns

 module empty_flag(read_pointer, write_pointer, empty_flag);

 parameter size = 6;

 input [size-1:0] read_pointer, write_pointer;

 output empty_flag;

 reg empty_flag;

always@(read_pointer, write_pointer)

begin

 if(read_pointer == write_pointer)

 empty_flag = 1'b1; //if gray pointer of read and write are equal

 // then the empty flag will go high

 else

 empty_flag = 1'b0; //else it will remain low

end

endmodule

5.5 design code for Lower level module of Write_pntr

4. Write_pntr

Generating the binary address to address the memory location of FIFO and then

converting the binary address to gray address to send it to the other clock domain

where the gray code will be used to compare the address. The gray code will be

generated by designing the function which will covert binary code to gray code

Filename: write_pntr.v

`timescale 1ns/1ns

module write_pntr(clock, reset, incrementer, write_flag, empty_flag, wclk_en,

 write_pointer, write_address);

 parameter size = 6; // declaring the size of the pointer and address

 input clock, reset, incrementer, write_flag, empty_flag;

 output wclk_en;

 output [size-1:0] write_pointer; // for the gray code pointer crossing the clock

domain

 output [size-2:0] write_address; // for the binary pointer to address the FIFO

memory location

50

 reg wclk_en;

 reg [size-1:0] write_pointer;

 reg [size-2:0] write_address;

 reg [size-1:0] bnext;

// Defining the function to convert binary to gray

 function [size-1:0] binary_gray;

 input [size-1:0] binary;

 begin

 binary_gray[size-1] = binary[size-1];

 binary_gray[size-2:0] = binary[size-1:1] ^

 binary[size-2:0];

 end

 endfunction

//writing the always block to generate the pointer

always@(posedge clock or negedge reset)

begin

 if(!reset)

 begin

 write_pointer = 'b0;

 write_address = 'b0;

 bnext = 'b0;

 end

 else

 begin

 write_address = bnext[size-2:0];

 write_pointer = binary_gray(bnext);

 if(incrementer && !write_flag)

 begin

 bnext = bnext + 1;

 wclk_en = 1'b1;

 end

 else

 begin

 if(empty_flag)

 begin

 bnext = bnext + 1;

 wclk_en = 1'b1;

 end

 else

 begin

 bnext = bnext + 0;

 wclk_en = 1'b0;

 end

 end

 end

51

end

endmodule

5.6 design code for Lower level module of Read_pntr

5. Read_pntr

Generating the binary address to address the memory location of FIFO and then

converting the binary address to gray address to send it to the other clock domain

where the gray code will be used to compare the address. The gray code will be

generated by designing the function which will covert binary code to gray code

Filename: read_pntr.v

`timescale 1ns/1ns

module read_pntr(clock, reset, incrementer, flag, read_pointer, read_address);

 parameter size = 6; // declaring the size of the pointer and address

 input clock, reset, incrementer, flag;

 output [size-1:0] read_pointer; // for the gray code pointer crossing the clock

domain

 output [size-2:0] read_address; // for the binary pointer to address the FIFO

memory location

 reg [size-1:0] read_pointer;

 reg [size-2:0] read_address;

 reg [size-1:0] b_next;

// Defining the function to convert binary to gray

 function [size-1:0] bin_gray;

 input [size-1:0] bin;

 begin

 bin_gray[size-1] = bin[size-1];

 bin_gray[size-2:0] = bin[size-1:1] ^ bin[size-2:0];

 end

 endfunction

//writing the always block to generate the pointer

always@(posedge clock or negedge reset)

begin

 if(!reset)

 begin

 read_pointer = 'b0;

 read_address = 'b0;

 b_next = 'b0;

52

 end

 else

 begin

 read_address = b_next[size-2:0];

 read_pointer = bin_gray(b_next);

 if(incrementer && !flag)

 b_next = b_next + 1;

 else

 b_next = b_next + 0;

 end

end

endmodule

5.7 design code for Lower level module of Memory

6. Merory

Filename: memory.v

 Here is a design of a memory with parallel read and write. Read clock will enable

 to read data from the memory and write clock will allow us to write to the memory

`timescale 1ns/1ns

module memory(wdata, waddr, w_clken, wclk, raddr, rclk, rdata);

//defining the parameter for width and length of the FIFO memory

 parameter width = 16;

 parameter addr = 5;

 parameter length = 2**addr;

//defining the input and output of the memory

 input [width-1:0] wdata; //write data

 input [addr-1:0] waddr, raddr; //write address and read address

 input wclk, rclk, w_clken; //write clock, read clock, and write

 // clock enable

 output [width-1:0] rdata; // read data

 reg [width-1:0] memory [length-1:0];

 reg [width-1:0] rdata;

//writing the always block

always@(posedge wclk)

begin

 if(w_clken == 1'b1)

 memory[waddr] <= wdata;

 else

 memory[waddr] <= memory[waddr];

end

53

always@(posedge rclk)

begin

 rdata <= memory[raddr];

end

endmodule

All this modules were connected as shown in block diagram. All the modules

created in this lab is scalable.

