
CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

1-TUI: MOBILE USER INTERFACE FOR BLIND USERS

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Science in Computer Science

by

Won Chang

May 2015

ii

Copyright © 2015 Won Chang

All rights reserved

iii

The thesis of Won Chang is approved:

___ ____________

Dr. G. Michael Barnes Date

___ ____________

Dr. George Youssef Date

___ ____________

Dr. Ani Nahapetian, Chair Date

California State University, Northridge

iv

Dedication

I would like to thank my parents for supporting me throughout my academic

pursuit. Without their support, I would never have dared to change my career to

Computer Science. Now I do what I love for a living, which I will always be grateful for.

I also like to thank Prof. Nahapetian, Prof. Barnes, and Prof. Youssef for their

input. Prof. Nahapetian guided me through this project and kept me in track. I would not

have been able to finish my thesis in time without her. Prof. Barnes revealed errors in my

project early on, which I failed to see. Without his insight, these errors would have cost

me greatly later on. Prof. Youssef exposed me to a new technology which would have

made this project far superior than its current form. I only wish that I had more

experience in circuits to apply it to the project.

Table of Contents

Copyright... ii

Signature Page.. iii

Dedication... iv

ABSTRACT..xi

1 INTRODUCTION.. 1

2 BACKGROUND.. 3

2.1 Braille[3][4]... 3

2.2 User Interface...4

2.2.1 Braille Display.. 4

2.2.2 Text to Speech...5

2.2.3 Screen Reader... 6

3 RELATED WORK... 7

3.1 Haptic Feedback...7

3.2 Read Speed...7

3.3 Possible 1-TUID’s... 8

4 USER INTERFACE OVERVIEW... 9

4.1 1-TUID...9

4.2 1-TUI: Reading.. 10

4.3 1-TUI: Interactive Objects... 11

4.4 1-TUI: Writing... 12

5 SYSTEM OVERVIEW.. 15

6 IMPLEMENTATION...16

vi

6.1 1-TUID...16

6.2 Braille Library..18

6.2.1 APOS Machine: Apostrophe...21

6.2.2 DBLQT Machine: Double Quotation... 22

6.2.3 PNCT Machine: Punctuation.. 22

6.2.4 LTR Machine: Letter Indicator...22

6.2.5 NUM Machine: Number Digits.. 23

6.2.6 CAP Machine: Capital Letters.. 24

6.2.7 CNTR Machine: Contraction(Grade 2).. 24

6.3 1-TUI API.. 27

6.3.1 1-TUI Objects... 27

6.3.2 1-TUID Objects.. 29

6.3.3 Event Protocols... 30

6.4 Android Applications...30

6.4.1 TUIReader...31

6.4.2 TUICaller.. 32

6.4.3 TUISMS..34

6.4.4 TUILauncher...36

7 VALIDATION AND RESULTS..37

7.1 1-TUI Validation..37

7.1.1 System Testing: Printed Braille vs 1-TUI...37

7.1.2 System Testing: Screen Reader vs. 1-TUI..39

7.2 Braille Translator Benchmark..41

vii

8 CONCLUSION...44

REFERENCES.. 45

viii

List of Tables

Table 2-1 . UEB Alphabets..3

Table 2-2 . UEB Grade 2 Examples...3

Table 2-3 . Apostrophe in Braille.. 4

Table 7-1 . Braille Read Comparison.. 38

Table 7-2 . TalkBack vs TUISMS... 39

ix

List of Figures

Figure 2-1 . A Braille Display..5

Figure 4-1 . 1-TUI App Use Case Overview... 9

Figure 4-2 . 1-TUID General Design. ...10

Figure 4-3 . Reading in 1-TUI... 11

Figure 4-4 . Writing in 1-TUI.. 14

Figure 5-1 . Project Overview..15

Figure 6-1 . 1-TUID Test Unit Design...16

Figure 6-2 . 1-TUID Test Unit Circuit...18

Figure 6-3 . 1-TUID Test Unit...18

Figure 6-4 . Braille Library Overview... 19

Figure 6-5 . APOS Machine...21

Figure 6-6 . LTR Machine... 23

Figure 6-7 . CAP Machine... 24

Figure 6-8 . Partial CNTR Machine...26

Figure 6-9 . 1-TUI Objects...27

Figure 6-10 . TUICellView..28

Figure 6-11 . 1-TUI Message Protoco... 30

Figure 6-12 . TUIReader..31

Figure 6-13 . Making Call..33

Figure 6-14 . Incoming Call...34

Figure 6-15 . TUISMS... 35

Figure 6-16 . TUILauncher.. 36

Figure 7-1 . Word Count vs Translation Speed... 42

x

Figure 7-2 . Word Count vs Size Increase... 43

xi

ABSTRACT

1-TUI: MOBILE USER INTERFACE FOR BLIND USERS

By

Won Chang

Master of Science in Computer Science

With the rise of iPhone and Android, computing devices became more accessible

and mobile for the general users. In an attempt to help the blind users, few User

Interfaces (UI) such as text to speech, screen reader, and Braille display are developed.

However, these UI’s are either unsuitable for technical reading/writing or too expensive.

This thesis solves these issues by combining screen reader and Braille display to create a

new UI. Named 1-Cell Tactile User Interface (1-TUI), the proposed UI retains the key

features of both Braille display and screen readers such as technical read/write, read-flow

control, 2-dimensional navigation, reliable user input, and lower cost.

This project implements 1-TUI by developing a Braille Translator Library, an 1-

TUI API for Android, an 1-TUID test unit, and Android applications using 1-TUI API.

The Android applications are used for testing so the usability of 1-TUI can be compared

against the original UI’s. Due to the scarcity of Braille users, a system test is done with a

beginner-level Braille user. The test reveals that reading in 1-TUI is 72.17% faster and

25.97% more accurate than reading in printed Braille when used by Braille beginners.

The test also indicates that 1-TUI is 150.00% slower than screen readers, but further

xii

analysis suggests that this difference would be reduced to 9.99% if the subject is fluent in

Braille.

1

1 INTRODUCTION

According to Cornell University, there are approximately 6,670,300 people with

visual disability in U.S. as of 2012 (including those with low visions)[1]. Based on a 2014

report by American Printing House for the Blind, at least 17.68% of them rely on tactile

or auditory readers[2]. For them, the current mobile devices are less approachable because

these devices use Graphical User Interface (GUI), which depends on visual coordination.

To make the mobile devices more accessible, many mobile Operating Systems (OS)

provide features such as text to speech and screen reader. The best of the two, screen

reader provides 2-dimensional control with reliable input methods. Both iOS and Android

offer it for free, and it is faster than tactile reading. However, it lacks read-flow control as

the users cannot easily read back and forth between certain parts of a text. Also, these

audio solutions cannot describe technical expressions well. Such issues become more

than an inconvenience if the user is reading for education or work, which require constant

back-and-forth reading and accurate description of the content.

Another available UI is Braille display, which outputs Braille characters so the user

can read by touching. It provides text-based navigation with a reliable input via keyboard,

and since the user is in charge of reading, s/he has much more read-flow control than with

screen reader. Most importantly, it is capable of describing technical expressions through

Braille. However, Braille displays cost from $500 to $3000 and are too large to be used

for mobile purposes.

