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Abstract 
 
 

EEG Signal Analysis by Using SVM and ELM:  

  

By 

Yun Sun 

Master of Science in Electrical Engineering 

 

Brain Computer Interface (BCI) is a communication interface between the brain and an 

external device, which is often used to assist or repair human cognitive or sensory-motor 

functions. One type of brain signal used in BCI systems is the electroencephalogram 

(EEG). In this project, the two EEG signals that were analyzed were obtained by 

recording the EEG activity that was occurring when a person was moving their arms for 

the first case and their legs for the second case. These EEG signals were processed using 

a power line rejection notch filter, power spectral density analysis, Principal Component 

Analysis (PCA), and finally the mathematical based machine learning analysis using both 

Support Vector Machine (SVM) and Extreme Learning Machine (ELM). Machine 

learning is used to generate a model that could be used to accurately predict whether a 

person is moving their arms or their legs by applying the EEGs as inputs to the generated 

model and reading the output of the model. The goal of this project is to compare the 
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performance of SVM and ELM by using the accuracy of classification that each model 

produces.   
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 Chapter 1: INTRODUCTION 

 
 

 A Brain Computer Interface (BCI) is a way to communicate between the brain and an 

external device, such as a computer. By using sensors put on the scalp, the external 

device can catch the brain response signal and do some processing, while the body is 

doing some movements or the brain is thinking. An application of BCI is intelligent 

prosthesis, which use the brain signal to control the fake leg or arm movements. In this 

project, the BCI input signal is the EEG signal that results from movement of the legs and 

hands.  

 For most BCIs, an electroencephalogram (EEG) is an electric recording of brain 

activity caused by extremely sensitive currents and the EEG signal, which is considered 

as the source signal, is sent to a computer to do the signal processing. For the brain signal 

measurement, the electroencephalogram (EEG) is one of the main methods, which 

provides a non-invasive measurement without implanting any foreign object inside the 

body. Depending on different situations, conditions and thought, the brain produces a 

different EEG signal, which can be captured by the sensors on the scalp. Because the 

amplitude of the EEG signal is very small, it is difficult to acquire the signal and once it 

is acquired, it often very noisy and requires filtering. The type of noise that surrounds the 

signal of interest is in the form of background noise or other signals generated by the 
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brain that are not pertinent to the particular application of interest. This is because of an 

external disturbance or other mental activity. 

 

 

Figure 1: The areas of different brain signal processing (Stroke Family: The Sensory 
Trigger Method: Making New Pathways for Speech After Stroke or Brain Injury) 

 
 

 Different activities will cause different parts of the brain to process more intensively 

or relax more, so by analyzing the origin of a signal, one can gain insight as to what kind 

of activity is performed. Besides the origin of the signal, the amplification or attenuation 

of the signals, as well as the frequency of the signal help categorized the type of signal 

being observed. The frequency bands often used in analyzing EEG signals are defined as 

Delta (0 Hz – 4 Hz), Theta (4 Hz – 7 Hz), Alpha (8 Hz – 12 Hz), Beta (12 Hz – 30 Hz), 

Gamma (30 Hz – 100 Hz). The excess or lack of activity can be used to measure the state 

of a person. For example, if the brain of an awake adult is experiencing large amount of 
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delta activities or theta activities, it means the person has some neurological diseases. A 

person's state of alertness can be predicted by looking at the amplitude of alpha rhythms, 

which increase when the body is relaxed and the eyes are closed, otherwise it attenuates. 

Beta rhythms relate with muscle movements. The gamma waves relate to certain muscle 

functions and perceptions [1]. 

 

 
Figure 2: Electrode Placements over Scalp  (Gomez-Gil, Sensors 2012, 12(2), 

1211-1279; doi:10.3390/s120201211) 
 
  

 Machine learning plays a major role in BCI systems. It was developed from the study 

of pattern recognition and computational learning theory in artificial intelligence and in 

this project, it is used to learn the patterns in EEG activity for cases when a person is 

moving their arms and when they’re moving their legs. There are two main applications 

of machine learning: regression and classification. The regression analysis is widely used 
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for prediction and forecasting. The regression analysis The regression analysis is a 

process for estimating the relationships and the conditional expectation among the 

dependent variable and one or more independent variables, which includes many 

techniques for modeling and analyzing several variables. The estimation target is a 

function of the independent variables called the regression function [2].  In regression, 

the outputs of the system are continuous rather than discrete. On the other hand, 

classification is the process of identifying which set of discrete categories certain data 

belongs to. Machine learning can generate a model, which sets boundaries to classify data 

as belonging to one class or another. This is achieved by first extracting features from the 

training dataset and then progressively updating the model to increase the accuracy with 

which it predicts the class of training data. The category of machine learning that contains 

a label for each of the trials in a dataset is called supervised learning. This data and the 

labels are used to generate a mathematical model that can be used to predict which class 

other EEG data belongs to. This is done by feeding features from a trial into the model 

and looking at the predications that the model makes. If the model works well, it will 

correctly predict which class the data belongs to. To build this model, training data is 

required to progressively help shape the parameters in the model so that it can be trained 

to make data driven predictions and perform accurate signal classification on future data. 

The two types of data in machine learning are training data and testing data. Training data 

is used to build the model by providing some feedback to the system that indicates which 

class the data belongs to. This allows the model to constantly change its parameters to 
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allow the training data to be classified correctly. The ultimate goal of machine learning 

does not lie in the accuracy of prediction for the training data, but instead what is most 

desired is to have the model be general enough that the model can correctly classify 

future data that the model has not seen before. To get a measure of how good the model 

will perform, testing data is used to test the predications that the model produces and 

check the accuracy of the model. This testing data is data that the model has not seen 

before and therefore this accuracy is a measure of how accurate it is in the general case 

(not just for data that it used to generate the model). In this project, there are two machine 

learning algorithms used: Support Vector Machine (SVM) and Extreme Machine 

Learning (ELM). The models that were generated in this project are specifically catered 

to learning the difference between the patterns in the two classes of EEGs (hands and 

legs). More details about machine learning are described in Chapter 3. 

The dataset provided for this project is large and not every single point of data is 

needed to describe the characteristics or pattern of the signal. The system attempts to 

classify the data as being arm movement related or leg movement related using whatever 

data is provided to it, but for better processing efficiency, the number of data points that 

are processed can be reduced by extracting certain patterns from the data and then use 

this as the input to the learning algorithm. This provides a more efficient way of 

processing the signal, since instead of processing a huge set of data, the system only has 
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to process a few of patterns/features. The process of extracting these patterns is called 

feature extraction and is discussed in Chapter 2.  

