
29

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Meeting Accessibility Challenges with
Web Components

Jason White, Mark Hakkinen, Jennifer Grant
Educational Testing Service
jjwhite@ets.org, mhakkinen@ets.org, jgrant@ets.org

Abstract
Web Components comprise a suite of technologies under development by the

World Wide Web Consortium (W3C) that together enable standard formats such

as Hypertext Markup Language (HTML), and Scalable Vector Graphics (SVG)

to be extended with new functionality. Web Components encapsulate

presentation and behavior in a reusable fashion that coheres well with the

markup languages and development practices of the Web. We briefly review the

constituents of Web Component technology - custom elements, the shadow

DOM, HTML imports, and the HTML 5 template element. We then argue that

Web Components are a general mechanism that can be used to address

problems, some of them long-standing, of Web accessibility.

Our argument proceeds via a series of examples that illustrate the utility of Web

Components as means of enhancing non-visual access to images, providing

spoken and braille alternatives to textual content, and implementing custom

interactive controls with features that improve access while bringing to the fore

the underlying semantics of the content. Although the design of our Web

Components is motivated by educational needs, they and the broader approach

to solving accessibility challenges which they exemplify are applicable to the

Web as a whole.

Keywords
Web accessibility, Web components, Web standards.

mailto:jjwhite@ets.org
mailto:mhakkinen@ets.org
mailto:jgrant@ets.org

 Meeting Accessibility Challenges with Web Components 30

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Introduction

Although the Web browser has become a progressively more sophisticated programming

environment, until recently, it’s predominant markup languages - HTML and SVG - have not

been accompanied by an extension mechanism permitting new elements and attributes to be

defined to express application or domain-specific concepts. This role is now filled by Web

Components, a technology which is presently undergoing standardization by the World Wide

Web Consortium, and which browser developers have started to implement.

Web Components support abstraction and modularity in Web applications by allowing

the registration of "custom elements" (Glazkov, Custom Elements) that can be used in HTML or

SVG contexts. A custom element is typically associated with executable code (written in

JavaScript) with which the element provides a user interface. This user interface can be

implemented via HTML, SVG and CSS. The code and styles comprising the user interface

operate in isolation from scripts and CSS rules applicable to the HTML document in which the

custom element occurs. This separation is achieved by way of the shadow DOM (Glazkov and

Ito), a mechanism for attaching an element hierarchy to a DOM node. This subordinate tree is

then isolated from the surrounding document.

A simple mechanism, HTML imports (Glazkov and Morrita) has been proposed to allow

Web Component implementations to be included in HTML documents. This proposal, which

extends the HTML link element, remains controversial, and it may be superseded by an

alternative solution. Authors of Web Components can also take advantage of the template

element, already standardized in HTML 5, (Hickson et al. 4.11.3) to supply prebuilt content for

manipulation by JavaScript code in constructing the desired user interface. In combination, the

technologies briefly introduced here support a high degree of modularity. A custom element,

with its associated functionality and styles, comprise a Web Component which, once created, can

be used as needed in diverse application scenarios while maintaining isolation from the

surrounding context.

As we shall demonstrate via the examples described in the next section of the paper, the

emergence of Web Components opens the possibility of devising reusable solutions to problems

of Web accessibility that can be integrated into documents and applications in a straightforward

and modular fashion. Web Component technology provides markup language extensibility of a

kind that complements and enhances the capabilities of the Web browser as a programming

 Meeting Accessibility Challenges with Web Components 31

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

environment. The potential benefits that this extensibility brings to addressing the challenge of

accessibility are, we contend, considerable. This conclusion is here supported by experiments in

the design of innovative Web components that address a range of practical difficulties which

current Web standards do not adequately resolve: the provision of alternatives to images that

extend beyond textual descriptions, the specification of precise spoken and braille

representations of text, and the creation of custom user interface components.