Value of addr is passed to full_flag and empty_flag.

5.8 Calculation and analyzing the output waveforms

Calcualtions:

 I pass the value for memory width and address, which is 16 and 5 respectively. So

length is calculated , which is 2^5 =32 (00 to 1f)

Input clock : write clock

Input clock frequency 200 Mhz

Clock period is 1/200 Mhz = 5 ns

Output clock : read clock

 Output clock frequency 40 Mhz

Clock period is 1/40 Mhz = 25 ns

Analyze:

In the test bench data is created using counter. Since data has to be written on the

memory in synchronous with the write clock I incremented data with the period of

5ns.

1. Write onto memory.

From the waveform it can be seen the data is being writen on the address starting

from the address 00

Write

address

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

54

Write

data

00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C

Figure 5.2 Write onto Memory

2. Read from the memory.
From the memory it can be seen that the data is being read from the memory location

starting from the memoty location 00.

Read

address

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E

Read

data

00 00 00 01 02 03 04 05 06 07 08 09 0A 0B 0C

55

Figure 5.3 Read from the Memory

3. Empty flag get clear when data is written onto the memory.
From the following waveform we can clearly see that initially value of signal “empty_flag”

is 1. Once we start writing data onto memory,as soon as the posedge of “rd_clk” comes the

“empty_flag” is cleared. Since the “empty_flag “ is cleared data is being read , which is

0000 at address 00 and so on.

56

Figure 5.4 Empty Flag

Empty flag is high as soon as the value for the read and the write pointer is equal. From the figure

below we can see that , value for the read pointer and write pointer is 110101.

Figure 5.5 Empty Flag Clear

4. Full flag concept

The cocept I used for the full flag is that First two bits of the read and write pointer is not

equal and if rest of the bits are equal then full_flag will be generated. At time 297 ns

full_flag goes high and writing data onto memory stops with the latency of 2 clock. This

does not effect the reading side .

Latest Data written in memory

57

Write_add 05 06 07

Write_data 002E 002F 0030

Latest data read from the memory

Read_add 05 06 07

Read_data 0008 0009 000A

By comparing this two I am sure that data being read is not the data written on

2
nd
 time. So fifo is functioning properly even with the latency of 2.

Figure 5.6 Full Flag high

58

Chapter 6: Preparing Design Files for Synthesis

(Reference: Naveen Kumar Project 2011 “Power Optimization in ASIC Design using

Synopsys design ”)

Designs (that is, design descriptions) are stored in design files. Design files must

have unique names. If a design is hierarchical, each sub-design refers to another design

file, which must also have a unique name. Note, however, that different design files can

contain sub-designs with identical names.

6.1 Organizing the Design Data

Establishing and adhering to a method of organizing data are more important than

the choosing a method. After the essential design data is placed under a consistent set of

controls, meaningful data organization can be created. To simplify data exchanges and

data searches, designers should adhere to this data organization system.

Hierarchical directory structure can be used to address data organization issues. Compile

strategy will influence the directory structure. The following figures show directory

structures based on the top-down compile strategy (Figure 6.1) and the bottom-up

compile strategy (Figure 6.2).

Figure 6.1 Top-Down Compile Directory Structure

59

6.2 Partitioning for Synthesis

Partitioning a design effectively can enhance the synthesis results, reduce compile time,

and simplify the constraint and script files.Partitioning affects block size, and although

Design Compiler has no inherent block size limit, proper care should be taken to control

block size.

If the blocks are made too small, artificial boundaries can be created that restrict effective

optimization. If very large blocks are created, compile runtimes can be lengthy. The

following strategies to partition your design and improve optimization and runtimes:

• Partition for design reuse.

• Keep related combinational logic together.

• Register the block outputs.

• Partition by design goal.

• Partition by compile technique.

• Keep sharable resources together.

• Keep user-defined resources with the logic they drive.

• Isolate special functions, such as pads, clocks, boundary scans, and asynchronous

logic.

Figure 6.2 Bottom-Up Compile Directory Structure

60

Chapter 7: Basic Commands
(reference: Naveen Kumar Project 2011 “Power Optimization in ASIC Design using Synopsys design ”)

This chapter lists the basic dc_shell commands for synthesis and provides a brief description for

each command. The commands are grouped in the following sections: x Commands for Defining

Design Rules

• Commands for Defining Design Environments

• Commands for Setting Design Constraints

• Commands for Analyzing and Resolving Design Problems

7.1 Commands for Defining Design Rules

The commands that define the design environment are:

• set_max_capacitance

Sets a maximum capacitance for the nets attached to the specified ports or to all the nets in a

design.

• set_max _fanout

Sets the expected fan-out load value for output ports.

• set_max_transition

Sets a maximum transition time for the nets attached to the specified ports or to all the nets in a

design.