On this project, the purpose is to compare two machine learning models 

performances: Support Vector Machine (SVM) and Extreme Machine Learning (ELM) 

by measuring the accuracy of the predictions that each model makes based on the 

analysis and feature extraction of the electroencephalogram (EEG) signals for the 

movement of either the legs or arms moving. The procedure followed in this project can 

be summarized as following: run the data through filters, use PCA to extract features of 

the filtered data set, run the features through a machine learning algorithm (SVM and 

ELM) to generate a model, test the model and record accuracies of the learning algorithm 

using different machine learning functions, parameters and models. 

 In Chapter 2, the paper describes the pre-processes, which include the following 

steps: transform the dataset from time domain to frequency domain (power density 

spectrum) and feature extraction. In Chapter 3, the paper describes the math details of 

ELM and SVM. Project details, results and the conclusion can be found in Chapter 4 and 

Chapter 5. 
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Chapter 2: PRE-PROCESSING 
 
 

 The datasets used in this project is the EEG activity signals, which are collected over 

15 channels and are recorded at a sampling frequency of 512 Hz when the hands or foot 

of participants were moving. Because the useful parts of the collected brain response 

signals are lower than 100Hz, signals are band pass filtered from 0.5 Hz to 100 Hz. 

Because the data used in this project is from Germany, there is a very strong noise at 50 

Hz, which will affect the result. Therefore, there is a four-tap notch filter in the system, 

which cleans the power noise as much as possible. The data used in the project is after the 

filter and contains only the relevant portions from the data. 

 

Frequency Transformation 

 The data is transformed from time domain to frequency domain so that the latent 

periodic components can show up and be identified. It is also easier to see the data 

differences in frequency domain and figure out which frequency bands of the brain signal 

are active, when the body is moving the arms or legs.  

 In this project, the time domain EEG signals are transformed into the frequency 

domain using spectrum density estimation to obtain the power density spectrum. The 

power spectrum shows how the power varies across different frequencies, which can also 

be used to show how the energy is distributed. In statistical signal process, spectrum 
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density estimation is a tool to estimate the spectral density of a random signal from a 

sequence of time samples of the signal, which is a way to describe the frequency features 

and content of spectrum density. One purpose of spectral density estimation is to detect 

any periodicities in the data. There two main kinds of SDE: parametric SDE and 

non-parametric SDE [3]. For non-parametric spectrum estimation, no special model is 

assumed to generate the frequency response data. In this case, it can use Fourier methods 

to analyze the power in the frequency domain. The parametric spectrum estimation uses a 

predefined model to represent the data in the frequency domain. These models require 

calculating certain parameters to fit the model to the data.  

In this project, a non-parametric spectrum estimation method was used to transform the 

time domain signal into one in the frequency domain. The name of this method is called 

Welch�s method. Welch�s method is based on the standard density spectrum estimation 

and one of its features is that it can be used to reduce noise in exchange for reducing the 

frequency resolution to the desire of the user. In this method, the signal data segments are 

split up into L data segments, which have M points, and is overlapped by D points. If D = 

M/2, the overlap is 50% and if D = 0, the overlap is 0%. Each of these data segments can 

then be multiplied with a window function and the periodogram of the product is 

calculated for the individual segments and the average of these periodograms is the result 

of Welch�s method. The equations for the process that was just described are shown 

below.  
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The data used in this project is cut into no more than 8 segments with 50% overlap and 

the modified periodgram is computed for each segment using a Hamming window. 

Compared to the rectangular window, the magnitude of the side lobes for the hamming 

window is much less than that of the rectangular, which is desirable, but the main lobe of 

the hamming is also wider, which is undesirable. 

 

 

 

Figure 3: Compare the rectangular window with hamming window 
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Feature Extraction 

 A feature is an obvious characteristic, which can describe the data. As mentioned in 

Chapter 1 Introduction, there is a large set of data provided in this project. In order to 

process data more efficiently, the project used feature extraction to get the features, 

which can be very useful to describe the pattern or trend, since they provide a more 

compact way of describing the pattern.  

 Principal Component Analysis (PCA) is a very effective algebraic feature extraction 

method to deal with the information in the sample, compression and extraction based on 

the variables covariance matrix. The core idea of PCA is using the characteristics of less 

data to describe samples in order to reduce the dimension of the feature space. PCA is 

often used to reduce the dimensions of the data sets, while keeping the largest 

contribution to the variance of characteristics of the data set, by retaining lower-order 

principal component and ignoring higher-order principal component. In this way, 

lower-order components retain the most important aspect of the data.  

To build up the PCA model, the first step is to get the mean of each channel and 

subtract the mean from every data dimensions in order to set the means of every 

dimension data to zero. Then, the covariance matrix is calculated using the zero mean 

data. After this, the the eigenvalues and eigenvectors of the covariance matrix are found, 

the eigenvectors are sorted by the eigenvalues from highest to lowest, which results in 

data from most significance to lowest significance. Lastly, components of lowest 
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significance can be ignored without much loss in information and multiply the original 

data with the eigenvector matrix with to get the new data.  
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Chapter 3: CLASSIFICATIONS 
 
 

Machine learning 

 Machine learning is an algorithm operation that builds up a model with the training 

data and uses the model to process some test data. Machine learning is used in many 

applications. The one used in this project is supervised learning and classification. To 

supervise the learning process, the data provided to the system must have the predicted 

class labels for each set of features. Using the labels, the feature space for the training 

data is divided into two classes and the algorithm learns the general rules to build up the 

model. Then this model is used to classify the testing data and to calculate the accuracy 

of the system. There are two kinds of machine learning used in this project: the first is 

Support Vector Machine (SVM), and the second is Extreme Machine Learning (ELM). 

 

Support Vector Machine 

 Support Vector Machine (SVM) is a traditional algorithm operation to separate two 

or more kinds of data. It relies on a mathematically defined function that represents a 

division, known as a hyper plane in higher dimensions, between the two classes of data. 

Data lying on one side of this hyper plane is classified as belonging to one class, while 

data on the other side belongs to the other class. By applying SVM, a classification model 

in the form of linear function f(x) = wx+b can be generated, which can separate data to 



13 
 

the classes. The location of the hyper plane is defined as f(x) = 0 = wx+b. The example in 

Figure 3 shows some blue circles on the left side, which represent data belonging to Class 

1, and some red circles on the right side, which represent data belonging to Class 2. The 

blue circles are on the side of the hyper plane, which corresponds to the case when f(x) > 

0 and the red circles are on the side of the hyper plane, which correspond to the case 

where f(x) < 0. By looking at the location of the data with respect to the hyper plane, the 

class that the data belongs to can be predicated by the model. 