Web Components for Associating Alternatives with Images

Standards and practices for making graphical content accessible have focused largely on

the use of textual alternatives such as labels and descriptions. This emphasis is reflected in

guideline 1.1 of Web Content Accessibility Guidelines (WCAG) 2.0 (Caldwell et al.), which

requires text alternatives to be provided for any "non-text content", including images. Although

this requirement serves the needs of users of conventional screen readers, it does not

accommodate a larger range of non-visual representations that can provide richer perceptual

alternatives to graphical material. Moreover, the needs of users with learning and cognitive

disabilities are not taken into consideration, due to a lack of universally applicable measures that

are widely accepted as enhancing such users’ ability to comprehend graphical content. A more

inclusive solution, the Diagrammar, has recently been proposed by the DAISY Consortium

(Resource Directory for the Z39.98-2012 Authoring and Interchange DIAGRAM Description

Feature, Version 1.0) as an XML format designed to facilitate the authoring and exchange of a

range of alternatives that may be associated with an image. The supported alternatives include a

short and a long description, a tactile graphic (supplied as a reference to an external resource), a

tour (i.e., a textual overview) of the tactile graphic, a simplified image and a simplified

description. Whereas the last two alternatives are meant to meet the needs of people with

learning and cognitive disabilities, the remainder are principally of benefit to users who are blind

or who have low vision.

By means of Web Components, the Diagrammar can be implemented directly in HTML

as a set of custom elements, preserving the original semantics and making only slight syntactic

adjustments. Specifically, the specification requires each custom element to be given a name that

contains a hyphen ("-") character, and which avoids names reserved by other specifications. An

instance of our dg-content Web components is depicted in figure 1. Unlike the original XML

 Meeting Accessibility Challenges with Web Components 32

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

format intended to enable the creation and exchange of documents, a series of Web Components

is expected to provide not only syntax but also behavior. In adapting the Diagrammar for use in

Web applications, we chose an approach to the design which is inspired by the audio and video

elements of HTML 5. If the Boolean controls attribute is set, then the Web Components display a

user interface, namely a menu of alternatives to the original image (illustrated in figure 2) from

which the user can select. If the controls attribute is not set, the determination of which

alternatives to present to the user is the responsibility of the application in which the Web

Components occur. This flexibility supports the use of a global configuration option or a profile

of the user's access requirements to control the selection of alternatives. Thus, the Web

Components are designed to be consistent with the recent paradigm shift in accessibility research

and standards toward personalization of user interfaces according to each individual's declared

needs and preferences (Nevile; Nevile, Treviranus, and others; Vanderheiden et al.).

 Meeting Accessibility Challenges with Web Components 33

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Fig. 1. Diagrammar implemented as a web component. The code can be used in line within an
HTML application.

<dg-content controls>
 <dg-img>

 </dg-img>
 <dg-summary show>
 The image depicts two surveyors measuring the angles between
 themselves and a tree.
 </dg-summary>
 <dg-longdesc show="true" overlay="false">Two surveyors, A and P, stand some distance
 apart on the south bank
 of a river, looking at a tree, T, that is on the north bank of the river.
 Points A, P, and T form a triangle. At points A and P, there are two parallel
 sight lines pointing north and forming angles outside of the triangle. At
 point P, angle TPA is 53 degrees. The adjacent angle between PT and the
 northern sight line is 37 degrees. At point A, angle TAP is not labeled,
 and the adjacent angle formed between AT and that northern sight line is
 32 degrees.
 </dg-longdesc>
 <dg-simplifieddesc show="false">
 T, A, and P are the three points on a triangle. Angle TPA is 53 degrees
 with an adjacent angle of 37 degrees. The angle adjacent to angle TAP is 32 degrees.
 </dg-simplifieddesc>
 <dg-tactile show="false" source="imgs/anglesmap.jpg" controls="false">
 <dg-tour>
 Start exploring at the top right.
 </dg-tour>
 </dg-tactile>
</dg-content>

 Meeting Accessibility Challenges with Web Components 34

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Fig. 2. Diagrammar Content from Figure 1, as rendered in HTML using the Chrome Browser.

 Meeting Accessibility Challenges with Web Components 35

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Providing Spoken and Braille Alternatives to Text

Our second example demonstrates the use of Web Components to meet an immediate

need arising from shortcomings in the implementation of standards by assistive technologies.