• xset_min_capacitance

Sets a minimum capacitance for the nets attached to the specified ports or to all the nets in a

design.

7.2 Commands for Defining Design Environments

The commands that define the design environment are:

• set_drive

Sets the drive value of input or in-out ports. The set_drive command is superseded by the

set_driving_cell command.

• set_driving_cell

Sets attributes on input or in-out ports, specifying that a library cell or library pin drives the ports.

This command associates a library pin with an input port so that delay calculators can accurately

61

model the drive capability of an external driver.

• set_fanout_load

Defines the external fan-out load values on output ports.

• set_load

Defines the external load values on input and output ports and nets.

• set_operating_conditions

Defines the operating conditions for the current design.

• set_wire_load_model

Sets the wire load model for the current design or for the specified ports. With this command, one

can specify the wire load model to use for the external net connected to the output port.

7.3 Commands for Setting Design Constraints

The basic commands that set design constraints are:

• create_clock

Creates a clock object and defines its waveform in the current design. x

set_clock_latency, set_clock_uncertainty, set_clock_transition

Sets clock attributes on clock objects or flip-flop clock pins.

• set_input_delay

Sets input delay on pins or input ports relative to a clock signal.

• set_max_area

Specifies the maximum area for the current design.

• set_output_delay

Sets output delay on pins or output ports relative to a clock signal.

The advanced commands that set design constraints are

• group_path

Groups a set of paths or endpoints for cost function calculation. This command is used to create

path groups, to add paths to existing groups, or to change the weight of existing groups.

• set_false_path

Marks paths between specified points as false. This command eliminates the selected paths from

timing analysis.

• set_max_delay

Specifies a maximum delay target for selected paths in the current design.

• set_min_delay

62

Specifies a minimum delay target for selected paths in the current design.

7.4 Commands for Analyzing and Resolving Design Problems

 The commands for analyzing and resolving design problems are:

• all_connected

Lists all fanouts on a net.

• all_registers

Lists sequential elements or pins in a design.

• check_design

Checks the internal representation of the current design for consistency and issues error and

warning messages as appropriate.

• check_timing

Checks the timing attributes placed on the current design.

• get_attribute

Reports the value of the specified attribute.

• link

Locates the reference for each cell in the design.

• report_area

Provides area information and statistics on the current design.

• report_attribute

Lists the attributes and their values for the selected object. An object can be a cell, net, pin, port,

instance, or design.

• report_cell

Lists the cells in the current design and their cell attributes.

• report_clock

Displays clock-related information on the current design.

• report_constraint

Lists the constraints on the current design and their cost, weight, and weighted cost.

• report_delay_calculation

Reports the details of a delay arc calculation.

• report_design

Displays the operating conditions, wire load model and mode, timing ranges, internal

input and output, and disabled timing arcs defined for the current design. x

63

report_hierarchy

Lists the children of the current design.

• report_net

Displays net information for the design of the current instance, if set; otherwise,

displays net information for the current design.

• report_path_group

Lists all timing path groups in the current design.

• report_port

Lists information about ports in the current design.

• report_qor

Displays information about the quality of results and other statistics for the current

design.

• report_resources

Displays information about the resource implementation.

• report_timing

Lists timing information for the current design.

• report_timing_requirements

Lists timing path requirements and related information.

• report_transitive_fanin

Lists the fan-in logic for selected pins, nets, or ports of the current instance. x

report_transitive_fanout

Lists the fan-out logic for selected pins, nets, or ports of the current instance.

7.5 Script file to synthesize the FIFO design top down

#analyzing and elaborating the low level design

analyze -f verilog full_flag.v

elaborate full_flag

check_design

64

analyze -f verilog empty_flag.v

elaborate empty_flag

check_design

analyze -f verilog write_pntr.v

elaborate write_pntr

check_design

analyze -f verilog read_pntr.v

elaborate read_pntr

check_design

analyze -f verilog memory.v

elaborate memory

check_design

analyze -f verilog aasd.v

elaborate aasd

check_design

analyze -f verilog fifo_top.v

elaborate fifo_top

check_design

#ungrouping the design hierarchy

ungroup -all -flatten

#generating write clock and read clock

create_clock wrt_clk -period 5

create_clock rd_clk -period 25

#setting false path for the signals crossing the clock domain

set_false_path -from [get_clocks wrt_clk] -to [get_clocks rd_clk]

set_false_path -from [get_clocks rd_clk] -to [get_clocks wrt_clk]

#to constraint the area

set_max_area 29790 -ignore_tns

#compiling the design

compile

check_design

#generating the SDF file

write_sdf fifo.sdf

#reporting the area and timing

report_area >> fifo_area_new_1.rpt

report_timing >> fifo_timing_new_1.rpt

7.5.1 Area report for top down synthesis.

65

**

Report : area

Design : fifo_top

**

Information: Updating design information... (UID-85)

Library(s Used:saed90nm_max

(File:/opt/ECE_Lib/SAED_EDK90nm/Digital_Standard_Cell_Library/synopsys/models/saed90nm_max_p

g.db)