As a solution, this project proposes a new method named 1-Cell Tactile User

Interface (1-TUI). 1-TUI is a mixture of screen reader and Braille display that seeks to

strengthen their weakness. Similar to a screen reader, 1-TUI outputs whatever the user

2

touches on a touchscreen. But instead of using audio output, 1-TUI uses tactile outputs

via a tactile device named 1-TUI Device (1-TUID). With this method, the tactile device

can achieve the same read speed as the other Braille displays using just one cell, because

the reading process in Braille is cell-by-cell. 1-TUI also uses haptic feedback to help the

user to identify objects on the screen and navigate. As a result, 1-TUI inherits 2D

navigation and reliable input methods from screen reader. Since 1-TUI uses tactile output,

1-TUI is also capable of technical reading and writing via Braille. Most importantly, 1-

TUID is much cheaper than the other tactile displays since it requires only one cell

instead of many. By partially sacrificing the screen reader’s speed and cost, 1-TUI

achieves to retain technical reading/writing and 2D navigation while reducing the cost

and size of the extra hardware.

This project implements 1-TUI by using Braille, such that 1-TUID displays a

Braille character that the user is touching on screen. It develops an 1-TUID test unit, a

Braille Translator, an 1-TUI API, and four 1-TUI applications. It then performs tests to

verify the usability of 1-TUI.

3

2 BACKGROUND

2.1 Braille[3][4]

Braille is a tactile reading and writing system created by Louis Braille in 1824. It

either uses 6 or 8 dots for each symbol, but 6-dot Braille is the more predominately used

of two. As of 2013, a survey by UNESCO reveals that 142 countries use Braille in 133

different languages[5]. To unify some of these languages, ICEB standardizes English

Braille for all English-speaking countries in 2013, resulting in The Rules of Unified

English Braille(UEB). As such, this thesis uses UEB instead of the regular English

Braille.

a
a
b
b
c
c
d
d
e
e
f
f
g
g
h
h
i
i
j
j

k
k
l
l
m
m
n
n
o
o
p
p
q
q
r
r
s
s
t
t

u
u
v
v
w
w
x
x
y
y
z
z
#
NUM

⠠
CAP

Table 2-1. UEB Alphabets

Shown on Table 2-1 is UEB table for Grade 1 alphabet. In Grade 1, English

alphabets are mapped one-to-one, while letters ‘a’ to ‘j’ are also used for number digits 0

to 9 by following ‘NUM’ indicator. UEB also uses ‘CAP’ indicator in front of letters if

the letters are in uppercase. Although such conversion is fast and easy, the translated

Braille sequence takes large space due to the size of each cell. In order to minimize the

space, shorten symbols called contractions are used by Grade 2.

⠯
and
⠡
ch
⠃
but
⠱
wh
⠐⠍
mother

⠁⠋⠝
afternoon

⠐⠙
day

⠐⠓
here

⠆
be
⠔
in

Table 2-2. UEB Grade 2 Examples

4

Shown on Table 2-2 are few of UEB Grade 2 contractions. UEB defines about

160 contractions, but there are more that are informally used by smaller groups or

individuals (Grade 3). UEB defines different rules for different contractions, but its most

consideration is on whether a contraction is a stand-alone or not. For example, UEB

dictates that contraction for ‘but’ be used only if it is stand-alone, or not as a part of a

word. On the other hand, contraction for ‘day’ can be used as non-stand-alone to form

longer words such as ‘Monday’.

⠠⠦
single quot

open

⠠⠴
single quot

close

⠶
prime

⠄
possessive

Table 2-3. Apostrophe in Braille

Also, note that Braille is contextual. For many punctuation, UEB uses different

Braille symbols for a same English symbol based on its context. Such case is best

demonstrated by the use of apostrophe symbol, as shown in Table 2-3. Regular English

uses apostrophe symbol for open/close single quotation, prime sign, and possessive mark.

In contrast, UEB uses different symbols for open single quotation, close single quotation,

prime, and possessive mark.

2.2 User Interface

As of today, the blind users have three options to use mobile devices: Braille

display, text to speech, and screen reader.

2.2.1 Braille Display

The oldest of the three options, Braille display has been used with desktops before

extending itself to mobile devices. As shown on Figure 2-1, a Braille display typically

has 20 to 40 cells, and also acts as Braille keyboard. It requires special software to

display the texts on screen and output commands. Such software for mobile device are

5

VoiceOver(iOS) and BrailleBack(Android). They both support various Braille display

models, and set up special commands that the user can quickly enter using the Braille

display. Compared to other two options, Braille Display is capable of describing technical

expressions and has more read-control. However, these devices costs from $500 to $3000

due to having 20 to 40 cells tightly packed together, where each cell requires 8

mechanical pins. In addition, the size of Braille displays are at least 10 inches long. Given

the nature of the mobile devices, having to carry such a large device is unattractive.

Figure 2-1. A Braille Display. A typical 8-dot Braille display with 24 Braille cells. Six

buttons on either side of the board are used for typing. Braille displays like this cost

between $500 and $3000.

2.2.2 Text to Speech

Used by both blind and non-blind users, text to speech focuses in providing a quick

access to desired information. The basic feature of text to speech is for the device to

output the text as an audio. For example, it can read a new text message or email, and it

can also write the text through voice recognition. However, if the user wants to read a

middle portion of the text only, s/he has to start from the beginning of the text. The user

also has to disable other audios such as music while using text to speech. Also, the voice

recognition is not a reliable technology, especially with names and jargon. According to a

6

research by Google in 2013, voice recognition still has word error rate(WER) of 15.1%[6],

which is not reliable for work or educational purposes.

2.2.3 Screen Reader

The last option, screen reader, is an extension of text to speech that reads any

object that the user touches. Using this feature, the user can physically locate where the

object is on screen. A survey by WebAIM in 2014 reveals that 82% of the blind web

users use mobile screen readers, and that the most used mobile screen readers is

VoiceOver(iOS)[7]. Compare to text to speech, the user can type and navigate without

speaking. Still, it does not give the user read-flow control if the text is long. Also, it is

unsuitable for describing technical expressions because they involve scientific symbols

and jargon.

1-TUI can be described as a product of the advantages of Braille display and

screen reader. Taking a similar approach to screen readers, 1-TUI inherits 2D navigation

which outputs what the user is touching. By incorporating this method, 1-TUI only

requires 1 cell on its Braille display, which significantly reduces the cost of the hardware.

By using a Braille display, 1-TUI provides more read-control and technical

reading/writing to a mobile device.

7

3 RELATED WORK

3.1 Haptic Feedback

Haptic feedback is an important part of 1-TUI because it is one of few ways for an

UI to interact with the blind users. For their wearable Optical Character Recognition

device, Shilkrot and his team test different haptic feedback to help the users navigate

through texts. Their result shows that 100% of test subjects find the strength and the

pattern of vibration to be more helpful than using multiple vibrators[10]. Based on their

results, 1-TUI uses different haptic feedback patterns to identify different objects, while

using different strength to differentiate vertical and horizontal finger movements.