 

 

 

 

 

 

 

 

 
Figure 4: How do the linear SVM separate two different kinds of data 

 
 

From Figure 4, there are two parallel lines beside the line at wx+b = 0. The line is 

used to separate between two classes (red circles vs blue circles). The wider the area 

between the red circles and blue circles, the easier it is to separate the circles and 

therefore, the easier it is to separate between the two classes. Putting any line in between 
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the two classes will work for the example shown in the figure, but since the goal is to 

make the model work for data not belonging to the training dataset, it is best to provide 

the widest margin between the two classes. The best condition is when the maximum 

distance between two hyper-planes at the edges occurs. The distance is 2/!w!, so max 

value of !w! is needed to minimize the distance. When the w is fixed, the three lines are 

also fixed. As the norm of w uses the square root, instead of using !w!, 2

2w

 will be 

used instead. Therefore, it can formulate a quadratic optimization problem and solve for 

w and b: 

M9,:8 J O

1
                             (3.1) 

PQER.ST8TU:8V#(-+# + E) ≥ 1, ∀9 

!Y9MZ[8S[ZPP9%9SZT9U,8.\QZT9U,: % + = 8P9], -^+ + E  

where the goal is to find w and b such that8Φ - = 1/2-^- is minimized and for all 

(+#, V#) : V#(-+# + E) ≥ 1. Quadratic optimization problems are a famous class of 

mathematical programming problems and many algorithms exist for solving them [3]. 

Quadratic programming is a special type of mathematical optimization problem, which 

minimize or maximize a quadratic function of several variables subject to linear 

constrains on the variables.  
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There will be times where there is some data that cannot be separated. From Figure 4, 

one or two blue circles show up on the side of red circles, which cannot generate a clear 

boundary to separate the circles by color. The solution to this problem is using a concept 

known as soft margin. According to the study done by Corinna Cortes and Vladimir 

N.Vapnik, they found the soft margin in 1995 [5]. In the situation described, the soft 

margin method can choose a hyper plane that keeps the maximum distance and splits the 

data as cleanly as possible. In this method, there are non-negative slack variables88a#, 

which checks the measurement degree of the misclassified data8+9.  

 
 
 

ab 

wx+b=0 

wx+b < 0 wx+b > 0 

 
Figure 5: The Soft margin property of SVM 
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Now, using the soft margin, the equation changes to  

M9,9M9g.:88 (
1
- ∙ - + c a#e

f5(                     (3.2) 

hQER.ST8TU:8V# -+# + E ≥ 1 − a9, Z,i8a9 ≥ 0, ∀9 

For dual problem [5]: 

MZ+:8j k = 8 k# − 1/2 k#k0V#V0+#^+088              (3.3) 

hQER.ST8TU:888 k#V# = 08888k# ≥ 08for8all8k# 

S[ZPP9%V9,]8%Q,ST9U,: % + = 8 k#V#+#^+0 + E 

 

 

 

 

   Figure 6: map the original input space to the higher dimensional feature space 
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Since the data is not always linearly separable in the initial feature space, there are 

occasions where increasing the dimensionality of the feature space may actually make the 

separation of classes much easier. To perform this process, the kernel function is used to 

transform the initial feature space into a higher order feature space, which can make the 

data be linearly separated by a hyper-plane and achieve the maximum margin between 

the two classes [6]. As shown in Figure 5, the initial data is transformed from Φ(x) to φ(x) 

so that the dot product becomes: 

q +#, +0 = r +# ^r(+0)                   (3.4) 

And the equation (3.1) changes to: 

 

=.ZY,9,]:88888M9, - 1 + c max 0,1 − V#% +# 8888888888888888888888888u
# (3.5) 

S[ZPP9%V9,]8%Q,ST9U,: % + = 8P9],(-^φ x + b) 

 

Instead of +#^+08, which shows in Eq.6, the non-linear SVM mathematical classification 

uses q +#, +0  and for dual classifier in transformed feature space: 

 

max
k# ≥ 0 k# −#

(
1

k0kfV0Vfx +0, +f 888888888888888888888888888888888880f 8(3.6) 

hQER.ST8TU: 0 ≤ k# ≤ c8%UY8∀98Z,i8 k#V# = 0
#

 

8and the classifying function is shown as following:  

c[ZPP9%V9,]8%Q,ST9U,:8% + = Z#V#q +#, V# + E          (3.7) 
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Extreme Learning Machine 
 

Huang Guang-Bin presented Extreme Learning Machine in 2004 [7]. At first, ELM 

was designed for the single hidden layer feed-forward neural networks (SLFNs). Then, it 

is developed and extended to the generalized single hidden layer feed-forward networks 

[8] [9] [10] [11]. 

The main idea of ELM is to work for the SLFNs, and extends to the multi-hidden 

layer feed-forward neural networks. The ELM theory assumes that the hidden nodes or 

the neurons do not need to be tuned and can be generated randomly as shown in Figure 7. 

The parameters of the hidden nodes are independent from the training data set. The ELM 

theories state that the randomness may be the real method for how the brain learns. 

 
 

 
 

 

1 i L 

 

1 d Input Node 

Random Hidden 
Neurons 

   

 
Figure 7:The workflow picture of Extreme Learning Machine 
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In order to describe the ELM model further, the following parameters need to be 

defined: 

!! N: the total number of the training data 

!!
~
N : the total number of hidden nodes 

!! n, m: the dimensions of the input layer and output layer 

!! Njtx jj ,......,2,1),( =+ : the testing data 
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!! :,...,2,1, Njo j =  the particular output vector according to the jt  

!! :)( ~
nN

ijwW
×

=  the related weight matrix of input layer and hidden layer 

      T
iniii wwww ),...,,( 21=  

!! :),...,,( ~21
T

N
bbbb =  the offset vector, ib  is the threshold of the 9z{ hidden node 

!! :)( ~
mN

ij
×

= ββ  the related weight matrix of output layer and hidden layer 
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!! )(xg : active function 

 

Single-Hidden Layer Feed-Forward Network (SLFNs) 

Mathematically, the standard SLFNs model is the following:  

∑
=

==+•

~

1
,,...,2,1,)(

N

i
jiiii Njobxwg β             (3.10) 

In order to have zero error and be closer to the N samples, 

0
1

=−∑
=

N

j
jj to                       (3.11) 

So the Eq. 5 change to 

∑
=

==+•

~

1
,,...,2,1,)(

N

i
jiiii Njobxwg β             (3.12) 

Use the matrix to describe Eq.16 

TH =β                          (3.13) 
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H is the hidden layer output matrix of neural network. ~)(),(
NN

ijhbWHH
×

==  and

)( jijij bxwgh +•= . 

When the number of the hidden units is odd and NN =
~

, and the matrix is revertible, the 

Eq. 14 contains the only solution.  