Number of ports: 62

Number of nets: 1726

Number of cells: 1684

Number of references: 20

Combinational area: 15767.195304

Noncombinational area: 14713.237717

Net Interconnect area: 2577.459163

Total cell area: 30480.433021

Total area: 33057.892184

7.5.2 Timing report for top down synthesis

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : fifo_top

**

Operating Conditions: BEST Library: saed90nm_max

66

Wire Load Model Mode: enclosed

 Startpoint: rpt/read_address_reg[1]

 (rising edge-triggered flip-flop clocked by rd_clk)

 Endpoint: mem/rdata_reg[2]

 (rising edge-triggered flip-flop clocked by rd_clk)

 Path Group: rd_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 fifo_top 35000 saed90nm_max

 Point Incr Path

 --

 clock rd_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 rpt/read_address_reg[1]/CLK (DFFARX1) 0.00 0.00 r

 rpt/read_address_reg[1]/Q (DFFARX1) 0.59 0.59 f

 U1744/Q (NBUFFX2) 0.21 0.80 f

 U796/Q (NBUFFX2) 0.15 0.94 f

 U1621/Q (MUX41X1) 0.08 1.03 r

 U1725/Q (MUX41X1) 0.08 1.11 r

 U1723/Q (MUX21X1) 0.06 1.17 r

 mem/rdata_reg[2]/D (DFFX1) 0.00 1.17 r

 data arrival time 1.17

 clock rd_clk (rise edge) 25.00 25.00

 clock network delay (ideal) 0.00 25.00

 mem/rdata_reg[2]/CLK (DFFX1) 0.00 25.00 r

 library setup time -0.03 24.97

 data required time 24.97

 --

 data required time 24.97

 data arrival time -1.17

 --

 slack (MET) 23.80

67

 Startpoint: wpt/write_address_reg[0]

 (rising edge-triggered flip-flop clocked by wrt_clk)

 Endpoint: mem/memory_reg[28][6]

 (rising edge-triggered flip-flop clocked by wrt_clk)

 Path Group: wrt_clk

 Path Type: max

 Des/Clust/Port Wire Load Model Library

 --

 fifo_top 35000 saed90nm_max

 Point Incr Path

 --

 clock wrt_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 wpt/write_address_reg[0]/CLK (DFFARX1) 0.00 0.00 r

 wpt/write_address_reg[0]/Q (DFFARX1) 0.58 0.58 f

 U1544/Q (NBUFFX2) 0.23 0.81 f

 U760/Q (NBUFFX2) 0.15 0.96 f

 U895/Q (MUX41X1) 0.11 1.07 f

 U831/Q (MUX41X1) 0.07 1.13 f

 U830/Q (MUX21X1) 0.05 1.18 f

 U829/Q (AO22X1) 0.47 1.65 f

 U768/Q (NBUFFX2) 0.14 1.80 f

 U1251/Q (AO22X1) 0.07 1.87 f

 mem/memory_reg[28][6]/D (DFFX1) 0.00 1.87 f

 data arrival time 1.87

 clock wrt_clk (rise edge) 5.00 5.00

 clock network delay (ideal) 0.00 5.00

 mem/memory_reg[28][6]/CLK (DFFX1) 0.00 5.00 r

 library setup time -0.03 4.97

 data required time 4.97

 --

 data required time 4.97

 data arrival time -1.87

 --

68

 slack (MET) 3.10

7.6 This is the script file to synthesize the FIFO design bottom up

This is the script file to compile the top module using the Characterized lower level modules

#reading the lower level compiled files

read_file -f ddc full_flag_bot_up_II.ddc

read_file -f ddc empty_flag_bot_up_II.ddc

read_file -f ddc write_pntr_bot_up_II.ddc

read_file -f ddc read_pntr_bot_up_II.ddc

read_file -f ddc memory_bot_up_II.ddc

read_file -f ddc aasd_bot_up_II.ddc

analyze -f verilog fifo_top.v

elaborate fifo_top

check_design

create_clock wrt_clk -period 5

create_clock rd_clk -period 25

#setting false path for the signals crossing the clock domain

set_false_path -from [get_clocks wrt_clk] -to [get_clocks rd_clk]

set_false_path -from [get_clocks rd_clk] -to [get_clocks wrt_clk]