3.2 Read Speed

Since 1-TUI’s foundation is in tactile reading, the speed of tactile reading has a

great influence on its usability. In their paper, Legge, Madison, and Mansfield report a

median Braille read speed as 124 words per minute(wpm)[8]. According to their data,

reading in Grade 2 increases the speed by 41% because Grade 2 reduces the number of

characters. For this reason, 1-TUI implementation uses Grade 2 Braille for long texts.

Going further, Legge, Madison, and Mansfield report 28% speed increase when the

readers use two hands for a quicker relocation of their finger. For a similar effect, 1-TUI

outputs a haptic feedback whenever the user moves to a different line. By adding such

feature, 1-TUI lets its user to easily move between lines.

On the other hand, a study by Asakawa, Takagi, Ino, and Ifukube suggests that the

auditory reading can be as fast as 827 Morae per minute (Mpm) with at least 90% Recall

Rate (accuracy)[9]. The paper also converts 1300 Mpm(Japanese) to 500 wpm(English),

which suggests that 827 Mpm converts to 318 wpm. This is far faster than the speed of

8

reading in Braille, which suggests that 1-TUI will be much slower than screen readers.

Because the goal of 1-TUI is to provide a cheaper tactile solution with a better read-flow

control and technical reading/writing, 1-TUI does not need to be faster than screen

readers. Still, the speed and accuracy of screen reader and 1-TUI will be compared for

better understanding of the two.

3.3 Possible 1-TUID’s

The usefulness of 1-TUI depends on the development of 1-TUID. Fortunately,

various researches have been made to create a portable Braille display. One of those

researches is a paper by Saadeh[11] in which he performs an extensive research in optimal

tactile forces for a Braille display. His data shows that reading Braille without sliding

requires around 0.786N, while reading Braille by sliding requires 0.431N in normal force

and 0.418N in tangential force. On the other hand, Sekitani and his team develops a

Braille display that is 1mm thick in 2007 by using Electroactive Polymer (EAP)[12]. The

display is capable of pushing up each Braille dot by 0.2mm using 10V. Using a same

material an improvement is made by Koo and his team in 2008, where they manage to

increase the displacement of dot to 0.4mm, but by using 1~3.5kV[13].

There exists more researches and patents on portable 1-cell Braille displays.

However, these works only focus in the hardware without any UI. Without UI, these

devices do not provide the functions such as reading, writing, or navigating. 1-TUI

provides the UI that they need to work with mobile devices, and thus, makes them

available for public use.

9

4 USER INTERFACE OVERVIEW

The user interaction in 1-TUI involves two devices: the mobile device, and 1-

TUID. The user uses the touchscreen on mobile device to touch the Braille character that

s/he wants to read, and uses 1-TUID to actually read the Braille character. Shown on

Figure 4-1 is an use case diagram for a general 1-TUI application.

Figure 4-1. 1-TUI App Use Case Overview. Every user activity such as

reading and writing involves using touchscreen and 1-TUID.

4.1 1-TUID

Shown on Figure 4-2 is an example of 1-TUID. 1-TUID is an 1-cell Braille

display that can output haptic feedback and input button clicks. While the other Braille

displays use small Braille cells in order to pack 20 to 40 cells into the hardware, 1-TUID

has a larger cell since it only uses 1. Such design not only makes the hardware cheaper,

but also makes the tactile reading much easier, and thus, faster.

10

Figure 4-2. 1-TUID General Design. Any device can be used as an 1-TUID

as long as it has: 1 Braille display, button, and vibrator. The device does not

need to look like the one in figure.

4.2 1-TUI: Reading

Figure 4-3 shows how 1-TUI handles the reading process. Reading in 1-TUI

works by touching a Braille character on screen, then tactile reading the output on 1-

TUID. The user can continue reading my moving his/her finger on the screen.

A problem with such method is that the user cannot tell if s/he has moved to a

next character or not if there is a sequence of a same character. Also, the user tends to

slide down to other line without realizing it, causing a confusion. As shown on Figure 4-

3(c)&(d), this issues are solved by using haptic feedback on the mobile device. Whenever

the user moves to an another character, the mobile device gives a short vibration. As for

the lines, each line has a boundary line at the bottom which causes a continuous vibration

while the user touches it. Consequently, this solution also helps user to locate his/her

finger on the screen.

11

Figure 4-3. Reading in 1-TUI. (a) Initial state. (b) Reading a character. (c) Continuous

reading, each character notified by a short haptic-feedback. (d) Moving to other line, mobile

device vibrates while the user’s finger is touching the line boundary.

4.3 1-TUI: Interactive Objects

Because 1-TUI’s intended users are blind, they need to be able to move around

the screen without clicking or dragging objects. Therefore, 1-TUI disables interactive

objects from reacting to touch events. Instead, they respond to the button click on 1-

TUID, allowing the user to freely explore the screen without losing the interactivity.

12

Also, 1-TUI uses haptic feedback on 1-TUID to inform the user that s/he is

touching an interactive object. Each object outputs different vibration so the user can

identify what s/he is touching. It also uses different primary colors on these objects to

support the users with low vision. Current implementation defines three different

interactive objects: clickable object, textbox, and draggable object. A clickable object is

colored red (see Figure 4-4(d)), and 1-TUID outputs a short vibration. A textbox is

colored green (see Figure 4-4(a)), and 1-TUID outputs two short vibration. A draggable

object is colored blue, and 1-TUID outputs a long vibration upon touch, and a continuous

vibration while the object is being dragged.

4.4 1-TUI: Writing

Shown on Figure 4-4 is the writing process in 1-TUI. Writing in 1-TUI follows a

same process as regular mobile typing. The user locates a textbox when 1-TUID gives

two short vibrations, clicks 1-TUID to call a keyboard, types a text, and presses enter.

The textbox in 1-TUI is shown in Figure 4-4(a), and behaves as described in the previous

section. Shown in Figure 4-4(d)-(g), 1-TUI keyboard works similar to regular soft

keyboards, except that all the interactive actions are handled by 1-TUID. In fact, it is just

a collection of clickable buttons that works as described in previous section.

Unfortunately due to the Braille using large spaces, 1-TUI keyboard only supports full

screen keyboard.

13

14

Figure 4-4. Writing in 1-TUI. (a)Initial state. (b) User finds the textbox. (c)~(d) User calls

keyboard. (e)~(g) User types in a character. (h) User is back to the previous screen, and the

textbox now displays the character that s/he typed in.

15

5 SYSTEM OVERVIEW

Figure 5-1. Project Overview

This project is divided into four parts: Braille Translator Library, 1-TUI API, 1-

TUID test unit, and 1-TUI Android applications(See Figure 5-1).

In Figure 5-1, 1-TUID represents an actual 1-TUID hardware. It uses wireless

communication to exchange messages with the 1-TUI objects from the 1-TUI Package.

The hardware is programmed and controlled by Arduino Uno controller.

