Approaching the intrinsic band gap in suspended high-mobility graphene nanoribbons

Ming-Wei Lin,1 Cheng Ling,1 Luis A. Agapito,2 Nicholas Kioussis,2 Yiyang Zhang,1,3 Mark Ming-Cheng Cheng,3 Wei L. Wang,4 Efthimios Kaxiras,4 and Zhixian Zhou1,*

1Department of Physics and Astronomy, Wayne State University, Detroit, Michigan 48201, USA
2Department of Physics, California State University, Northridge, California 91330, USA
3Department of Electrical and Computer Engineering, Wayne State University, Detroit, Michigan 48202, USA
4Department of Physics and School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 26 May 2011; revised manuscript received 31 July 2011; published 6 September 2011)

We report electrical transport measurements on a suspended ultra-low-disorder graphene nanoribbon (GNR) with nearly atomically smooth edges that reveal a high mobility exceeding 3000 cm² V⁻¹ s⁻¹ and an intrinsic band gap. The experimentally derived band gap is in quantitative agreement with the results of our electronic structure calculations on chiral GNRs with comparable width taking into account the electron-electron interactions, indicating that the origin of the band gap in nonarmchair GNRs is partially due to the magnetic zigzag edges.

DOI: 10.1103/PhysRevB.84.125411 PACS number(s): 81.05.ue, 73.63.—b, 72.80.Vp, 73.22.Pr

I. INTRODUCTION

Graphene is a single atomic layer of threefold coordinated π-bonded carbon atoms that exhibits exceptionally high carrier mobility, offering the tantalizing possibility of all-carbon electronics.1 As an infinite two-dimensional solid, graphene is a zero-gap semiconductor with finite minimum conductivity, which poses a major problem for conventional digital logic applications. To overcome this bottleneck, many theoretical and experimental studies have focused on engineering an energy gap in graphene. A tunable band gap up to 250 meV can be induced by a perpendicular electric field in bilayer graphene.2 A band gap can also be created by strain3 or by chemical modification of graphene.4 More generally, a band gap can be created by spatial confinement and edge effects.5 Louie et al.,6 showed theoretically that graphene nanoribbons (GNRs) with pure armchair- or zigzag-shaped edges always have a nonzero and direct band gap, the value of which depends on the ribbon crystallographic orientation and edge structure. In lithographically patterned GNRs with varying widths and crystallographic orientations, electrical transport studies established the presence of a width-dependent transport gap.7 Several possible mechanisms have been proposed to explain the transport gap observed in GNR-based field-effect transistors (GNR-FETs), including renormalized lateral confinement due to localized edge states,7,8 percolation-driven metal insulator transition caused by charged impurities,9 quasi-one-dimensional Anderson localization,10 and Coulomb blockade due to edge roughness.11 More recent experimental studies on disordered GNRs further indicate that charge transport in the conduction gap of GNRs is likely dominated by hopping through localized states12 or isolated charge puddles acting as quantum dots.13 A significant increase in mobility has been observed in high-quality GNRs with nearly atomically smooth edges partially due to reduced edge scattering.14 However, a large discrepancy remains between the band gap extracted from these high-quality GNRs and that observed in other reports,15 even though the GNRs were synthesized using a similar approach. This discrepancy may be attributed to different edge structures but could also be due to extrinsic conduction through defects and impurity states within the band gap.2,16

In this paper, we report the first variable-temperature electrical transport study of suspended ultra-low-disorder GNRs with nearly atomically smooth edges. Suspension of the GNRs not only removes the substrate influence but also allows a thorough removal of impurities, including those trapped at the interface between the GNR and the substrate, leading to a substantial increase of the carrier mobility. We observe high-mobility values exceeding 3000 cm² V⁻¹ s⁻¹ in GNRs of width ~20 nm, the highest-mobility value reported to date on GNRs of similar dimensions. Furthermore, we demonstrate that the activation gap extracted from the simple activation behavior of the minimum conductance and residual carrier density at the charge neutrality point approaches the intrinsic band gap in ultra-low-disorder GNRs. In contrast to the results reported here, in typical transport measurements in GNRs, the presence of non-negligible amount of disorder obscures the observation of the intrinsic band gap. Moreover, the size of the band gap derived from the transport measurements is in quantitative agreement with the results of our complementary tight-binding (TB) calculations for a wide range of chiral angles characterizing the GNR structure, supporting our proposed explanation, namely, that the underlying electronic origin of band gap enhancement is the magnetic nature of electronic states associated with zigzag edges.