Since current screen readers do not support Speech Synthesis Markup Language (SSML)

(Burnett, Shuang, and others), there is no standards-based mechanism available with which a

content author can prescribe the pronunciation of a text string, for example a name or a domain-

specific term. Although labeling techniques (e.g., the aria-label attribute) can be used as a crude

means of substituting a misspelling of a word or an expansion of an abbreviation that improves

pronunciation, they incur the disadvantage of imposing the substitution not only on text to

speech users, but also, and undesirably, on users of refreshable braille displays. The

comprehension of text to speech users is thus improved at the expense of the comprehension of

braille users, for whom the misspelling of key terms, for example, runs the risk of impeding

understanding of the text.

Until SSML is more widely deployed, this problem can be partially addressed by a set of

Web Components, comprising a container, apip-alt, which allows spoken and braille renderings

to be specified in their respective child elements (see figure 3). The name is a reference to the

Accessible Portable Item Protocol (APIP) specification of the IMS Global Learning Consortium

(Accessible Portable Item Protocol (APIP)). The spoken form is a string that can be substituted

for the original text; the braille form is given as a string of characters drawn from a block of

Unicode code points that correspond to all 256 possible eight-dot braille patterns. In practice, of

course, six-dot braille cells would typically be used, as these are the norm in almost all braille

encodings. This braille representation takes advantage of the observation that the Unicode braille

characters are correctly processed by most screen readers (i.e., the corresponding dot patterns are

forwarded to the braille display). As in the preceding example, a controls attribute determines

whether the Web Component supplies its own user interface or whether this responsibility

belongs to the application. In the resultant rendering shown in figure 4, the control is rendered as

a drop down list prior to the displayed text, which enables the user to select their preferred

alternate from the list (braille or spoken). The effect of the Web Component is thus to present

either the spoken alternative or the braille alternative to the user, while allowing for the

 Meeting Accessibility Challenges with Web Components 36

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

possibility of switching between them, thereby supporting the needs of those who rely on both

access methods during a single interaction.

Fig. 3. Prototype apip-alts implemented as a web component. The code can be used in line within
an HTML application. The element contains "display text", spoken alternate, and Nemeth

versions of a simple equation.

Fig. 4. apip-alts content from Figure 3, as rendered in HTML using the Chrome Browser.

<h2>Sample Problem</h2>
<p>The following is a math expression:</p>

<apip-alts id="s0" controls="true">
 <apip-display>12<var>x</var>²
 + 7<var>xy</var> - 10<var>y</var>²
 </apip-display>
 <apip-spoken id="s1" >

 Twelve times ex squared, plus seven times ex times
 why, minus ten times why squared
 </apip-spoken>
 <apip-braille id="s2" >
 #12x^2"+7xy-10y^2_4
 </apip-braille>
</apip-alts>

<p>Can you factor this expression?</p>

 Meeting Accessibility Challenges with Web Components 37

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Designing an Interactive Control as an Accessible Web Component

The third example was developed to demonstrate the value of Web Components in

capturing the semantics of complex user interface controls, while providing intrinsic accessibility

by implementing the WAI-ARIA 1.0 attributes required to support screen readers (Craig and

Cooper). A set of Web Components was developed that implements the capabilities of the choice

element defined in the IMS Global Learning Consortium Question and Test Interoperability

(QTI) specification, an XML-based standard for the creation and exchange of interactive

assessment items (IMS Question & Test Interoperability Specification). The choice element

supports both single and multiple selection of options by the user, as well as the automatic

shuffling of the choices. To the user, the resulting qti-choice Web Component (see figure 5) and

its contents appear as a series of radio buttons (see figure 6), with customary behavior. The

advantage to the assessment application author, however, lies in the provision of a modular

component that can easily be incorporated into software for delivering tests to users via a Web

browser, or even into the test materials themselves, while maintaining the supplied visual

presentation, behavior, and accessibility, and preserving the abstract semantics of the original

XML format. The visual presentation can readily be modified by application authors who desire

to do so.