Braille Library is a Java library that performs Braille translation. It also defines

data types that represent Braille cell and Braille language type. Since it is a stand-alone

library, the Braille library is available for any other Java applications.

1-TUI API is an Android library for the developers who wish to create an

application with 1-TUI. It contains basic UI objects that are converted to 1-TUI standard.

It also provides a Bluetooth communicator interface that lets the 1-TUI objects to relay

information with Android application and 1-TUID.

The last component, Android application, is an application that uses 1-TUI as its

UI. For this project, there are Text Reader, Caller, SMS, and Launcher. In the most of

cases, an application needs to manage the connection between 1-TUID and 1-TUI objects.

16

6 IMPLEMENTATION

6.1 1-TUID

Since the focus of this project is in developing an UI, only a test unit is built for 1-

TUID(shown in Figure 6-1). The test unit composes of Arduino Uno, HC-05 Bluetooth

module, 6 micro motors, a micro vibrator, and a button. Although much smaller and

cheaper micro controllers exist, Arduino Uno is used because it is much easier to load the

program. On the other hand, HC-05 module is chosen purely due to its lower cost, so it

can be replaced by a smaller module if needed.

Figure 6-1. 1-TUID Test Unit Design.

For the tactile display mechanism, various methods were experimented with. The

first mechanism was piezo discs, which can generate small vibration for each dot. It was

deemed an idealistic solution because it requires less power and is very small. However,

the experiment with the disc revealed that each disc requires 200Hz to 300Hz frequency

17

with 35V to 45V. Since Arduino Uno cannot generate such wave with high voltage, the

piezo disc was dropped.

As a result, the vibration source was changed to micro vibrators, which are bigger

but easy to control. Various motor strength were tested with various materials to isolate

each vibration from one another. However, each trial failed because the vibrators were

either too strong or too weak against the materials. Also, a continuous vibration on finger

caused numbness and distraction. Therefore, the attempt of using vibration for a Braille

dot stopped.

The final decision was made with micro motors. The mechanism works by using

motor shaft as a Braille dot. The user can determine which Braille dots are up by

checking which motors are on. Various experiments confirmed that this method can be

used to represent a Braille character. Although not as refined as the other mechanisms

used by commercial Braille displays, this mechanism was chosen since the goal is to

make a test unit.

Figure 6-2 shows the circuit schematics of the final 1-TUID test unit. Note that

the labels “P#” refer to Arduino in/out pins. P0, P1, and P10 are used as signal in/out,

whereas the controller uses the other pins as power on connected components. Also, the

power source shown in the figure is actually 5V pin and ground pin from Arduino.

Figure 6-3 shows the actual 1-TUID test unit.

18

Figure 6-2. 1-TUID Test Unit Circuit. ‘P#’ represents a pin from Arduino Uno.

P0, P1, and P10 acts as signal input/output, whereas the other pins control

its components by acting as the power source.

Figure 6-3. 1-TUID Test Unit. On left, top view of 1-TUID test unit. The six

pins are motor shafts that are used for tactile reading. On right, bottom view

of 1-TUID test unit. The yellow extrusion is a push down button.

6.2 Braille Library

As different languages use different symbols and different grammars, Braille

behaves differently on each language. Furthermore, some languages have Grad 2 Brailles

19

in order to shorten the length of the translation, making it difficult to provide wider

language support. Braille Library addresses this issue by providing two different methods

to add new languages: Factory Pattern and Turing machine.

Figure 6-4. Braille Library Overview. Braille library uses Factory Pattern, as

shown on the top half of the figure. However, it also provides BrailleTranslatorTM

so that the users can store/load translators as file.

Using Factory Pattern allows developers to add new classes without having to

modify dependent components. Braille Library uses an abstract class named

BrailleTranslator as a base for all other translator classes. By extending from

20

BrailleTranslator, developers can easily add new languages. Figure 6-4 shows

BrailleTranslator being extended to different translator classes, while

BrailleTranslatorFactory instantiates the translators.

Another method is adding a file which contains Turing machine table for the new

translator. As seen in bottom half of Figure 6-4, Braille Library contains a class,

TuringMachine, which interprets a machine from this file. It also provides a basic method

for the developers to create the automata file. Although much more difficult than Factory

Pattern, using automata file allows the users to store only the needed translators to

desired locations(such as external sdcard). Given that there exists almost 135 languages

in Braille, the ability to choose which translator will be stored in device is desirable.

For this project, a 2-tape Turing machine is built with few special range inputs,

because there are too many letters which require a transition for each. These inputs are:

LW, CAP, N, PNCT, ANY, and OTHER. LW, CAP, N, and PNCT represent any lower

case letters, any upper case letters, any numbers, and any punctuation respectively.

ANY(‘~’ on automata diagrams) indicates that a transition accepts any input, while

OTHER(‘c’ on automata diagrams) indicates that a transition accepts any other inputs

that is not specified in source state. By using this special inputs, the library user does not

need to create transition for every letter and symbols. In order to prevent these range

inputs from overlapping with actual input symbols, a range of unicodes from 0x2600 to

0x26F0 are chosen. These unicodes are chosen because they only contain visual icons

which do not exist in Braille, and their wide range provides more room for expansion

when new languages are added.

21

As an implementation, a Turing machine for Grade 2 UEB translator is created.

Due to the complexity of the translation, the machine is broken into 7 sub-machines

which runs in a series.

6.2.1 APOS Machine: Apostrophe

APOS machine is shown in Figure 6-5. APOS machine scans for any apostrophe

symbols and determines whether it is used as opening single quot, closing single quot,

prime, or apostrophe. Once the context of the symbol is determined, the machine replaces

the symbol with corresponding Braille sequence.

Figure 6-5. APOS Machine. This machine scans for apostrophe, determines the usage of it, then

translates it to Braille.

22

6.2.2 DBLQT Machine: Double Quotation

DBLQT scans for any double quotation symbols, and determines whether it is

used as opening quot, closing quot, or non-directional quot (punctuation used in Braille).

Once the use of the symbol is determined, the machine replaces the symbol with

corresponding Braille sequence. Since double quotation symbol is used similar to single

apostrophe symbol, DBLQT works similar to APOS(shown in Figure 6-5).

6.2.3 PNCT Machine: Punctuation

PNCT translates the other punctuation that are not covered by APOS or DBLQT.

Current implementation only covers the punctuation on regular keyboard. Unlike

apostrophe and double quotation symbols, these symbols do not depend on context.

Therefore, PNCT machine uses simple table search for its operations.

6.2.4 LTR Machine: Letter Indicator

Because Grade 2 UEB uses single alphabet letters as a contraction for words, a

letter can be mistaken for a word when it is not. UEB uses letter indicator(also called

Grade 1 indicator) to prevent such confusion. Another confusion is when letters follow a

number because Braille uses letters ‘a’ to ‘j’ as numbers. UEB prevents confusion by

using letter to declare end of a number. LTR machine scans for such occurrences, and

inserts the letter indicator whenever needed (shown in Figure 6-6).

23

Figure 6-6. LTR Machine. This machine searches for any stand-alone letters, and adds Letter

Indicator.