However, in most cases, the number of hidden-layer units is much smaller than the 

number of training data, which means NN <<
~

. To solve the difficulties, a new effective 

learning machine appears. At first, the values of parameters ‘W’ and ‘b’ can be given 

randomly and used to calculate the matrix ‘H’ (although keep changing the values of ‘W’ 

and ‘b’ does not result in any gain change.) ‘β’ is the only parameter is used as a decision 

factor. 

When ‘W’ and ‘b’ is fixed, Eq. 8 is used to solve for the least square solution β
!

 of 

the linear system. 

THTH −=− ββ
β
min

!
                    (3.14) 

HT=β
!

 

Because β
!

 is the least square solution of Eq. 8, Eq. 9 also works. On the other hand, β
!

 

is also the minimum norm, which means β
!

 is the minimum norm of all the least square 

solutions. For the feed-forward neural networks, the magnitude of β
!

 is very important: 

β
!

 is smaller, while the generalization ability of the system is better. 
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The Extreme Learning Machine build up process: 

Given the training data set N
i

m
i

m
iii RtRxtxR 1, },|){( =∈∈= , the active function )(xg

and the number of hidden units
~
N . 

Step 1:  Assign input weights iw  and threshold ib ,
~

,...,2,1 Ni = .       

Step 2:  Calculate the hidden layer output matrix of neural ‘H’. 

Step 3: Calculate the related weight matrix of output layer and hidden layer HT=β . 
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Chapter 4: NUMERICAL EXPERIMENT 
 
 

The data used in the project are EEG activity signals, which download from the website: 

http://bnci-horizon-202.eu [9].  The data includes the training data, the testing data, 

trials and predicted class labels. Trials are used to separate the data for each sample and 

the predicted class labels assist the training and the calculation of the accuracy for the 

classification processes. The training data and the testing data had 15 channels and were 

recorded using a sampling frequency of 512 Hz, when the hands and foot are moving. 

There are 160 samples: 100 training sample data and 60 testing sample data, where each 

one has over 11000 points. Because the frequency of the signals is lower than 100 Hz, 

which include the main useful information, the EEG signals are band-pass filtered from 

0.5Hz to 100Hz. There is also a four-tap 50 Hz notch filter in the system to clean the 

power noise. The data used in the project only contains the relevant portions. After 

loading the data to MATLAB, the mean of each class of 15 channels in time domain is 

plotted, which are shown in the following Figure 7. Then the data is transformed from 

time domain to power density spectrum through the non-parametric model Welch, which 

has been introduced in Chapter 2. In MATLAB, the function ‘pwelch’ is used to perform 

the operation and the result is showed as Figure 8. The last step of the data pre-process is 

to let the data run through PCA to get the features extracted. 
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Figure 8: mean of each channel signal in time domain 
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Figure 9:Power density spectrum of Class 1 and Class 2 
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website: http://www.ntu.edu.sg/home/egbhuang/elm_kernel.html [10]. This model 

was built by Prof. Huang Guang-Bin study team, which sets up the theories and models 

of ELM [11]. For SVM model, it is build up by the MATLAB functions: svmtrain. 

For Table 1 and Table 2, they are the classification results of ELM and SVM kernel 

function with all features, which are pass the PCA method. There are two kind modes of 

kernel function doing the comparison. One is Linear Kernel Function, and the other is 

Polynomial. 

 

Mode of Kernel Function Training Accuracy Testing Accuracy 

Linear 100% 68.33% , c = 0.001 

Polynomial 100% 60% , c = 0.001 

 
Table 1: The classification results of ELM Kernel Function 

 
 
Mode of Kernel Function  Training Accuracy Testing Accuracy 

Linear 100% 68.33% , c = 0.001 

Polynomial 100% 68.33% , c = 0.001 

 
Table 2: The classification results of SVM 

 
 

According to the tables, it is very clear that for the linear kernel mode, the 

performance of ELM and SVM are same. However, for polynomial, there is a noticeable 

difference between them, where the ELM performs better. 
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After comparing two methods with total data, the projects also need to find out how 

the method performances change when the method conditions and parameters are 

changed. No matter which model is used, SVM or ELM, there is a very important 

parameter C, which is a way to control over fitting. Higher values of C indicate that the 

model sets a harder margin on the classification, while smaller values of C indicate that 

the model sets a softer margin. This project used K-fold Cross-validation to get the 

suitable C values.  

The purpose of using Cross-validation is to get reliable and stable models. The initial 

training data is divided into K groups, one separated group is kept aside to use as testing 

data, the other groups are used to do the training; repeat the cross-validation for K times 

and each group has been verified one time, then pick up the C value, which has the 

highest testing accuracy. The advantage of this method is that it repeats using randomly 

generated groups to do the training and validation and the accuracy of each model is 

evaluated after each run. The method used in this project is 5-fold cross-validation. 

As theories described in Chapter 2, there is very important parameter, which can 

affect the classifying result directly, is the number of PCA components used in the 

classification process. The columns of the PCA method output matrix has already sorted 

from low-order to high order by how much important information of EEG signal is 

included. This project used the MATLAB function ‘pca’ to build up the PCA method 
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directly and picked up 1500, 3000, 4500, 6000, 7500, 9000 as the numbers of PCA 

components. 

  

PCA 
components  

ELM with linear kernel SVM with linear kernel 

C Value Testing Accuracy C Value Testing Accuracy 

1500 0.0534 46.67% 0.0027 45% 

3000 0.0132 53.33% 0.0010 56.67% 

4500 0.0100 60% 0.0010 65% 

6000 0.0010 68.33% 0.0010 68.33% 

7500 0.0010 68.33% 0.0010 68.33% 

9000 0.0010 68.33% 0.0010 68.33% 

PCA 
components  

ELM with polynomial kernel SVM with polynomial kernel 

C Value Testing Accuracy C Value Testing Accuracy 

1500 0.0010 46.67% 0.0010 45% 

3000 0.0010 56.67% 0.0010 56.67% 

4500 0.0010 58.33% 0.0010 65% 

6000 0.0010 60% 0.0010 68.33% 

7500 0.0010 60% 0.0010 68.33% 

9000 0.0010 60% 0.0010 68.33% 

 
Table 3: The results of ELM and SVM with different PCA components and c values. 
 
 

From Table 3, it can see that as the number of PCA components used in the process 

of classification, the testing accuracy keeps increasing until reach the highest testing 

accuracy, which are shown in Table 1 and Table 2. From Table 3, it looks like that 6000 
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features are enough to show the most characteristic of the differences between Class 1 

and Class 2. According to the table, when the find the best C =0.001, C value is fixed by 

the system and do not change again. It can see from table that SVM find the best C value 

much faster than ELM and for polynomial kernel method, the testing accuracy of SVM is  

higher than the testing accuracy of ELM.    
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Chapter 5: Conclusion 
 
 

The testing of the EEG signal classification of hand and feet movements is successful by 

using SVM and ELM. It is clear that compared with ELM, SVM has more stable 

performance and better accuracy on polynomial kernel method. 