#compiling the full flag design

analyze -f verilog full_flag.v

elaborate full_flag

check_design

create_clock -period 5 -name sys_clock

compile

check_design

write -f ddc -o full_flag_bot_up.ddc

quit

#compiling the empty flag design

analyze -f verilog empty_flag.v

elaborate empty_flag

check_design

create_clock -period 10 -name sys_clock

compile

check_design

write -f ddc -o empty_flag_bot_up.ddc

quit

#compiling the write pointer design

analyze -f verilog write_pntr.v

elaborate write_pntr

check_design

69

create_clock clock -period 5

compile

check_design

write -f ddc -o write_pntr_bot_up.ddc

quit

#compiling the read pointer design

analyze -f verilog read_pntr.v

elaborate read_pntr

check_design

create_clock clock -period 10

compile

check_design

write -f ddc -o read_pntr_bot_up.ddc

quit

#compiling the memory design

analyze -f verilog memory.v

elaborate memory

check_design

create_clock wclk -period 5

create_clock rclk -period 10

compile

check_design

write -f ddc -o memory_bot_up.ddc

quit

#compiling the synchronizer design

analyze -f verilog aasd.v

elaborate aasd

check_design

create_clock clock -period 5

compile

check_design

write -f ddc -o aasd_bot_up.ddc

quit

7.6.1 Gates files created using compiling lower level module

FIFO _TOP_GATES
`timescale 1ns/1ns

module fifo_top_gates (wrt_clk, wrt_rst, wrt_inc, full_flag, rd_clk, rd_rst, rd_inc,

 empty_flag, write_data, read_data, read_add, write_add, write_pointer,

 read_pointer);

 input [15:0] write_data;

 output [15:0] read_data;

 output [4:0] read_add;

 output [4:0] write_add;

 output [5:0] write_pointer;

 output [5:0] read_pointer;

 input wrt_clk, wrt_rst, wrt_inc, rd_clk, rd_rst, rd_inc;

70

 output full_flag, empty_flag;

 wire \wq2_rpntr[0] , wrt_rst_syn, \mem/N68 , \mem/N67 , \mem/N66 ,

 \mem/N65 , \mem/N64 , \mem/N63 , \mem/N62 , \mem/N61 , \mem/N60 ,

 \mem/N59 , \mem/N58 , \mem/N57 , \mem/N56 , \mem/N55 , \mem/N54 ,

 \mem/N53 , \mem/N36 , \mem/N35 , \mem/N34 , \mem/N33 , \mem/N32 ,

 \mem/N31 , \mem/N30 , \mem/N29 , \mem/N28 , \mem/N27 , \mem/N26 ,

 \mem/N25 , \mem/N24 , \mem/N23 , \mem/N22 , \mem/N21 ,

 \mem/memory[0][0] , \mem/memory[0][1] , \mem/memory[0][2] ,

 \mem/memory[0][3] , \mem/memory[0][4] , \mem/memory[0][5] ,

 \mem/memory[0][6] , \mem/memory[0][7] , \mem/memory[0][8] ,

 \mem/memory[0][9] , \mem/memory[0][10] , \mem/memory[0][11] ,

EMPTY_FLAG_GATES

`timescale 1ns/1ns

module empty_flag_gates (read_pointer, write_pointer, empty_flag);

 input [5:0] read_pointer;

 input [5:0] write_pointer;

 output empty_flag;

 wire n3, n4, n5, n6, n7, n8, n9;

 NOR4X0 U3 (.IN1(n3), .IN2(n4), .IN3(n5), .IN4(n6), .QN(empty_flag));

 XOR2X1 U4 (.IN1(write_pointer[4]), .IN2(read_pointer[4]), .Q(n6));

 XOR2X1 U5 (.IN1(write_pointer[1]), .IN2(read_pointer[1]), .Q(n5));

 XOR2X1 U6 (.IN1(write_pointer[0]), .IN2(read_pointer[0]), .Q(n4));

 NAND3X0 U7 (.IN1(n7), .IN2(n8), .IN3(n9), .QN(n3));

 XNOR2X1 U8 (.IN1(write_pointer[2]), .IN2(read_pointer[2]), .Q(n9));

 XNOR2X1 U9 (.IN1(write_pointer[3]), .IN2(read_pointer[3]), .Q(n8));

 XNOR2X1 U10 (.IN1(write_pointer[5]), .IN2(read_pointer[5]), .Q(n7));

Endmodule

FULL_FLAG_GATES
`timescale 1ns/1ns

module full_flag_gates (write_pointer, read_pointer, full_flag, clk_en);

 input [5:0] write_pointer;

 input [5:0] read_pointer;

 input clk_en;

 output full_flag;

 wire n9, n10, n11, n12, n13, n14, n15, n16;

 NAND2X0 U10 (.IN1(clk_en), .IN2(n9), .QN(full_flag));

 NAND4X0 U11 (.IN1(n10), .IN2(n11), .IN3(n12), .IN4(n13), .QN(n9));

 NOR3X0 U12 (.IN1(n14), .IN2(n15), .IN3(n16), .QN(n13));

 XOR2X1 U13 (.IN1(write_pointer[1]), .IN2(read_pointer[1]), .Q(n16));

 XOR2X1 U14 (.IN1(write_pointer[3]), .IN2(read_pointer[3]), .Q(n15));

 XOR2X1 U15 (.IN1(write_pointer[2]), .IN2(read_pointer[2]), .Q(n14));

 XNOR2X1 U16 (.IN1(write_pointer[0]), .IN2(read_pointer[0]), .Q(n12));