6.2.5 NUM Machine: Number Digits

As mentioned in section 2.1, Braille uses letters ‘a’ to ‘j’ for digits 0 to 9 by

adding number indicator in front of the number sequence. NUM machine determines

where to add the number indicator and converts numbers into corresponding Braille

letters. Note that the machines following NUM machine, CAP and CNTR, are designed

to ignore any Braille symbols. This design ensures that the numbers translated to Braille

alphabet do not interfere with other alphabetic translations.

24

6.2.6 CAP Machine: Capital Letters

Shown in Figure 6-7, CAP scans for uppercase letters, and determines whether the

occurrence is a capital letter, all capital word, or all capital passage. Depending on the

occurrence, CAP adds appropriate number of capital indicators (1 for letter, 2 for word,

and 3 for passage). During this process, CAP also converts every uppercase letters to

lowercase, so the next sub-machine only needs to handle lowercase letters.

Figure 6-7. CAP Machine. This machines scans for uppercase letters. Upon encountering one, it

determines whether the whole word/passage is uppercase. It then adds appropriate number of

Capital Indicator in front of the letter. In addition, it converts all uppercase letters into lowercase,

so the next machine only needs to handle lowercase letters.

6.2.7 CNTR Machine: Contraction(Grade 2)

Partially shown in Figure 6-8, CNTR is the final sub-machine that performs the

actual translation. It uses two search tress: a tree for standing-alone contractions and a

25

tree for non-standing-alone contractions. The machine will first search the input word in

standing-alone tree. If the the word is not found, it searches in non-standing-alone tree to

check if the word contains one of the contractions. If no contraction is found, the machine

translates the first character of the word, then repeats the process with the rest of the word.

Note that the Figure 6-8 is a showing only a portion of CNTR machine due to its

massive size. In fact, the machine in the figure is only handling contractions “and” and

“do,” whereas UEB has about 160 contractions.

26

Figure 6-8. Partial CNTR Machine. This diagram shows only a part of an actual CNTR machine

due to the immense size of the original. Note that the first half of the machine is Stand-Alone Tree,

while the other half is Non-Stand Tree.

27

6.3 1-TUI API

For this project, 1-TUI API is created for Android. The components of the API

are categorized into: 1-TUI objects, 1-TUID objects, and event protocols. The 1-TUI

objects are the objects that the users can see and interact with. The 1-TUID objects are

the communications objects that the application uses to communicate with the 1-TUID

hardware. The event protocols are the event interfaces and message formats that the 1-

TUI objects and 1-TUID objects use to communicate. The current implementation is

created to develop prototype applications, so it lacks stability and organization.

6.3.1 1-TUI Objects

The 1-TUI objects are designed to be used just like the regular Android View

objects, and to be used on XML layout as well. Therefore these objects are created by

extending from the existing Android objects, as shown in Figure 6-9.

Figure 6-9. 1-TUI Objects. The most of 1-TUI objects are extensions of basic Android objects.

28

Per 1-TUI design, the graphical objects need to send signal to 1-TUID whenever

the user touches or swipes onto them. Such behavior is enforced by implementing

onTouch() and onDrag() events to detect the user’s finger movement and invoke relevant

1-TUI events. But because Android does not start drag event on empty spaces, the 1-TUI

objects do not recognize the drag event if the event starts on an empty space. In order to

prevent this, 1-TUI API for Android requires that all 1-TUI application have TUILayout

as the root layout. TUILayout is an extension of RelativeLayout that fills the whole

background, and initiates drag mode for the other 1-TUI objects. Having TUILayout to

fill the whole screen on background removes these empty spaces, so the 1-TUI objects

responds to the users’ movements consistently.

Figure 6-10. TUICellView. The most basic part of 1-TUI API that displays

Braille on screen. It has 2 options: Definition Display and Line Indicator.

Definition Display displays the definition of the displayed Braille if enabled.

Line Indicator outputs a continuous vibration while touched.

The most basic graphical component of 1-TUI API is TUICellView (see Figure 6-

10), which represents a Braille character. On screen, a TUICellView displays an 8-dot

Braille cell. To give a better sense of screen location, touching a TUICellView returns a

haptic feedback so the user can determine the location of his/her finger. The class

supplies few options such as Definition Display and Line Indicator. When Definition

Display is enabled, the definition of the Braille character(given by developer) is

29

displayed on top of the View. Line Indicator, which is enabled by default, creates an

underline which returns a longer haptic feedback when touched. This indicator is used to

let the user know that s/he has moved to an another line. Without this line, the blind user

can easily stray onto other lines of text without realizing it.

TUITextView is a graphical component that manages a sequence of

TUICellView’s, representing a Braille text. Because 1-TUI represents every object as a

Braille text, it is designed to work as the base for the most of 1-TUI objects, . This class

handles the cell size and organization, so developers can easily extend it for their own use.

TUITextView has two modes: Cell Mode and Grid Mode. Cell Mode handles the Braille

text similar to a regular text. In this mode, the TUICellView’s are given a size, and are

stacked left to right. Cell Mode is recommended when the size of cells needs to be fixed

(e.g. reading a long text on large screen). Grid Mode puts the TUICellViews in given

numbers of rows and columns, then scales them to fit the whole view. This mode is

recommended when a simple layout with dynamic size is desired.

6.3.2 1-TUID Objects

1-TUID object maintains the two-way communication between the 1-TUID

hardware and the 1-TUI application. Because the prototype 1-TUID uses Bluetooth

module for communication, the current API has 1-TUID object for Bluetooth only (called

TUIDBluetooth).

Once an 1-TUID object is created, developer must call start() method to initiate

the connection. After the connection is made, developer can call sendBraille() or

sendBytes() to send data to 1-TUID. Another way to send data to 1-TUID is by

registering its instance as an onTUITouch event handler for the 1-TUI objects. By doing

30

so, any 1-TUI events will automatically be sent to 1-TUID. As for receiving data from 1-

TUID, the listener need to be registered to the 1-TUID object as onTUIDClick event

handler. This event will tell whether the user pressed or released the 1-TUID button.

6.3.3 Event Protocols

In 1-TUI, the communication between the 1-TUI objects and 1-TUID is crucial.

1-TUI provides an interface called TUIListener which defines two events: onTUITouch

and onTUIDClick. onTUITouch is invoked when a TUICellView is touched and sends

signal to 1-TUID. onTUIDClick is invoked when 1-TUID button is pressed or released.

Figure 6-11. 1-TUI Message Protocol. 1-TUI objects and 1-TUID communicate by

sending data in above form. The first byte is the dot configuration for a Braille

character. The second byte contains options and status values.

1-TUI API also provides a messaging protocol class named TUIProtocol, as

shown in Figure 6-11. The protocol uses a 2-bytes message where the first byte stores the

Braille character and the second byte stores vibration commands and click status. The

vibration command tells 1-TUID what kind of haptc feedback that it needs to generate.

Click status is a boolean value set by 1-TUID, so 1-TUI objects can handle 1-TUID click

events. TUIProtocol class also includes few static methods that the developers can use to

easily retrieve or set data from or to a raw message bytes.