From the last section, the result is not perfect. The following are possible reasons: 

!! The amount of the training data is not enough to generate a classification model. For 

each class, there are only 100 samples. As the brain signal is not a simple and clear 

signal, only 50 samples cannot show the entire characteristic. Therefore, the accuracy, 

universality and applicability of the classification model are affected. 

!! The training data does not have universality so that the model does not work well 

with the test data. Training data is always limited, but this particular data is unlimited 

and very changeable. As the limitation of the training data, the model does not work 

well on the test data in this specific case. 

!! The dimensions of the classification are too high. During the processes of the model 

building, the feature space transforms to higher dimensions. As dimensions increase, 

the universality and applicability of the model will also decrease.   
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APPENDIX: CODE 
 
% Build up the Training Data 
clear;clc 
load('S03T.mat') 
  
Data_T= cell2mat(data); 
  
Training_1 = Data_T(1).X; 
Training_2 = Data_T(2).X; 
Training_3 = Data_T(3).X; 
Training_4 = Data_T(4).X; 
Training_5 = Data_T(5).X; 
  
Training_Trial1 = Data_T(1).trial; 
trial1_length = length(Data_T(1).X); 
Training_Trial2 = Data_T(2).trial; 
trial2_length = length(Data_T(2).X); 
Training_Trial3 = Data_T(3).trial; 
trial3_length = length(Data_T(3).X); 
Training_Trial4 = Data_T(4).trial; 
trial4_length = length(Data_T(4).X); 
Training_Trial5 = Data_T(5).trial; 
trial5_length = length(Data_T(5).X); 
Training_Trial = 

[1,Training_Trial1,(Training_Trial2+Training_Trial1(20)),... 
                   

(Training_Trial3+Training_Trial1(20)+Training_Trial2(20))... 
                   

(Training_Trial4+Training_Trial1(20)+Training_Trial2(20)+Training_Trial

3(20)),... 
                   

(Training_Trial5+Training_Trial1(20)+Training_Trial2(20)+Training_Trial

3(20)+Training_Trial4(20))]; 
  
Training=[Training_1(1:Training_Trial1(20),:);Training_2(1:Training_Tri

al2(20),:);... 
          

Training_3(1:Training_Trial3(20),:);Training_4(1:Training_Trial4(20),:)

;... 
          Training_5(1:Training_Trial5(20),:)]; 
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Mean_Training = mean(Training); 
[row_Training,col_Training]= size(Training); 
Mean_Training = repmat(Mean_Training,row_Training,1); 
Var_Training = var(Training); 
Var_Training = repmat(Var_Training ,row_Training,1);                 
                 
Label_Training = [Data_T(1).y Data_T(2).y Data_T(3).y Data_T(4).y 

Data_T(5).y]; 
  
Training = Training- Mean_Training; 
Training = Training./sqrt(Var_Training); 
T_0=1; 
  
Training_Hand=[]; 
Training_Feet=[]; 
Row_T = []; 
  
a_idx=1; 
b_idx=1; 
  
Training_Label_C=[]; 
  
for i = 1:100 
     
    label = Label_Training(i); 
     
    T = Training_Trial(i+1)-Training_Trial(i); 
    Row_T(i) = T; 
    if label == 1; 
        Training_Data(i,1:(T+1),:) 

=Training(Training_Trial(i):Training_Trial(1+i),:); 
        T_0 = T+T_0; 
     elseif label == 2; 
        Training_Data(i,1:(T+1),:) = 

Training(Training_Trial(i):Training_Trial(1+i),:); 
        T_0 = T+T_0; 
    end 
     
    for chanNum=1:15 
        PSD_Train(i,:,chanNum)=pwelch(Training_Data(i,:,chanNum)); 
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    end  
   i = i+1; 
end 
  
  
%Build up the Test Data 
load('S03E.mat') 
  
Data_E = cell2mat(data); 
  
Testing_1=Data_E(1).X; 
Testing_2=Data_E(1).X; 
Testing_3=Data_E(1).X; 
  
Testing_Trial1 = Data_E(1).trial; 
trial1_length= length(Data_E(1).X); 
Testing_Trial2 = Data_E(2).trial; 
trial2_length = length(Data_E(2).X); 
Testing_Trial3 = Data_E(3).trial; 
trial3_length = length(Data_E(3).X); 
  
Testing_Trial = [1,Testing_Trial1,(Testing_Trial2+Testing_Trial1(20)),... 
                   

(Testing_Trial3+Testing_Trial1(20)+Testing_Trial2(20))];... 
  
Testing=[Testing_1(1:Testing_Trial1(20),:);Testing_2(1:Testing_Trial2(2

0),:);... 
          Testing_3(1:Testing_Trial3(20),:)]; 
                 
Mean_Testing = mean(Testing); 
[row_Testing,col_Testing]= size(Testing); 
Mean_Testing= repmat(Mean_Testing,row_Testing,1); 
Var_Testing = var(Testing); 
Var_Testing = repmat(Var_Testing ,row_Testing,1); 
  
label_testing = [Data_E(1).y,Data_E(2).y,Data_E(3).y]; 
  
Testing = Testing- Mean_Testing; 
Testing = Testing./sqrt(Var_Testing); 
  
E_0 =1; 
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Testing_Data=[]; 
Row_E = []; 
  
a_idx=1; 
b_idx=1; 
  
    for i = 1:1:60 
         
        label = label_testing(i); 
        E = Testing_Trial(i+1)-Testing_Trial(i); 
        Row_E = E; 
         
        if label == 1; 
            Testing_Data(i,1:(E+1),:) 

=Testing(Testing_Trial(i):Testing_Trial(1+i),:); 
            E_0 = E+E_0; 
        elseif label == 2; 
            Testing_Data(i,1:(E+1),:) = 

Testing(Testing_Trial(i):Testing_Trial(1+i),:); 
            E_0 = E+E_0; 
        end 
         
        for chanNum=1:15 
            PSD_Test(i,:,chanNum)=pwelch(Testing_Data(i,:,chanNum)); 
        end  
         
        i = i+1; 
    end 
     
         
  
  
  
%% Training_test 
Combine_Training_Data = Training_Data; 
Combine_classes = Label_Training; 
  
Fs = 512; 
Nsec=256; 
sigLength = length(Combine_Training_Data); 
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% n=0:sigLength-1;t=n/Fs; 
% FFT_Combine_Training_data = 

abs(fft(Combine_Training_Data,[],2)).^2/Nsec; 
  