Fig. 5. Prototype QTI Choice Interaction implemented as a web component. The code can be
used in line within an HTML application.

<qti-itemBody>
 <p>Look at the picture of a sign found in Japan.</p>
 <p></p>

 <qti-choiceInteraction responseIdentifier="RESPONSE" shuffle="false" maxChoices="0"
 minChoices="0" orientation="vertical">
 <qti-prompt>What does it indicate to you?</qti-prompt>
 <qti-simpleChoice identifier="ChoiceA">You have reached a safety point.</qti-simpleChoice>
 <qti-simpleChoice identifier="ChoiceB">Watch out for open manhole covers.</qti-simpleChoice>
 <qti-simpleChoice identifier="ChoiceC">Watch out for puddles of water.</qti-simpleChoice>
 <qti-simpleChoice identifier="ChoiceD" fixed="true">None of the above.</qti-simpleChoice>
 </qti-choiceInteraction>
 <qti-submit></qti-submit>
</qti-itemBody>

 Meeting Accessibility Challenges with Web Components 38

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Fig. 6. apip-alts content from Figure 5, as rendered in HTML using the Chrome Browser.

Discussion

As the preceding examples illustrate, Web Components permit the HTML and SVG

markup languages to be extended without requiring any modification of the underlying browser's

source code, hitherto the only effective means of associating novel behavior with newly defined

elements. The custom elements can be applied without having regard to the details of their

implementation: presentation and behavior, including characteristics needed to support

accessibility, are safely isolated within the Components themselves. A familiar and expressive

markup language interface - that of elements and attributes - is presented to the content author,

who is insulated from the internal details of the Web Components, including, crucially, those

 Meeting Accessibility Challenges with Web Components 39

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

aspects of their implementation that are needed in order to support accessibility. The semantics

of the content are clearly exhibited in the markup by way of appropriate abstractions, a practice

made possible by Web Components that may be contrasted with the repurposing of HTML

elements, including generic containers such as div and span, as user interface controls, in which

the true meaning of the markup is obscured from authors and maintainers of the document or

application. Thinking and designing in terms of suitable abstractions and their associated

vocabulary is thus encouraged by the introduction of special-purpose elements as Web

Components.

Conclusion

As our examples show, Web Components provide a versatile, expressive and modular

means of bringing abstractions into Web applications, with accompanying user interfaces that

address problems of accessibility. Ongoing work by the authors and their collaborators seeks to

integrate the "Diagrammar" Web Components into a reading system for electronic books, and to

inform the development of future versions of the IMS QTI standard by encouraging support for

the use of Web Components as a modular and accessible means of building interactive

assessments for delivery via Web technologies.

Our examples explore only a few of the potential ways in which Web Components can be

applied to enhancing accessibility. As support for the underlying technologies matures, it will

become increasingly feasible to develop and deploy in practice a host of further innovations

based on Web Components designed to meet the needs of users with disabilities, and to assist

authors in the design of accessible Web applications.

 Meeting Accessibility Challenges with Web Components 40

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Works Cited

Accessible Portable Item Protocol (APIP). IMS Global Learning Consortium, 2016. Web.

https://www.imsglobal.org/apip/index.html.

Burnett, Daniel C., Zhi Wei Shuang, and others. Speech Synthesis Markup Language (SSML)

Version 1.1. W3C, 2010. Web. http://www.w3.org/TR/speech-synthesis11/.

Caldwell, Ben et al. Web Content Accessibility Guidelines (WCAG) 2.0. W3C, 2008. Web.

http://www.w3.org/TR/wcag20/.

Craig, James, and Michael Cooper. Accessible Rich Internet Applications (WAI-ARIA) 1.0. W3C,

2014. Web. http://www.w3.org/TR/2014/REC-wai-aria-20140320/.

Glazkov, Dimitri. Custom Elements. W3C, 2016. Web. http://www.w3.org/TR/2016/WD-

custom-elements-20160226/

Glazkov, Dimitri, and Hajime Morrita. HTML Imports. W3C, 2016. Web.

http://www.w3.org/TR/2016/WD-html-imports-20160225/.