6.4 Android Applications

Four basic Android applications are developed to showcase 1-TUI. These

applications are developed using the before mentioned Braille library and 1-TUI API.

31

6.4.1 TUIReader

Shown in Figure 6-12, TUIReader is a text file reader which implements 1-TUI. It

lets the user to navigate within a designated folder and select a “.txt” or “.brl” file. “.brl”

file is a Braille text file, so it is immediately loaded if the user selects it. On the other

hand, the selected file needs to be translated to Braille if “.txt” is chosen. TUIReader

handles this process by creating a separate thread which translates the “.txt” file to a

“.brl” file. Since this thread is running in background, the user can start reading the new

“.brl” file without waiting for the whole file to be translated.

Figure 6-12. TUIReader. (a) Initial screen. User can click “file” button to open file selection screen.

(b) File selection screen. User can use “prev” and “next” button to see more list of files. User can

32

then click a file to open it. (c) File opened. Once the user selects a file, it is loaded and s/he can

navigate it by clicking “prev” and “next” button.

6.4.2 TUICaller

TUICaller is a caller applications which implements 1-TUI. Unfortunately,

Android does not allow developers to have call control due to the security reasons. Java

reflection on Android source code is tried to access the ITelephony call control, but it

only works on older Android devices. Killing the Telephony service is tried to hang up a

call, but it also fails because the service is system protected. Finally, sending a fake

headset signal works, but only for answering an incoming call. Only the stock Android

caller application is allowed to make an actual call action, so TUICaller works alongside

it.

For making an outgoing call, TUICaller sends a call intent to Android OS, which

then calls the stock application. After sending the intent, TUICaller waits approximately

2 seconds until the stock application shows up. When the stock caller starts, TUICaller

starts an activity of its own on top of the stock caller. Since the TUICaller’s activity is on

top, the user can use 1-TUI interface to read the call information. However, this activity

does not have ability to hangup for the reasons explained before. The outgoing call

operation is shown in Figure 6-13.

33

Figure 6-13. Making a Call. (a) Initial screen, TUICaller uses similar layout as other callers. Note

that “alpha” button just switches the pad labels between numbers and alphabets. (b) Number

typed. (c) Calling screen.This screen is shown on top of Android stock caller. “cancel” button does

not work due to not having call control. (d)Call ended.

Incoming calls are handled similarly. The moment it is installed, TUICaller starts

listening for any change in phone status. When an incoming call is detected, TUICaller

waits approximately 2 seconds while Android OS starts the stock caller. Once the stock

caller starts, TUICaller starts its own activity on top. If the user chooses to answer the call,

TUICaller sends a fake headset signal. Android OS receives the signal and then notifies

the stock caller app to answer the call. Incoming call handling is shown in Figure 6-14.

34

Figure 6-14. Incoming Call. (a) Incoming call screen. This screen is shown on top of Android

stock caller. Like in outgoing call, “hangup” button does not work. (b) Call answered.

6.4.3 TUISMS

TUISMS is a SMS messenger which implements 1-TUI. Its behaviors are based

on the other messenger applications, so the user can send, receive, and navigate SMS

messages. Each message is labeled with the sender’s name. If the sender’s number is not

found in contacts database, the last 4 digits of the number is displayed. Every incoming

messages are translated to Grade 2 Braille, while every outgoing messages are translated

to English. TUISMS usage is shown inFigure 6-15.

35

Figure 6-15. TUISMS. (a) Initial screen. This screen shows a list of previous conversations, so the

user can select one to continue. The user can also type in a phone number in “new num” textbox

to start a new conversation.(b)~(c) Keyboard screen. (d)~(f) Conversation screen. The user can

36

read previous SMS messages by using “prev” and “next” button. S/he can also send a new

message by typing in “new text” textbox and clicking “send” button.

6.4.4 TUILauncher

Show in Figure 6-16, TUILauncher is a device home screen that displays a list of

TUI applications. Being a device home screen, TUILauncher screen is shown whenever

the user exits from a 1-TUI application.

Figure 6-16. TUILauncher. Each 1-TUI application is shown as a button.

37

7 VALIDATION AND RESULTS

The validity of 1-TUI is evaluated by inspecting the quantifiable attributes of User

Interfaces(UI). The data on these attributes are collected by system testing and

researching on other works, and then analyzed. In addition, data on Braille Library are

collected for benchmark purposes.

7.1 1-TUI Validation

The validation of 1-TUI involves quantifying the usability of the UI. Two of the

quantifiable attributes of an UI are the speed and the accuracy at which the blind users

handle common activities. A few system test are performed to collect data on these

attributes for 1-TUI and the other existing UI’s, so the performance differences between

1-TUI and the other UI’s can be measured. The gauged differences are then analyzed

with the data from the other researches to derive the theoretical range of the speed and the

accuracy of 1-TUI.

Since the tester (the researcher of this project) is not blind, he was blindfolded

during the testing procedure. For a full disclosure, the tester has never used Braille or

screen readers prior to this research, and thus, produced much slower and less accurate

results than the experienced Braille readers would have.

7.1.1 System Testing: Printed Braille vs 1-TUI

The first system test compares 1-TUI against a printed Braille. On each trial, the

tester records himself reading aloud from a printed Braille text or TUIReader(an 1-TUI

text file reader) for 1 minute. After 3 trials on both printed Braille text and TUIReader,

the record is used to determine how many characters were read, and how many of them

were correct.

38

Printed Braille TUIReader

Trial # Cell Read Correct Accuracy Cell Read Correct Accuracy

1 7 6 85.71% 9 9 100%

2 6 4 66.67% 12 11 91.67%

3 5 4 80.00% 10 10 100%

Average 6 4.67 77.46% 10.33 10 97.22%

Table 7-1. Braille Read Comparison. This table compares the reading done on a printed Braille

and on TUIReader App. Each trial took 1 minute, during which the tester attempted to read a

random line.

As seen in Table 7-1, 1-TUI produces much faster and more accurate reading.

With a printed Braille, the tester achieves an average speed of 6 characters per

minute(cpm) at 77.46% accuracy. On the other hand, the tester achieves an average speed

of 10.33 cpm at 97.22% accuracy with TUIReader. In this test, 1-TUI produces a far

better result because it is easier to identify each character. For a novice reader, the printed

Braille characters are too small to recognize, to the point that two Braille characters are

confused for one. Such problem does not exist in 1-TUI since it only displays one

character, in a larger size than the printed Braille characters. Therefore, 1-TUI provides a

better reading experience to the inexperienced Braille readers.

Certainly, an expert Braille reader will result in faster and more accurate reading.

In their paper Legge, Madison, and Mansfield, converts 124 wpm (the average read speed

of Braille) to 7.5 cps, which equals to 450 cpm[8]. Given that the speed on TUIReader was

1.7 times faster than the speed on printed Braille, the theoretical average speed of 1-TUI

would be 775 cpm. Still, the Braille readers depend on sliding motion for reading, which

39

1-TUI do not, so the actual average speed of 1-TUI may be lower. Considering these, an

experience Braille user is expected to read between 450 cpm and 775 cpm with 1-TUI.