PCA_features_Training = []; 
PCA_features_Training = []; 
New_slice = []; 
Q = 15; 
for row = 1:1:100 
    New_slice(:,:) = 

PSD_Train(row,:,:);%FFT_Combine_Training_data(row,:,:); 
    PCA_channel_Training = pca(New_slice); 
   [row_feature,col_feature] = size(PCA_channel_Training); 
    PCA_features_Training(row,:)=PCA_channel_Training(:); 
end 
  
Label_Training = Label_Training(:); 
  
for i = 1:1:100 
     
    Class_PCA_Training(i,:) = [Label_Training(i), 

PCA_features_Training(i,:)]; 
     
     
end 
  
%% Testing_data 
Test_data = Testing_Data; 
Test_class = label_testing; 
  
Fs = 512; 
Nsec=256; 
sigLength = length(Testing_Data); 
% n=0:sigLength-1;t=n/Fs; 
% FFT_Combine_Test_data = abs(fft(Testing_Data,[],2)).^2/Nsec; 
% FFT_Combine_Testing_data_plot = mean(FFT_Combine_Test_data); 
  
New_slice = []; 
  
for row = 1:1:60 
    New_slice(:,:) = PSD_Test(row,:,:);%FFT_Combine_Test_data(row,:,:); 
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    PCA_channel_Testing = pca(New_slice); 
   [row_feature,col_feature] = size(PCA_channel_Testing); 
    PCA_features_Testing(row,:)=PCA_channel_Testing(:); 
end 
Label_Testing= label_testing'; 
for i = 1:1:60 
    Class_PCA_Test(i,:) = [Label_Testing(i), PCA_features_Testing(i,:)];    
end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for i=1:10 
    PCA_features_Training=PSD_Train(:,1:(i*100),:); 
    PCA_features_Testing=PSD_Test(:,1:(i*100),:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[c,a,b] = size(PCA_features_Training(1,:,:)); 
Training_Data = reshape(PCA_features_Training,100,a*b); 
Testing_Data = reshape(PCA_features_Testing,60,a*b); 
cSweepValues=logspace(-3,0,100);%;linspace(0.012,0.015,1000); 
  
csvwrite('Class_PCA_Training.csv',[Label_Training Training_Data]) 
csvwrite('Class_PCA_Test.csv',[Label_Testing Testing_Data]); 
  
[ MaxAccuracy_Line_ELM,MaxCVal_Line_ELM,svm_struct_Line_ELM ] = 

CrossValidation( [Training_Data Label_Training],5,cSweepValues,'ELM', 

'lin_kernel'); 
[ MaxAccuracy_Poly_ELM,MaxCVal_Poly_ELM,svm_struct_Poly_ELM ] = 

CrossValidation( [Training_Data Label_Training],5,cSweepValues,'ELM', 

'poly_kernel'); 
[ 

MaxAccuracy_Line_ELM,MaxCVal_Line_ELM,i;[MaxAccuracy_Poly_ELM,MaxCVal_P

oly_ELM,i]] 
end 
  
  
% i = 1; 
% for c_val= [1:10:1000]./100%1:5:500 
%      
%      
%     c(i) = c_val; 
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%     n = 1; 
%      for K_pa = 1:10:100 
%         [TrainingTime, TestingTime,TrainingAccuracy(n), 

TestingAccuracy(n)] = 

elm_kernel('Class_PCA_Training.csv','Class_PCA_Test.csv', 1, c_val, 

'lin_kernel',Mean_Training); 
%     end 
%     Accuracy(i) = TestingAccuracy; 
%     i = 1+i; 
% end 
% %  
%     figure 
%     plot(c,Accuracy) 
%    
%  
% c = []; 
% Accuracy = []; 
% i = 1 
% for c_val=logspace(-5,-3,0) 
%      
%      
%     c(i) = c_val 
%     n = 1; 
%     %for K_pa = 1:10:100 
%         [TrainingTime, TestingTime,TrainingAccuracy, TestingAccuracy] = 

elm_kernel('Class_PCA_Training.csv','Class_PCA_Test.csv', 1, c_val, 

'poly_kernel',100); 
%     %end 
%     Accuracy = max(TestingAccuracy); 
%     i = 1+i; 
% end 
  
%%%%%%###################################### 
% Using freq components as the features instead of the PCA outputs 
% FFT_Combine_Training_data=FFT_Combine_Training_data(:,1:1000,:); 
% FFT_Combine_Test_data=FFT_Combine_Test_data(:,1:1000,:); 
% PCA_features_Training=reshape(FFT_Combine_Training_data,100,1000*15); 
% PCA_features_Testing=reshape(FFT_Combine_Test_data,60,1000*15); 
%%%%%%###################################### 
  
%Combine_Training_Data=Combine_Training_Data 
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% PCA_features_Training=[]; 
% PCA_features_Testing=[]; 
% for i=1:15 
%     PCA_features_Training=[PCA_features_Training 

Combine_Training_Data(:,:,i)]; 
%     PCA_features_Testing=[PCA_features_Testing Test_data(:,:,i)]; 
% end 
%%%%%%###################################### 
%  PCA_features_Training=PSD_Train; 
%  PCA_features_Testing=PSD_Test; 
%%%%%%###################################### 
  
%  
%% SVM 
clear C_val Accuracy_Training Accuracy_Testing; 
 n = 1; 
for i=1:10 
    PCA_features_Training=PSD_Train(:,1:(i*100),:); 
    PCA_features_Testing=PSD_Test(:,1:(i*100),:); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
[c,a,b] = size(PCA_features_Training(1,:,:)); 
Training_Data = reshape(PCA_features_Training,100,a*b); 
Testing_Data = reshape(PCA_features_Testing,60,a*b); 
cSweepValues=logspace(-3,0,100);%;linspace(0.012,0.015,1000); 
  
csvwrite('Class_PCA_Training.csv',[Label_Training Training_Data]) 
csvwrite('Class_PCA_Test.csv',[Label_Testing Testing_Data]); 
[ MaxAccuracy_Line,MaxCVal_Line,svm_struct_Line ] = CrossValidation( 

[Training_Data Label_Training],5,cSweepValues,'SVM', 'linear'); 
%[ MaxAccuracy_Quad,MaxCVal_Quad,svm_struct_Quad ] = CrossValidation( 

[Training_Data Label_Training],5,cSweepValues,'SVM', 'quadratic'); 
[ MaxAccuracy_Poly,MaxCVal_Poly,svm_struct_Poly ] = CrossValidation( 

[Training_Data Label_Training],5,cSweepValues,'SVM', 'polynomial'); 
  