 XOR2X1 U17 (.IN1(write_pointer[4]), .IN2(read_pointer[4]), .Q(n11));

 XOR2X1 U18 (.IN1(write_pointer[5]), .IN2(read_pointer[5]), .Q(n10));

Endmodule

71

EMPTY_FLAG_GATES

`timescale 1ns/1ns

module empty_flag_gates (read_pointer, write_pointer, empty_flag);

 input [5:0] read_pointer;

 input [5:0] write_pointer;

 output empty_flag;

 wire n3, n4, n5, n6, n7, n8, n9;

 NOR4X0 U3 (.IN1(n3), .IN2(n4), .IN3(n5), .IN4(n6), .QN(empty_flag));

 XOR2X1 U4 (.IN1(write_pointer[4]), .IN2(read_pointer[4]), .Q(n6));

 XOR2X1 U5 (.IN1(write_pointer[1]), .IN2(read_pointer[1]), .Q(n5));

 XOR2X1 U6 (.IN1(write_pointer[0]), .IN2(read_pointer[0]), .Q(n4));

 NAND3X0 U7 (.IN1(n7), .IN2(n8), .IN3(n9), .QN(n3));

 XNOR2X1 U8 (.IN1(write_pointer[2]), .IN2(read_pointer[2]), .Q(n9));

 XNOR2X1 U9 (.IN1(write_pointer[3]), .IN2(read_pointer[3]), .Q(n8));

 XNOR2X1 U10 (.IN1(write_pointer[5]), .IN2(read_pointer[5]), .Q(n7));

Endmodule

READ_PNTR_GATES

`timescale 1ns/1ns

module read_pntr_gates (clock, reset, incrementer, flag, read_pointer, read_address

);

 output [5:0] read_pointer;

 output [4:0] read_address;

 input clock, reset, incrementer, flag;

 wire N2, N3, N4, N5, N6, n11, n14, n17, n20, n22, n24, n36, n37, n38, n39,

 n40, n41, n42, n43, n44, n45, n46, n47;

 wire [5:0] b_next;

 DFFARX1 \b_next_reg[0] (.D(n24), .CLK(clock), .RSTB(reset), .Q(b_next[0]),

 .QN(n43));

 DFFARX1 \b_next_reg[1] (.D(n22), .CLK(clock), .RSTB(reset), .Q(b_next[1]),

 .QN(n44));

 DFFARX1 \b_next_reg[2] (.D(n20), .CLK(clock), .RSTB(reset), .Q(b_next[2]),

 .QN(n45));

 DFFARX1 \b_next_reg[3] (.D(n17), .CLK(clock), .RSTB(reset), .Q(b_next[3]),

 .QN(n46));

 DFFARX1 \b_next_reg[4] (.D(n14), .CLK(clock), .RSTB(reset), .Q(b_next[4]),

 .QN(n47));

 DFFARX1 \b_next_reg[5] (.D(n11), .CLK(clock), .RSTB(reset), .Q(b_next[5]),

 .QN(n42));

WRITE_PNTR_GATES

`timescale 1ns/1ns

module write_pntr_gates (clock, reset, incrementer, write_flag, empty_flag, wclk_en,

 write_pointer, write_address);

 output [5:0] write_pointer;

72

 output [4:0] write_address;

 input clock, reset, incrementer, write_flag, empty_flag;

 output wclk_en;

 wire N3, N4, N5, N6, N7, n16, n17, n19, n21, n23, n25, n27, n39, n40, n41,

 n42, n43, n44, n45, n46, n48, n49, n50, n51, n52, n53;

 wire [5:0] bnext;

 DFFX1 wclk_en_reg (.D(n16), .CLK(clock), .Q(wclk_en));

 DFFARX1 \bnext_reg[0] (.D(n27), .CLK(clock), .RSTB(reset), .Q(bnext[0]),

 .QN(n49));

 DFFARX1 \bnext_reg[1] (.D(n25), .CLK(clock), .RSTB(reset), .Q(bnext[1]),

 .QN(n50));

 DFFARX1 \bnext_reg[2] (.D(n23), .CLK(clock), .RSTB(reset), .Q(bnext[2]),

 .QN(n51));

 DFFARX1 \bnext_reg[3] (.D(n21), .CLK(clock), .RSTB(reset), .Q(bnext[3]),

 .QN(n52));

 DFFARX1 \bnext_reg[4] (.D(n19), .CLK(clock), .RSTB(reset), .Q(bnext[4]),

 .QN(n53));