7.1.2 System Testing: Screen Reader vs. 1-TUI

The second system test compares 1-TUI against a screen reader (TalkBack). On

each trial, tester records himself reading and answering questions via SMS for 3 minutes.

Each questions is limited to a simple arithmetic problem involving 1-digit numbers, so

the tester does not spend time on figuring out the answer. After 3 trials on both TalkBack

and TUISMS, the record is used to determine how many questions are read correctly, and

how many correct answers are sent.

TalkBack TUISMS

Trial # Read/Answered Total Read/Answered Total

1 4/4 8 2/1 3

2 6/6 12 2/2 4

3 5/5 10 3/2 5

Average 5/5 10 2.33/1.67 4

Table 7-2. TalkBack vs TUISMS. This table compares screen reader and 1-TUI on SMS

messaging. Each trial took 3 minutes, during which the tester attempted to read and answer

simple math questions via SMS. Note that “Answered” refers to the number of questions that the

tester managed to reply back within time limit. “Total” is the total number of SMS activities that the

subject completed.

The Table 7-2 compares the results from screen reader and 1-TUI. Note that the

“Read” refers to the number of questions that the tester read correctly, while “Answered”

refers to the number of replies that the tester managed to send. “Total” column is the sum

40

of “Read” and “Answered,” representing the total number of SMS activities that the

subject completed.

As expected in Section 3.2, screen reader performs far better than 1-TUI, based on

the researches on read speed of Braille[8] and screen readers[9]. The test subject manages

to complete an average of 10 SMS activities with screen reader, while only 4 SMS

activities are completed with TUISMS. The performance difference reveals that 1-TUI is

150% slower than screen reader. While the faster speed on auditory reading is the main

cause of the performance difference, 1-TUI fails to achieve its potential speed because

the tester is not fluent in Braille. On each character being read or written, the tester had to

spend few seconds in translating between Braille and English.

Therefore, it is possible that the performance difference may be reduced if 1-TUI

is tested by a subject who is fluent in Braille. For a further analysis, we assume that the

writing speed is 33.33% of the reading speed. Therefore, writing speed in 1-TUI is

assumed to be 150 cpm (given the average read speed of 450 cpm). In Braille, each

question had an average of 6 characters, while each answer had an average of 3

characters. Also, the average SMS delivery delay was 5 sec. Using this numbers, we

estimate the performance by an experienced Braille reader to be:

Applying the wpm-to-cps ratio used by Legge, Madison, and Mansfield, the

auditory read speed of 318 wpm[9] is converted to 1154 cpm. Also, the writing speed in

41

screen reader is assumed to be 384.67 cpm (33.33% of the read speed). With screen

reader, each question had an average of 4 characters, while each answer had an average

of 2 characters. Using this numbers, we estimate that a test with an experienced screen

reader user will produce:

Therefore, a testing with a subject who is fluent in Braille and experienced with

screen reader will reduce the performance difference from 150% to 9.99%. Although this

reduction is drastic, it is because the first test was done by an inexperienced Braille user

which resulted in a large difference in speed.

7.2 Braille Translator Benchmark

The benchmark data on Braille translator library is collected by performing

translations on various text files. Ranging from “Bible” to “Origin of Species,” 24 books

on public domain are used. The test is automated by a simple Java program, which

translates each book into Grade 1 UEB and Grade 2 UEB. The program records the time

it took to translate a file and write the translation to a new file.

42

Figure 7-1. Word Count vs Translation Speed. The collected data shows that the Grade 1 Braille

translation is generally faster than the Grade 2 Braille translation. Note that the data at very left

only has word count of 47, so the large portion of the translation time is writing time, which

significantly reduces word per mSec value.

The analysis of the speed of translation calculates the number of words translated

per millisecond (shown in Figure 7-1). With a median speed of 58.28 words per

millisecond, the Grade 1 translation proves itself to be faster than the Grade 2 translation,

which has median speed of 56.97 words per millisecond. The higher speed by the Grade

1 Braille translation is explained by its use of one-to-one mapping, which is much faster

than the tree search used by the Grade 2 Braille translation. However, this explanation is

inconsistent against the speed difference of 2.3%, which is small considering that the tree

search is much slower. The reason for this inconsistency is found by analyzing the size

change (as shown in Figure 7-2).

43

Figure 7-2. Word Count vs Size Increase. The size increase is measured by the ratio of final size

to original size. Note that the data at very left only has word count of 47, so the large portion of

the translated text is Braille punctuation instead of the original text. As a result, it has much higher

size increase than the others.

The size analysis reveals that, at median, the Grade 1 Braille translation increases

file size by 2.05 times while the Grade 2 Braille translation increases file size by 1.58

times. This large difference explains the less-than-expected difference in translation

speeds. Since the Grade 2 Braille uses much less space than the Grade 1 Braille, the

Grade 2 Braille translation needs much less time for writing the new file. In effect, the

overall translation time is reduced, which increases the value of word per mSec.

As for the size increase, Braille adds its own punctuation for every uppercase

letters, numbers, and stand-alone letters. Furthermore, many Braille punctuation use two

symbols instead of one. For these reasons, Braille texts uses more characters than the

regular texts, and thus, requires more space.

44

8 CONCLUSION

This research studied various methods with which the blind users can access

mobile devices. The inspection of these methods revealed that they either lack user

control and technical read/write, or too expensive. 1-TUI was proposed as a solution to

these issues by combining screen reader and Braille display. 1-TUI was implemented into

a suit of basic Android applications, which were used to validate its usefulness.

A system test by the researcher proved that reading on 1-TUI can be better than

reading on printed Braille. Still, 1-TUI was much slower when compared to screen

readers, because the tester was not fluent in Braille. To properly validate 1-TUI, this

paper suggests further testing with subjects who are fluent in Braille. In fact, further

analysis suggests that the future test can reduce the performance difference between

screen reader and 1-TUI to 9.99%. To validate 1-TUI’s usability, theses tests should

result in read speed of 450 cpm or more, and at least 10 questions answered via SMS in 1

minute.

Although the analysis concludes that 1-TUI is slower than the screen readers, it

does not mean that 1-TUI is not useful. Keep in mind, that 1-TUI is capable of technical

reading/writing, which the screen readers are not capable of. For the general blind users,

1-TUI is not as useful as the screen readers. But for the blind students and professionals,

1-TUI offers a better way to learn and communicate within their fields.

45

REFERENCES

[1] W. Erikckson, C. Lee, & S. von Schrader.“2012 Disability Status Report,” Conrnell

Univ. EDI, Ithaca, NY, 2014.

[2] American Printing House for the Blind. (2014). Annual Report 2014. [Online].

Available Web: http://www.aph.org/federal-quota/dist14.html.

[3] Wikipedia. (2015, Apr. 9). Braille. [Online]. Available Web: Wikipedia.org.

[4] The Rules of Unified English Braille 2nd Ed. ICEB Standard, 2013.

[5] UNESCO, “World Braille Usage 3rd Ed.,” Perkins, Watertown, MA, 2013.