II. EXPERIMENTAL DETAILS

The GNRs were produced by sonicing mildly oxidized multiwall carbon nanotubes (MWNT) in a 1,2-dichloroethane (DCE) solution of poly(m-phenylenevinylene-co 2,5-diy octcyc-p-phenylenevinylene) (PmPV), where the PmPV is used as a surfactant to stabilize the unzipped GNRs in solution.14 The solution was then centrifuged at 1 5000 rpm (Fisher Scientific Marathon 26kmr Centrifuge) for 1 h to remove aggregates and some of the remaining MWNTs, and a supernatant containing nanoribbons and remaining MWNTs was obtained. Next, the GNR samples from the supernatant were deposited on degenerately doped Si substracts with 290 nm of thermal oxide. Noncontact-mode atomic force microscopy (AFM; Park System XE-70) measurements were used to locate individual GNRs with respect to the
prefabricated Au alignment marks and to characterize their thickness, width, and length. The GNRs produced from this method mostly consist of one to three layers. To determine the width, we have taken into account the AFM tip dilation effect (leading to artificial width increase) based on the estimated tip radius provided by the tip manufacturer.

FET devices consisting of individual GNRs are fabricated on Si substrates with 290 nm of thermal oxide using standard electron beam lithography and thermal deposition of 0.5 nm of Cr and 50 nm of Au, where the Si substrate is used as a back gate. Suspension of the GNRs in FET devices is achieved by placing a small drop of 1:6 buffered hydrofluoric acid (HF) on top of the GNR device for 90 s to etch way approximately 150 nm of the SiO2 underneath the ribbons. The devices are annealed in vacuum at 600 °C for 10 min to clean the suspended ribbons and improve the electrical contacts before transferred to a Lakeshore Cryogenics vacuum probe station for further removing adsorbed impurities by current annealing and subsequent transport measurements in high vacuum (∼10−6 Torr). The residual impurities on GNRs are gradually removed by repeatedly passing a large current through the ribbon; the final amount of impurities of the GNRs depends both on initial amount and the degree of current annealing.

A semiconductor parameter analyzer (Keithley 4200) was used to apply the annealing current and to measure the device characteristics for 4.3 < T < 300 K. We repeatedly applied gradually increasing annealing current and subsequently carried out the electrical measurements in situ after every consecutive step. The degenerately doped Si substrate was used as a back gate. To avoid possible collapsing of the suspended GNRs, the back-gate voltage \(V_{gb} \) was limited to the range −15 V < \(V_{gb} < +15 \) V during the electrical measurements.

III. RESULTS AND DISCUSSIONS

We have fabricated over 20 suspended GNR-FET devices from GNRs synthesized by unzipping high-quality multwall carbon nanotubes. A schematic diagram and an AFM image of a typical suspended GNR device are shown in the right and left insets of Fig. 1, respectively. As most of the devices were eventually damaged during the \textit{in situ} current annealing (likely caused by structural reconstruction at the defect sites), we report detailed electrical transport results on three high-quality samples (samples A, C, and D) characterized by extremely low impurities, nearly identical width (\(d \sim 1.4 \) nm), and both have the same length \(L \sim 600 \) nm. Defects, such as adsorbed charged impurities and structural imperfection, are expected to generate random potential fluctuations in the GNRs, which induce electron-hole puddles close to the CNP. As a result, the effect of gate voltage near the CNP is largely limited to the redistribution of charge carriers between electrons and holes without changing the overall carrier density. Therefore, a higher tunability of charge carriers near the CNP (and hence a much sharper resistance peak) is expected in samples with lower disorder.