Group_Testing = svmclassify(svm_struct_Line,Testing_Data);%(1:20,:));  
Correct_Classification_Testing = (Group_Testing==Label_Testing);%(1:20)); 
Accuracy_Testing_Line_SVM = (sum(Correct_Classification_Testing))/60;%20; 
  
 
Group_Testing_2 = svmclassify(svm_struct_Poly,Testing_Data);%(1:20,:));  
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Correct_Classification_Testing_2 = 

(Group_Testing==Label_Testing);%(1:20)); 
Accuracy_Testing_Poly_SVM = 

(sum(Correct_Classification_Testing_2))/60;%20; 
  
result(i,:) = 

[MaxCVal_Line,Accuracy_Testing_Line_SVM,MaxCVal_Poly,Accuracy_Testing_P

oly_SVM] 
  
end 
  
function [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy,TY] 

= elm_kernel(TrainingData_File, TestingData_File, Elm_Type, 

Regularization_coefficient, Kernel_type, Kernel_para) 
  
% Usage: elm(TrainingData_File, TestingData_File, Elm_Type, 

NumberofHiddenNeurons, ActivationFunction) 
% OR:    [TrainingTime, TestingTime, TrainingAccuracy, TestingAccuracy] = 

elm(TrainingData_File, TestingData_File, Elm_Type, NumberofHiddenNeurons, 

ActivationFunction) 
% 
% Input: 
% TrainingData_File           - Filename of training data set 
% TestingData_File            - Filename of testing data set 
% Elm_Type                    - 0 for regression; 1 for (both binary and 

multi-classes) classification 
% Regularization_coefficient  - Regularization coefficient C 
% Kernel_type                 - Type of Kernels: 
%                                   'RBF_kernel' for RBF Kernel 
%                                   'lin_kernel' for Linear Kernel 
%                                   'poly_kernel' for Polynomial Kernel 
%                                   'wav_kernel' for Wavelet Kernel 
%Kernel_para                  - A number or vector of Kernel Parameters. eg. 

1, [0.1,10]... 
% Output:  
% TrainingTime                - Time (seconds) spent on training ELM 
% TestingTime                 - Time (seconds) spent on predicting ALL testing 

data 
% TrainingAccuracy            - Training accuracy:  
%                               RMSE for regression or correct classification 

rate for classification 
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% TestingAccuracy             - Testing accuracy:  
%                               RMSE for regression or correct classification 

rate for classification 
% 
% MULTI-CLASSE CLASSIFICATION: NUMBER OF OUTPUT NEURONS WILL BE AUTOMATICALLY 

SET EQUAL TO NUMBER OF CLASSES 
% FOR EXAMPLE, if there are 7 classes in all, there will have 7 output 
% neurons; neuron 5 has the highest output means input belongs to 5-th class 
% 
% Sample1 regression: [TrainingTime, TestingTime, TrainingAccuracy, 

TestingAccuracy] = elm_kernel('sinc_train', 'sinc_test', 0, 1, 

''RBF_kernel',100) 
% Sample2 classification: elm_kernel('diabetes_train', 'diabetes_test', 1, 

1, 'RBF_kernel',100) 
% 
    %%%%    Authors:    MR HONG-MING ZHOU AND DR GUANG-BIN HUANG 
    %%%%    NANYANG TECHNOLOGICAL UNIVERSITY, SINGAPORE 
    %%%%    EMAIL:      EGBHUANG@NTU.EDU.SG; GBHUANG@IEEE.ORG 
    %%%%    WEBSITE:    http://www.ntu.edu.sg/eee/icis/cv/egbhuang.htm 
    %%%%    DATE:       MARCH 2012 
  
%%%%%%%%%%% Macro definition 
REGRESSION=0; 
CLASSIFIER=1; 
  
%%%%%%%%%%% Load training dataset 
train_data=load(TrainingData_File); 
T=train_data(:,1)'; 
P=train_data(:,2:size(train_data,2))'; 
clear train_data;                                   %   Release raw training 

data array 
  
%%%%%%%%%%% Load testing dataset 
test_data=load(TestingData_File); 
TV.T=test_data(:,1)'; 
TV.P=test_data(:,2:size(test_data,2))'; 
clear test_data;                                    %   Release raw testing data 

array 
  
C = Regularization_coefficient; 
NumberofTrainingData=size(P,2); 
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NumberofTestingData=size(TV.P,2); 
  
if Elm_Type~=REGRESSION 
    %%%%%%%%%%%% Preprocessing the data of classification 
    sorted_target=sort(cat(2,T,TV.T),2); 
    label=zeros(1,1);                               %   Find and save in 'label' 

class label from training and testing data sets 
    label(1,1)=sorted_target(1,1); 
    j=1; 
    for i = 2:(NumberofTrainingData+NumberofTestingData) 
        if sorted_target(1,i) ~= label(1,j) 
            j=j+1; 
            label(1,j) = sorted_target(1,i); 
        end 
    end 
    number_class=j; 
    NumberofOutputNeurons=number_class; 
     
    %%%%%%%%%% Processing the targets of training 
    temp_T=zeros(NumberofOutputNeurons, NumberofTrainingData); 
    for i = 1:NumberofTrainingData 
        for j = 1:number_class 
            if label(1,j) == T(1,i) 
                break;  
            end 
        end 
        temp_T(j,i)=1; 
    end 
    T=temp_T*2-1; 
  
    %%%%%%%%%% Processing the targets of testing 
    temp_TV_T=zeros(NumberofOutputNeurons, NumberofTestingData); 
    for i = 1:NumberofTestingData 
        for j = 1:number_class 
            if label(1,j) == TV.T(1,i) 
                break;  
            end 
        end 
        temp_TV_T(j,i)=1; 
    end 
    TV.T=temp_TV_T*2-1; 
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                                              %   end if of Elm_Type 
end 
  
%%%%%%%%%%% Training Phase %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
tic; 
n = size(T,2); 
%Omega_train = kernel_matrix(P',Kernel_type, Kernel_para); 
Omega_train = kernel_matrix(P',Kernel_type, Kernel_para); 
OutputWeight=((Omega_train+speye(n)/C)\(T')); 
TrainingTime=toc; 
  