MEMORY_GATES

`timescale 1ns/1ns

module memory_gates (wdata, waddr, w_clken, wclk, raddr, rclk, rdata);

 input [15:0] wdata;

 input [4:0] waddr;

 input [4:0] raddr;

 output [15:0] rdata;

 input w_clken, wclk, rclk;

 wire N10, N11, N12, N13, N14, N15, N16, N17, N18, N19, \memory[31][15] ,

 \memory[31][14] , \memory[31][13] , \memory[31][12] ,

 \memory[31][11] , \memory[31][10] , \memory[31][9] , \memory[31][8] ,

 \memory[31][7] , \memory[31][6] , \memory[31][5] , \memory[31][4] ,

 \memory[31][3] , \memory[31][2] , \memory[31][1] , \memory[31][0] ,

 \memory[30][15] , \memory[30][14] , \memory[30][13] ,

 \memory[30][12] , \memory[30][11] , \memory[30][10] , \memory[30][9] ,

 \memory[30][8] , \memory[30][7] , \memory[30][6] , \memory[30][5] ,

 \memory[30][4] , \memory[30][3] , \memory[30][2] , \memory[30][1] ,

 \memory[30][0] , \memory[29][15] , \memory[29][14] , \memory[29][13] ,

 \memory[29][12] , \memory[29][11] , \memory[29][10] , \memory[29][9] ,

 \memory[29][8] , \memory[29][7] , \memory[29][6] , \memory[29][5] ,

 \memory[29][4] , \memory[29][3] , \memory[29][2] , \memory[29][1] ,

 \memory[29][0] , \memory[28][15] , \memory[28][14] , \memory[28][13] ,

 \memory[28][12] , \memory[28][11] , \memory[28][10] , \memory[28][9] ,

 \memory[28][8] , \memory[28][7] , \memory[28][6] , \memory[28][5] ,

AASD_GATES

`timescale 1ns/1ns

module aasd_gates (in, clock, reset, aasd);

 input [15:0] in;

 output [15:0] aasd;

 input clock, reset;

73

 DFFARX1 \aasd_reg[15] (.D(in[15]), .CLK(clock), .RSTB(reset), .Q(aasd[15])

);

 DFFARX1 \aasd_reg[14] (.D(in[14]), .CLK(clock), .RSTB(reset), .Q(aasd[14])

);

 DFFARX1 \aasd_reg[13] (.D(in[13]), .CLK(clock), .RSTB(reset), .Q(aasd[13])

);

 DFFARX1 \aasd_reg[12] (.D(in[12]), .CLK(clock), .RSTB(reset), .Q(aasd[12])

);

 DFFARX1 \aasd_reg[11] (.D(in[11]), .CLK(clock), .RSTB(reset), .Q(aasd[11])

);

 DFFARX1 \aasd_reg[10] (.D(in[10]), .CLK(clock), .RSTB(reset), .Q(aasd[10])

);

 DFFARX1 \aasd_reg[9] (.D(in[9]), .CLK(clock), .RSTB(reset), .Q(aasd[9]));

 DFFARX1 \aasd_reg[8] (.D(in[8]), .CLK(clock), .RSTB(reset), .Q(aasd[8]));

 DFFARX1 \aasd_reg[7] (.D(in[7]), .CLK(clock), .RSTB(reset), .Q(aasd[7]));

 DFFARX1 \aasd_reg[6] (.D(in[6]), .CLK(clock), .RSTB(reset), .Q(aasd[6]));

7.6.2 Area report for top level module

**

Report : area

Design : fifo_top

**

Library(s) Used:

 gtech (File: /usr/synopsys/A-2007.12-SP5/libraries/syn/gtech.db)

 saed90nm_max (File:

/opt/ECE_Lib/syn_lib_2.2/DATABASE_SAED90NM_08_September_2008/synopsys/models/saed90nm_max.db)

Number of ports: 62

Number of nets: 77

Number of cells: 9

Number of references: 7

Combinational area: 7748.808294

Noncombinational area: 0.000000

Net Interconnect area: undefined (No wire load specified)

Total cell area: 7748.808294

Total area: undefined

74

7.6.3 Timing report for top level module

**

Report : timing

 -path full

 -delay max

 -max_paths 1

Design : fifo_top

**

 # A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: WORST Library: saed90nm_max

Wire Load Model Mode: top

 Startpoint: rpt/read_address_reg[0]

 (rising edge-triggered flip-flop clocked by rd_clk)

 Endpoint: mem/rdata_reg[0]

 (rising edge-triggered flip-flop clocked by rd_clk)

 Path Group: rd_clk

 Path Type: max

 Point Incr Path

 --

 clock rd_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 rpt/read_address_reg[0]/clocked_on (**SEQGEN**) 0.00 0.00 r

 rpt/read_address_reg[0]/Q (**SEQGEN**) 0.00 0.00 f

 rpt/read_address[0] (read_pntr_size6) 0.00 0.00 f

 mem/raddr[0] (memory_width16_addr5) 0.00 0.00 f

 mem/B_7/Z (GTECH_BUF) 0.00 0.00 f

 mem/C1243/S0 (fifo_top_MUX_OP_32_5_16) 0.00 0.00 f

 alt42/U170/Q (MUX41X1) 0.63 0.63 f

 alt42/U167/Q (MUX41X1) 0.60 1.23 f

 alt42/U166/Q (MUX21X1) 0.29 1.52 f

75

 mem/C1243/Z_15 (fifo_top_MUX_OP_32_5_16) 0.00 1.52 f

 mem/rdata_reg[0]/next_state (**SEQGEN**) 0.00 1.52 f

 data arrival time 1.52

 clock rd_clk (rise edge) 25.00 25.00

 clock network delay (ideal) 0.00 25.00

 mem/rdata_reg[0]/clocked_on (**SEQGEN**) 0.00 25.00 r

 library setup time 0.00 25.00

 data required time 25.00

 data required time 25.00

 data arrival time -1.52

 slack (MET) 23.48

 Startpoint: wpt/write_address_reg[0]