We next focus on the influence of disorder on the carrier mobility and band gap of GNRs. To extract accurate values for these quantities, we subtract the contact resistance from the total resistance using the following model to fit the \(R(V_g) \) data:

\[
R_{\text{total}} = R_{\text{contact}} + R_{\text{channel}} = R_{\text{contact}} + \frac{L/W}{n \mu e C_{GNR}}
\]

Here, \(R_{\text{contact}} \) and \(R_{\text{channel}} \) are the metal and GNR contact resistance and GNR channel resistance, respectively; \(L \) and \(W \) are the channel length and width, respectively; \(\mu \) is the carrier mobility, and the carrier concentration \(n \), can, in turn, be determined by the expression,

\[
n = \sqrt{n_o^2 + \left(\frac{C_{GNR}(V_{gb} - V_{\text{CNP}})}{e} \right)^2},
\]

with \(n_o \) being the residual carrier concentration at the maximum resistance, \(C_{GNR} \) the back-gate capacitance (estimated to be \(\sim 3 \times 10^{-8} \) F/cm2 based on the capacitance of GNR-FET devices with similar ribbon width and taking into account the

![FIG. 1. (Color online) Resistance versus gate voltage for (a) sample A (lower-disorder) and (b) sample B, measured at various temperatures. The solid lines are the model fitting. The two samples belong to a single GNR with uniform width \(W \sim 20 \) nm and thickness \(d \sim 1.4 \) nm, and both have the same length \(L \sim 600 \) nm. Insets: schematic illustration of a GNR-FET consisting of a suspended GNR (right) and the contact electrodes and an AFM image of a GNR suspended by Au electrodes (left).](image-url)
reduced dielectric constant due to the removal of ~ 150 nm of thermal oxide underneath the ribbon, and V_{CNP} is the gate voltage at the charge neutrality point. As shown in Fig. 1, this model fits our experimental data reasonably well, especially in the hole branch ($V_g < V_{\text{CNP}}$). The slightly lower conductance and minor deviation from the fitting at the electron side is likely due to the residual surface impurities and/or electrode metal doping. From the fitting, a contact resistance of $30 \sim 70$ k\ohm is extracted, which is comparable to the value determined by four-terminal measurements of similar GNRs devices (data not shown). Although this model assumes a gate-independent contact resistance, we believe this is a reasonable assumption for our devices given the nearly ohmic contact (except at low temperatures and near the CNP) and reasonably good fit of the data to the model, which is also consistent with the findings of Russo et al.

Figure 2 shows the mobility values derived from the fit as a function of temperature for samples A and B. The mobility of sample B has relatively weak temperature dependence and reaches ~ 1500 cm2 V$^{-1}$ s$^{-1}$, in excellent agreement with that derived from substrate-supported GNRs synthesized using the same method. Remarkably, the mobility of sample A increases from ~ 2000 cm2 V$^{-1}$ s$^{-1}$ to over 3000 cm2 V$^{-1}$ s$^{-1}$ as the temperature is lowered from 295 K to 150 K, suggesting that the mobility in this temperature range is largely limited by acoustic phonon scattering. The peak mobility in sample A is the highest reported to date for GNRs of comparable widths, which can be attributed to the nearly atomically smooth edges and extremely low disorder. Below 150 K, the mobility decreases with decreasing temperature, suggesting that the presence of a small amount of remaining disorder can play an increasingly important role at low carrier density (see detailed discussion below). Equally high mobility is also observed in sample C (data not shown). From the transfer characteristics, the field-effect mobility of sample A in the hole region can be estimated as

$$
\mu = \left[\Delta G \times (L/W) \right]/(C_g \Delta V_g),
$$

where G is the low-bias conductance of the sample, and the other parameters are defined in Eqs. (1) and (2). The field-effect hole mobility as a function of temperature for sample A is shown as “hollow squares” in Fig. 2, in reasonable agreement with the mobility values derived from the other method.