%%%%%%%%%%% Calculate the training output 
Y=(Omega_train * OutputWeight)';                             %   Y: the actual 

output of the training data 
  
%%%%%%%%%%% Calculate the output of testing input 
tic; 
Omega_test = kernel_matrix(P',Kernel_type, Kernel_para,TV.P'); 
TY=(Omega_test' * OutputWeight)';                            %   TY: the actual 

output of the testing data 
TestingTime=toc; 
clear C 
clear TV.P 
%%%%%%%%%% Calculate training & testing classification accuracy 
  
if Elm_Type == REGRESSION 
%%%%%%%%%% Calculate training & testing accuracy (RMSE) for regression case 
    TrainingAccuracy=sqrt(mse(T - Y)); 
    TestingAccuracy=sqrt(mse(TV.T - TY))  ;          
end 
  
if Elm_Type == CLASSIFIER 
%%%%%%%%%% Calculate training & testing classification accuracy 
    MissClassificationRate_Training=0; 
    MissClassificationRate_Testing=0; 
  
    for i = 1 : size(T, 2) 
        [x, label_index_expected]=max(T(:,i)); 
        [x, label_index_actual]=max(Y(:,i)); 
        if label_index_actual~=label_index_expected 
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MissClassificationRate_Training=MissClassificationRate_Training+1; 
        end 
    end 
    TrainingAccuracy=1-MissClassificationRate_Training/size(T,2)  ; 
    for i = 1 : size(TV.T, 2) 
        [x, label_index_expected]=max(TV.T(:,i)); 
        [x, label_index_actual]=max(TY(:,i)); 
        if label_index_actual~=label_index_expected 
            

MissClassificationRate_Testing=MissClassificationRate_Testing+1; 
        end 
    end 
    TestingAccuracy=1-MissClassificationRate_Testing/size(TV.T,2) ;  
end 
     
     
%%%%%%%%%%%%%%%%%% Kernel Matrix 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
function omega = kernel_matrix(Xtrain,kernel_type, kernel_pars,Xt) 
  
nb_data = size(Xtrain,1); 
  
  
if strcmp(kernel_type,'RBF_kernel'), 
    if nargin<4, 
        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 
        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 
        omega = exp(-omega./kernel_pars(1)); 
    else 
        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 
        XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 
        omega = XXh1+XXh2' - 2*Xtrain*Xt'; 
        omega = exp(-omega./kernel_pars(1)); 
    end 
     
elseif strcmp(kernel_type,'lin_kernel') 
    if nargin<4, 
        omega = Xtrain*Xtrain'; 
    else 
        omega = Xtrain*Xt'; 
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    end 
     
elseif strcmp(kernel_type,'poly_kernel') 
    if nargin<4, 
        omega = (Xtrain*Xtrain'+kernel_pars(1)).^kernel_pars(2); 
    else 
        omega = (Xtrain*Xt'+kernel_pars(1)).^kernel_pars(2); 
    end 
     
elseif strcmp(kernel_type,'wav_kernel') 
    if nargin<4, 
        XXh = sum(Xtrain.^2,2)*ones(1,nb_data); 
        omega = XXh+XXh'-2*(Xtrain*Xtrain'); 
         
        XXh1 = sum(Xtrain,2)*ones(1,nb_data); 
        omega1 = XXh1-XXh1'; 
        omega = 

cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1))

; 
         
    else 
        XXh1 = sum(Xtrain.^2,2)*ones(1,size(Xt,1)); 
        XXh2 = sum(Xt.^2,2)*ones(1,nb_data); 
        omega = XXh1+XXh2' - 2*(Xtrain*Xt'); 
         
        XXh11 = sum(Xtrain,2)*ones(1,size(Xt,1)); 
        XXh22 = sum(Xt,2)*ones(1,nb_data); 
        omega1 = XXh11-XXh22'; 
         
        omega = 

cos(kernel_pars(3)*omega1./kernel_pars(2)).*exp(-omega./kernel_pars(1))

; 
    end 
    clear omega 
end 
 
function [ MaxAccuracy,MaxCVal,MachineLearningsModel ] = CrossValidation( 

TotalData,NumberOfSections,cSweepValues,MachineLearningAlgorithm, 

KernelFunction) 
%UNTITLED Summary of this function goes here 
%   TotalData - [TrainingData, TrainingLabels] 



47 
 

%   NumberOfSections - Number of sections to break TotalData into to 
%                      perform Leave-One-Out cross- validation 
%   cSweepValues - The vector of values that c will sweep when searching 
%                  for the best c value 
%   MachineLearningAlgorithm - Either 'SVM' to perform the learning using 
%                              SVM or 'ELM' to perform the learning using 
%                              ELM. 
%   KernelFunction -  
%                       For SVM:     
%                       For ELM:     'lin_kernel' 
    [rw, cm]=size(TotalData); 
  
    for DataIdx=1:NumberOfSections  
        StartIdx=(rw/NumberOfSections)*(DataIdx-1)+1; 
        StopIdx=(rw/NumberOfSections)*(DataIdx); 
         
        TestDatasetIdx=StartIdx:StopIdx; 
        TrainDatasetIdx=setdiff(1:rw,TestDatasetIdx); 
        TrainDataset=TotalData(TrainDatasetIdx,:); 
        TestDataset=TotalData(TestDatasetIdx,:); 
        [rw_train, cm_test]=size(TrainDataset); 
        [rw_test,cm_train]=size(TestDataset); 
         
        tmpTrainFile='Class_PCA_Training.csv'; 
        tmpTestFile='Class_PCA_Test.csv'; 
         
        Mean_Training = mean(TrainDataset); 
        [row_Training,col_Training]= size(TrainDataset); 
        Mean_Training = repmat(Mean_Training,row_Training,1); 
         
        %Perform c sweep here 
        for c= cSweepValues 
            n=find(cSweepValues==c); 
            if strcmp(MachineLearningAlgorithm,'SVM')                 
                MachineLearningsModel = 

svmtrain(TrainDataset(:,1:cm_train-1),TrainDataset(:,cm_train),'kernel_

function',KernelFunction,'boxconstraint',c,'method','LS');  
                Group_Testing = 

svmclassify(MachineLearningsModel,TestDataset(:,1:cm_test-1));  
                Correct_Classification_Testing = 

(Group_Testing==TestDataset(:,cm_test)); 



48 
 

                Accuracy(n) = 

(sum(Correct_Classification_Testing))/rw_test; 
            elseif strcmp(MachineLearningAlgorithm,'ELM') 
                [TrainingTime, TestingTime,TestingAccuracy(n), Accuracy(n)] 

= elm_kernel(tmpTrainFile,tmpTestFile, 1, c, 

KernelFunction,Mean_Training); 
                MachineLearningsModel=-1; 
            end 
        end     
        PeakAccuracy(DataIdx)=max(Accuracy); 
        

PeakCVal(DataIdx)=min(cSweepValues(Accuracy==PeakAccuracy(DataIdx))); 
    end 
    MaxAccuracy=max(PeakAccuracy); 
    MaxCVal=min(PeakCVal(MaxAccuracy==PeakAccuracy)); 
     
end 
  
 
 