 (rising edge-triggered flip-flop clocked by wrt_clk)

 Endpoint: mem/memory_reg[0][0]

 (rising edge-triggered flip-flop clocked by wrt_clk)

 Path Group: wrt_clk

 Path Type: max

 Point Incr Path

 clock wrt_clk (rise edge) 0.00 0.00

 clock network delay (ideal) 0.00 0.00

 wpt/write_address_reg[0]/clocked_on (**SEQGEN**) 0.00 0.00 r

 wpt/write_address_reg[0]/Q (**SEQGEN**) 0.00 0.00 f

 wpt/write_address[0] (write_pntr_size6) 0.00 0.00 f

 mem/waddr[0] (memory_width16_addr5) 0.00 0.00 f

 mem/B_2/Z (GTECH_BUF) 0.00 0.00 f

 mem/C1242/S0 (fifo_top_MUX_OP_32_5_16_1) 0.00 0.00 f

 alt45/U170/Q (MUX41X1) 0.63 0.63 f

 alt45/U167/Q (MUX41X1) 0.60 1.23 f

 alt45/U166/Q (MUX21X1) 0.29 1.52 f

 mem/C1242/Z_15 (fifo_top_MUX_OP_32_5_16_1) 0.00 1.52 f

76

 mem/C1241/Z_0 (*SELECT_OP_2.16_2.1_16) 0.00 1.52 f

 mem/memory_reg[0][0]/next_state (**SEQGEN**) 0.00 1.52 f

 data arrival time 1.52

 clock wrt_clk (rise edge) 5.00 5.00

 clock network delay (ideal) 0.00 5.00

 mem/memory_reg[0][0]/clocked_on (**SEQGEN**) 0.00 5.00 r

 library setup time 0.00 5.00

 data required time 5.00

 data required time 5.00

 data arrival time -1.52

 --

 slack (MET) 3.48

Observation from area report of Top-down and Bottom-up synthesis:

Bottom-up scan insertion has several advantages, including:

• Identifying scan design rule violations early in the design flow;

• Reducing the risks of time-consuming, top-level reoptimization steps;

• Facilitating parallel development and sign-off of scan modules.

Top-down scan insertion has the virtue of simplicity, but has implications for large multi-million gate designs due

to the capacity and run-time limitations of synthesis tools. However, with designs reaching millions of gates and

sub-modules also increasing in relative size, synthesis tools have reached their capacity limit for top-level scan

synthesis, even with the bottom-up approach. Hence, some level of abstraction is needed at the sub-module level,

and integration of these models at the top-level enhances capacity as well as performance for large designs.

Synopsys has introduced the hierarchical scan-synthesis methodology with test models, which capitalizes on the

proposed IEEE 1450.6 Core Test Language (CTL) standard to perform scan synthesis for the next generation of

complex designs and SoCs

77

REFERENCES

[1] Michael John Sebastian Smith [June 1997], “Application-Specific Integrated Circuits”, Addison-

Wesley Publishing Company, VLSI Design Series. [April 2011]

[2] http://users.ece.gatech.edu/~hamblen/DE2/DE2%20Reference%20Manual.pdf [Jan 2011]

[3] Himanshu Bhatnagar ~Advanced ASIC chip Synthesis~ Using Synopsys Design Compiler,

Physical Compiler and Primetime. [March 2011]

[4] http://en.wikipedia.org/wiki/Application-specific_integrated_circuit [Feb 2011]

[5] http://www.tutorial-reports.com/hardware/asic/overview.php [Feb 2011]

[6] http://www.utdallas.edu/~zhoud/Lecture 1 .pdf [April 2011]

[7] http://iroi.seu.edu.cn/books/asics/Book2/CH01/CH0 1.1 .htm [Oct 2011]

[8] SYNOPSYS Design Compiler User Guide [December 2011]

[9] http://www.csun.edu/~glaw/ee420.htm [Jan 2012]

[10] http://www.csun.edu/~rmehler/ee527.htm [March 2011]

[11] http://www.synopsys.com/Tools/Implementation/RTLSynthesis/CapsuleModule/hss_bkgrd.pdf

[12] Naveen Kumar Project 2011 “POWER OPTIMIZATION IN ASIC DESIGN USING SYNOPSYS

DESIGN COMPILER” [March 2012]