In an ideal intrinsic semiconductor without impurities, the conductance at the CNP, G_{min}, is expected to be dominated by thermally activated carriers and to vary with temperature as $G_{\text{min}} \propto \exp(-E_g/2k_B T)$, where k_B is the Boltzmann constant, and E_g is the activation energy for electron excitation that corresponds to the band gap. However, other mechanisms such as one-dimensional (1D) nearest-neighbor hopping (NNH) through localized states in disordered GNRs may also lead to simple activated behavior of G_{min}. To confirm that the activation energy derived from the temperature dependence of G_{min} is indeed the intrinsic band gap, it is necessary to show the same simple activation temperature dependence of the minimum carrier density (n_0) at the CNP (to first-order approximation): $n_0 \propto \exp(-E_g/2k_B T)$. As shown in the Arrhenius plots in Figs. (3(a) and 3(b), the G_{min} and n_0 data from samples A and C (the latter being yet another low-disorder sample with $W \sim 37$ nm, $d \sim 2$ nm, and $L \sim 700$ nm) fit the simple activation model fairly well with a consistent activation energy gap of $E_g/(A) \approx 99$ meV (from G_{min}) and 106 meV (from n_0) for sample A, and $E_g/(C) \approx 55$ meV (from n_0) and 58 meV (from G_{min}) for sample C, respectively. Simple activation behavior is also observed in the residual carrier density of sample D ($W \sim 23$ nm and $d \sim 1.6$ nm), yielding a gap of 96 meV (data not shown). Furthermore, comparison of the E_g values of samples A, C, and D demonstrates that the band gap in our ultra-low-disorder samples is approximately inversely proportional to the ribbon width, consistent with theoretical predictions. These consistent results on multiple ultra-low-disorder GNR-FET devices strongly suggest that the intrinsic band gap is approached.

On the other hand, G_{min} and n_0 in sample B exhibit a much weaker temperature dependence than in samples A or C; forcing the simple activation law fit through the data of sample
B yields a much smaller activation energy and corresponding band gap of \(E_g \sim 10 \) meV from both the \(G_{\min} \) and \(n_0 \) data. The large discrepancy between samples A and B is quite puzzling, since they are simply two different regions of the same GNR with highly uniform width and thickness and likely having the same nominal edge structure. The primary known difference between them is that sample A has lower disorder than sample B due to the spatial variation of disorder (such as remaining adsorbed impurities and structural defects, which could be inherent in the original carbon nanotubes and/or introduced during the conversion from carbon nanotubes to GNRs). Given the small dimensions of the devices, even a small amount of disorder may play a significant role in their transport properties. Additionally, Au contact doping may also vary from device to device. However, electrode doping is unlikely to be the dominant mechanism given that samples A and B not only have nominally identical contact structure and layout but also share a common electrode. Therefore, the weaker temperature dependence of \(G_{\min} \) and \(n_0 \) observed in sample B is likely to be due to extrinsic conduction through defects and carrier doping from charged impurities, similar to the bilayer graphene.\(^{2,16}\) An alternative explanation is that the presence of disorder weakens the on-site Coulomb interaction, which is largely responsible for the opening of a gap in the band structure of GNRs with zigzag edges.\(^{28}\) Zigzag edges have indeed been observed by scanning tunneling microscopy (STM) in GNRs synthesized using the same method;\(^{29}\) the smaller values of the band gap found in these studies can be attributed to the reduced on-site Coulomb repulsion due to screening from the gold substrate.\(^{28}\) It is also worth noting that the data for samples A, C (Fig. 3), and D (data not shown) start to deviate from the simple activation behavior below 100 K, and the fit eventually breaks down below 77 K. The breakdown of the simple activated behavior at low temperatures can be attributed to the extremely low residual carrier density: the value \(n_0 \sim 7 \times 10^9 \) cm\(^{-2}\) at 77 K observed in sample A corresponds to only “one electron” in the device channel. Therefore, the residual carrier density (thus also the minimum conductivity) below 77 K is no longer determined by thermal activation.