[6] X. Lei, A. Senior, A. Gruenstein, & J. Sorensen, “Accurate and Compact Large

Vocabulary Speech Recognition on Mobile Devices,” InterSpeech, Lyon, France,

2013.

[7] WebAIM. (Jan. 2014). Screen Reader User Survey #5. [Online]. Available Web:

http://webaim.org/projects/screenreadersurvey5/

[8] G. E. Legge, C. Madison, & J. S. Mansfield, “Measuring Braille Reading Speed with

the MNREAD Test,” Dept. Psych., Univ. of Minnesota, 2000.

[9] C. Asakawa, H. Takagi, S. Ino, T. Ifukube, “Maximum Listening Speeds for the

Blind,” Int’l Conference on Auditory Display, Boston, MA, July 6-9, 2003.

[10]R. Shilkrot, J. Huber, C. K. Liu, P. Maes, S. C. Nanayakkara, “FingerReader: A

Wearable Device to Support Text Reading on the Go,” CHI, Toronto, Ontario,

Canada, 2014.

[11]M. Y. Saadeh, “A Refreshable and Portable E-Braille System for the Blind and

Visually Impaired,” Ph.D disseration, Dept. Mech. Eng., Univ. of Nevada, Las Vegas,

2012.

http://webaim.org/projects/screenreadersurvey5/

46

[12]Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, & T. Someya,

“Sheet-Type Braille Displays by Integrating Organic Field-Effect Transistors and

Polymeric Actuators,” IEEE Transaction on Electron Devices, vol.54 no.2, pp.202-

209, Feb., 2007.

[13] I. M. Koo, K. Jung, J. C. Koo, J. D. Nam, Y. K. Lee, H. R. Choi, “Development of

Soft-Actuator-Based Wearable Tactile Display,” IEEE Transactions on Robotics,

vol.24, no.3, pp.549-558, Jun., 2008.

	Copyright
	ApprovalPage
	Acknowledgment
	Signature Page
	Dedication
	ABSTRACT
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Braille[3][4]
	2.2 User Interface
	2.2.1 Braille Displ
	2.2.2 Text to Speech
	2.2.3 Screen Reader
	3 RELATED WORK
	3.1 Haptic Feedback
	3.2 Read Speed
	3.3 Possible 1-TUID
	4 USER INTERFACE OV
	4.1 1-TUID
	4.2 1-TUI: Reading
	4.3 1-TUI: Interactive
	4.4 1-TUI: Writing
	5 SYSTEM OVERVIEW
	6 IMPLEMENTATION
	6.1 1-TUID
	6.2 Braille Library
	6.2.1 APOS Machine:
	6.2.2 DBLQT Machine:
	6.2.3 PNCT Machine:
	6.2.4 LTR Machine: L
	6.2.5 NUM Machine:
	6.2.6 CAP Machine:
	6.2.7 CNTR Machine:
	6.3 1-TUI API
	6.3.1 1-TUI Objects
	6.3.2 1-TUID Object
	6.3.3 Event Protoco
	6.4 Android Applicati
	6.4.1 TUIReader
	6.4.2 TUICaller
	6.4.3 TUISMS
	6.4.4 TUILauncher
	7 VALIDATION AND RES
	7.1 1-TUI Validatio
	7.1.1 System Testing
	7.1.2 System Testin
	7.2 Braille Translat
	8 CONCLUSION
	REFERENCES
	Table 2-2 . UEB Gra
	Table 2-3 . Apostro
	Table 7-1 . Braille
	Table 7-2 . TalkBack
	Figure 4-1 . 1-TUI
	Figure 4-2 . 1-TUID
	Figure 4-3 . Reading
	Figure 4-4 . Writin
	Figure 5-1 . Projec
	Figure 6-1 . 1-TUID
	Figure 6-2 . 1-TUID
	Figure 6-3 . 1-TUID
	Figure 6-4 . Braill
	Figure 6-5 . APOS Ma
	Figure 6-6 . LTR Ma
	Figure 6-7 . CAP Ma
	Figure 6-8 . Partia
	Figure 6-9 . 1-TUI O
	Figure 6-10 . TUICel
	Figure 6-11 . 1-TUI
	Figure 6-12 . TUIRead
	Figure 6-13 . Making
	Figure 6-14 . Incom
	Figure 6-15 . TUISMS
	Figure 6-16 . TUILa
	Figure 7-1 . Word Co
	Figure 7-2 . Word Co
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	Braille[3]
	Table 2-1. UEB Alphabets
	Table 2-
	Table 2-

	User Interface
	Braille Display
	Figure 2-

	Text to Speech
	Screen Reader

	RELATED WORK
	Haptic Feedback
	Read Speed
	Possible 1-TUID�s

	USER INTERFACE OVERVIEW
	Figure 4-
	1-TUID
	Figure 4-

	1-TUI: Reading
	Figure 4-

	1-TUI: Interactive Objects
	1-TUI: Writing
	Figure 4-

	SYSTEM OVERVIEW
	Figure 5-

	IMPLEMENTATION
	1-TUID
	Figure 6-
	Figure 6-
	Figure 6-

	Braille Library
	Figure 6-
	APOS Machine: Apostrophe
	Figure 6-

	DBLQT Machine: Double Quotation
	PNCT Machine: Punctuation
	LTR Machine: Letter Indicator
	Figure 6-

	NUM Machine: Number Digits
	CAP Machine: Capital Letters
	Figure 6-

	CNTR Machine: Contraction(Grade 2)
	Figure 6-

	1-TUI API
	1-TUI Objects
	Figure 6-
	Figure 6-

	1-TUID Objects
	Event Protocols
	Figure 6-

	Android Applications
	TUIReader
	Figure 6-

	TUICaller
	Figure 6-
	Figure 6-

	TUISMS
	Figure 6-

	TUILauncher
	Figure 6-

	VALIDATION AND RESULTS
	1-TUI Validation
	System Testing: Printed Braille vs 1-TUI
	Table 7-

	System Testing: Screen Reader vs. 1-TUI
	Table 7-

	Braille Translator Benchmark
	Figure 7-
	Figure 7-

	CONCLUSION
	REFERENCES
	W. Erikckson, C. Lee, & S. von Schrader.�2012 Disa
	American Printing House for the Blind. (2014). Ann
	Wikipedia. (2015, Apr. 9). Braille. [Online]. Avai
	The Rules of Unified English Braille 2nd Ed. ICEB
	UNESCO, �World Braille Usage 3rd Ed.,� Perkins, Wa
	X. Lei, A. Senior, A. Gruenstein, & J. Sorensen, �
	WebAIM. (Jan. 2014). Screen Reader User Survey #5.
	G. E. Legge, C. Madison, & J. S. Mansfield, �Measu
	C. Asakawa, H. Takagi, S. Ino, T. Ifukube, �Maximu
	R. Shilkrot, J. Huber, C. K. Liu, P. Maes, S. C. N
	M. Y. Saadeh, �A Refreshable and Portable E-Braill
	Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asak
	I. M. Koo, K. Jung, J. C. Koo, J. D. Nam, Y. K. Le