In order to further verify that the simple activation gap observed in our ultraclean GNRs is the intrinsic band gap (due to the extended states carrying current via thermal activation across the intrinsic band gap), we compare the activation gap energy with the energy associated with the transport gap (\(\Delta V_g \)). The transport gap is correlated to an energy gap in the single-particle spectrum given by

\[
\Delta_m = \frac{h}{2\pi} v_F \sqrt{\frac{2\pi}{e} C_g \Delta V_g}, \tag{4}
\]

where \(v_F = 10^6 \) m/s is the Fermi velocity of graphene, and \(C_g \) is the capacitive coupling of the GNR to the back gate. In disordered GNRs, where the electrical transport is dominated by the hopping between localized states, \(\Delta_m \) is expected to be substantially larger than \(E_g \).\(^{12}\) In contrast, in highly ordered GNRs with very low impurity concentration, \(\Delta_m \) should be comparable to the intrinsic band gap.\(^{15}\) \(\Delta V_g \) in this study is defined as the width of the back-gate voltage region determined by a sudden increase of the slope in the \(G(V_g) \) curve close to the CNP. As shown in Fig. 4(a), the \(G(V_g) \) curve for sample A measured at 30 K yields a \(\Delta V_g \sim 1.6 \) V, and hence \(\Delta_m \sim 90 \) meV, in reasonable agreement with the values of \(E_g \) obtained from \(G_{\min} \) and \(n_0 \), indicating that the transport gap is associated with the large intrinsic band gap. The linear dependence of \(G \) on gate voltage \(V_g \) at high temperatures [Fig. 4(a), where the contact resistance is excluded] suggests that the field-effect mobility remains nearly constant as the carrier density changes and that the charge transport is limited by long-range scattering.\(^{30}\)

The transport gap can be alternatively probed by measuring the current-voltage (\(I-V \)) characteristics at various gate voltages. Figure 4(b) shows representative \(I-V \) curves of sample A measured at 4.3 K. At gate voltages away from the CNP, the \(I-V \) curves are essentially linear. Near the CNP (\(V_g = 1 \) V), however, the \(I-V \) characteristic becomes strongly nonlinear when the chemical potential of the GNR is within the transport gap. A nonlinear gap can be defined by the distances between two interception points made by fitting straight lines to both the low conductance region at low bias voltage and the high conductance region at high bias voltage, as shown in Fig. 4(b). The nonlinear gap \((e\Delta V_{\text{nl}}) \) for sample A is approximately 60 meV, slightly smaller than the activation gap or the energy associated with the transport gap, which can be attributed to the fact that the gate voltage at which the nonlinear gap is measured slightly differs from the exact CNP. Unlike in highly disordered GNRs, where the presence of localized states and the formation of isolated charge puddles (which act as quantum dots) complicates the interpretation of the nonlinear gap in their \(I-V \) characteristics,\(^{12,13}\) the nonlinear gap in our low-disorder GNRs may be approximated as the intrinsic band gap for \(V_g = V_{\text{CNP}} \).\(^{7}\)

In order to elucidate the underlying electronic origin of the high band gap value in ultra-low-disorder GNRs, we carried out TB calculations in model GNRs of comparable width \((\sim 20 \) nm). Ultraclean GNRs with ultrasmooth edges are expected to be highly crystallographic, and the measured intrinsic band gap should be comparable to the theoretical values that assume periodicity. Because of the lack of information on the chirality \((n,m) \) of our ribbons, we calculated GNRs of a

![Figure 4](link-to-figure)
magnetization 0.13 given by the radius size, with the largest radius corresponding to spin

in regions show the spatial distribution of spin-up (cyan) and spin-
cell used in the calculation is shown shaded in green. The zoom-
type CNT. The electronic structure calculations employ the

by the translational vector

wide range of chiral angles (θ), varied from θ = 0◦ (zigzag
GNR) to θ = 30◦ (armchair GNR) as shown in Fig. 5(a);
GNRs with intermediate chirality exhibit mixed edges (zigzag
and armchair) with dominant zigzag or armchair character as
θ → 0◦ or θ → 30◦, respectively.

As seen in Fig. 5(a), the GNRs structures used in the
calculations are derived from unzipping a CNT along the chiral
unit-cell translational vector \(\vec{O}A = (n,m) \) that determines the
chiral angle θ. The translational vector in turn restricts the
width of the ribbons to discrete values that are the multiples
of \(|\vec{O}B| \), which is the minimum circumference of a \((n,m)\)-
type CNT. The electronic structure calculations employ the
single-band Hubbard model:

\[
\hat{H} = -t \sum_{i,j,\sigma} (\hat{c}_{i\sigma}^\dagger \hat{c}_{j\sigma} + h.c.) + U \sum_i \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} \tag{5}
\]

treated within the mean-field approximation. Here, \(t \) is the
hopping matrix element between nearest-neighbor sites \(i \) and \(j \),
\(\hat{n}_{i\sigma} = \hat{c}_{i\sigma}^\dagger \hat{c}_{i\sigma} \) is the number operator on atom \(i \) with spin \(\sigma = \uparrow, \downarrow \), and \(U \) is the on-site Coulomb interaction. The choice of the \(t \) and \(U \) parameters is crucial to making comparisons between experimental and theoretical values for the band gap, which is proportional to \((\frac{2e}{\hbar}) \).

Furthermore, the values of \(U \) and \(t \) depend on the choice of the exchange-correlation functional used in
the density functional theory (DFT) calculations. We have used the \(ab \ initio \) parameters \([t = 3.2 \text{ eV} \text{ and } U = 2t]\) reported by
Pisani et al.\(^{31}\) derived from fitting the antiferromagnetic band
structure of zigzag GNRs using the fully nonlocal “hybrid”
functional (B3LYP) of DFT calculations, which includes a
contribution of Hartree-Fock exchange that compensates for
the electronic self-interaction. Previous studies have shown
that B3LYP is better suited than local, nonlocal, or even other
hybrid functionals to account for molecular magnetism.\(^{32}\)
These values are somewhat larger than those commonly
employed in the literature,\(^{33,34}\) which are derived from DFT
calculations employing local or nonlocal functionals. These
values are also more appropriate to our suspended GNR
samples that interact neither with a metallic substrate,\(^{29}\) which
reduces \(U \) through screening with the conduction electrons,
nor with oxide substrates (SiO\(_2\)), which have much higher
dielectric constant than air.

In the absence of electron-electron correlations \([U = 0 \text{ eV in Eq. (5)}]\), the systems are nonmagnetic. Interestingly,
we find that the carbon atoms in the zigzag chains in the
mixed-edge GNRs (even a single one per unit cell in the limit
when θ → 30◦) introduce nonbonding states whose origin
is topological frustration.\(^ {35}\) These nonbonding states form
dispersionless “flat” bands at the Fermi level and render the
systems gapless or metallic. For \(U = 0 \text{ eV} \), the band structure
and density of states for all our systems follow the same pattern
as for the \((n,m) = (4,2)\) GNR shown in Figs. 6(a) and 6(b)
(red curves). This is analogous to the predicted presence of
nonbonding states in randomly shaped 0-D graphene dots
that contain combined zigzag and armchair edges.\(^ {30}\)

Therefore, only “pure” armchair ribbons could sustain an energy band
gap, which is not of magnetic origin. When electron-electron
correlations are introduced \((U > 0 \text{ eV})\) local magnetism arises
along the edges of the ribbon, as seen in Fig. 5(b). Noticeably,
the magnetization is predominantly higher on the zigzag sites
than on armchair sites, where magnetism is quenched; this

trend for mixed-edge GNRs has been corroborated using

ab initio calculations [with the local-density approximation
(LDA)].\(^ {37}\) Also, the flat bands split, opening an energy gap at the
Fermi level (blue curves in Fig. 6).

Figure 6(c) shows the energy band gap and maximum spin
magnetization for ~20-nm-wide GNRs with crystallographic
orientations given by \(\theta = 0°, 6.59°, 8.95°, 19.11°, 23.41°, \) and
30°, corresponding to \((n,m) = (6,0), (7,1), (5,1), (4,2), (3,2),\)
and \((3,3)\), respectively. Magnetic pure zigzag and nonmagnetic
pure armchair GNRs exhibit similar band gaps of ~71 meV.

Interestingly, for all the mixed-edge GNRs (with \(0° < \theta < 30°\)),
the band gap varies between 71 meV and 128 meV,
in agreement with the experimentally determined band gap
for sample A, suggesting that the origin of the band gap for
mixed-edge GNRs is associated with the magnetism of the
zigzag edges. The increase of band gap in the zigzag-rich

FIG. 5. (Color online) (a) Unrolled projection of a \((n,m)\)-CNT
of minimum circumference \((|\vec{O}B|)\). The chiral angle θ is determined
by the translational vector \(\vec{O}A = (n,m) = (3,2) = 3 \hat{a}_1 + 2 \hat{a}_2 \).
(b) Cross-section of a \((3,2)\)-GNR with ~20 nm width. The periodic unit
cell used in the calculation is shown shaded in green. The zoom-
in regions show the spatial distribution of spin-up (cyan) and spin-
down (red) magnetization. The magnitude of the magnetization is
given by the radius size, with the largest radius corresponding to spin
magnetization 0.13 μB.
although a direct extrapolation is lacking. These \textit{ab initio} results corroborate our relatively large experimental band gap.

For the armchair case, extrapolated LDA results predict a maximum band gap of 80 meV,39 while the screened-exchange hybrid functional [Heyd-Scuseria-Ernzerhof (HSE)]41 and GW predict gaps of 14 meV42 and 22 meV,40 respectively, for a \textasciitilde 20-nm-wide GNR. Although these values are smaller than our armchair TB results, they support our primary hypothesis that a measured band gap of \textasciitilde 100 meV for a \textasciitilde 20-nm-wide GNR is likely due to the presence of spin-polarized zigzag edges and not due to the semiconducting nature (finite gap) of armchair edges.

Our calculations were performed on single-layer GNRs, while the GNRs used in our experiment may consist of more than one layer. Nevertheless, the experimental and the theoretical band gaps are still in good quantitative agreement. A likely scenario is that the experimentally derived band gap is an average of the contributions from individual layers that have comparable band gap values, which can be attributed to the combined effects of the relatively weak interlayer interactions between non-AB (Bernal)-stacked layers43 and the weak chirality dependence of the band gap. Furthermore, moderate tensile strain may be present in our suspended GNRs as indicated by the lack of sagging (Fig. 1 inset), which is expected to slightly modify the size of the band gap.44 For the case of zigzag GNRs, a moderate strain leads to slight increase of the edge spin polarization, thus increasing the band gap.44 Therefore, the band gap in our suspended chiral GNRs may be further enhanced by tensile strain.

IV. SUMMARY

In summary, we have fabricated GNRs with very low disorder by (i) unzipping high-quality CNTs with very low concentration of structural defects known to produce GNRs with nearly atomically smooth edges;14 (ii) suspending the GNR from the substrate; and (iii) removing the remaining impurities by \textit{in situ} current annealing. These ultraclean and ultrasmooth-edged GNRs not only exhibit high mobility exceeding 3000 cm2 V−1 s−1 but also reveal the intrinsic electronic structure (band gap) of GNRs. The good \textit{quantitative} agreement between the experiment and theory suggests that the underlying mechanism responsible for the large band gap in ultraclean, suspended GNRs is most likely the magnetism associated with the zigzag edge components, which is strongly enhanced by the absence of either metallic or insulating substrates. The possible strain in the suspended GNRs may further augment the band gap. Additional studies are underway to explore the tuning of the electronic and magnetic properties of such ultraclean GNRs via external electric and magnetic fields.

ACKNOWLEDGMENTS

Z.Z. acknowledges the support of the Wayne State University startup funds. Part of this research was conducted at the Center for Nanophase Materials Sciences under Project No. CNMS2009-044. The work at CSUN was supported by NSF-PREM Grants No. DMR-00116566 and No. DMR-0958596. The work at Harvard was supported through the Nanoscale Science and Engineering Center, an NSF-funded facility. The authors also thank Boris Nadgorny for helpful discussions.
APPRAISCHING THE INTRINSIC BAND GAP IN ...

PHYSICAL REVIEW B 84, 125411 (2011)

*zxzhou@wayne.edu