Glazkov, Dimitri, and Hayato Ito. Shadow DOM. W3C, 2015. Web.

http://www.w3.org/TR/2015/WD-shadow-dom-20151215/.

Hickson, Ian et al. HTML5: A Vocabulary and Associated APIs for HTML and XHTML. W3C,

2014. Web. http://www.w3.org/TR/2014/REC-html5-20141028/.

IMS Question & Test Interoperability Specification. IMS Global Learning Consortium, 2016.

Web. https://www.imsglobal.org/question/index.html.

Nevile, Liddy. “Adaptability and Accessibility: A New Framework.” Proceedings of the 17th

Australia Conference on Computer-Human Interaction: Citizens Online: Considerations

for Today and the Future. Computer-Human Interaction Special Interest Group (CHISIG)

of Australia, 2005. 1–10. Print.

Nevile, Liddy, Jutta Treviranus, and others. “Interoperability for Individual Learner Centered

Accessibility for Web-Based Educational Systems.” Educational Technology & Society

9.4 (2006): 215–227. Print.

https://www.imsglobal.org/apip/index.html
http://www.w3.org/TR/speech-synthesis11/
http://www.w3.org/TR/wcag20/
http://www.w3.org/TR/2014/REC-wai-aria-20140320/
http://www.w3.org/TR/2016/WD-custom-elements-20160226/
http://www.w3.org/TR/2016/WD-custom-elements-20160226/
http://www.w3.org/TR/2016/WD-html-imports-20160225/
http://www.w3.org/TR/2015/WD-shadow-dom-20151215/
http://www.w3.org/TR/2014/REC-html5-20141028/
https://www.imsglobal.org/question/index.html

 Meeting Accessibility Challenges with Web Components 41

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Resource Directory for the Z39.98-2012 Authoring and Interchange DIAGRAM Description

Feature, Version 1.0. DAISY Consortium, 2014. Web.

http://www.daisy.org/z3998/2012/auth/features/description/1.0/.

Vanderheiden, Gregg C et al. “Auto-Personalization: Theory, Practice and Cross-Platform

Implementation.” Proceedings of the Human Factors and Ergonomics Society Annual

Meeting. Vol. 56. SAGE Publications, 2012. 926–930. Print. 1.

http://www.daisy.org/z3998/2012/auth/features/description/1.0/

 Meeting Accessibility Challenges with Web Components

Journal on Technology and Persons with Disabilities
Santiago, J. (Eds): Annual International Technology and Persons with Disabilities Conference
© 2016 California State University, Northridge

Journal on Technology and Persons with Disabilities

ISSN 2330-4216

LIBRARY OF CONGRESS * U.S. ISSN CENTER
ISSN Publisher Liaison Section
Library of Congress
101 Independence Avenue SE
Washington, DC 20540-4284
(202) 707-6452 (voice); (202) 707-6333 (fax)
issn@loc.gov (email); www.loc.gov/issn (web page)

© 2016 The authors and California State University, Northridge

This work is licensed under the Creative Commons Attribution-NoDerivs 4.0 Unported License.

To view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/

All rights reserved.

mailto:issn@loc.gov
http://www.loc.gov/issn
http://creativecommons.org/licenses/by-nd/4.0/

	Meeting Accessibility Challenges with Web Components
	Abstract
	Keywords
	Introduction
	Web Components for Associating Alternatives with Images
	Providing Spoken and Braille Alternatives to Text
	Designing an Interactive Control as an Accessible Web Component

	Discussion
	Conclusion
	Works Cited
	Journal on Technology and Persons with Disabilities

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /All

 /Binding /Left

 /CalGrayProfile (Gray Gamma 2.2)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.5

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages false

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.1000

 /ColorConversionStrategy /sRGB

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType false

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 100

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo false

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo false

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts true

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Remove

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages false

 /ColorImageMinResolution 100

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 150

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.50000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages true

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 1.30

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /ColorImageDict <<

 /QFactor 1.30

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 10

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 10

 >>

 /AntiAliasGrayImages false

 /CropGrayImages false

 /GrayImageMinResolution 150

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 150

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.50000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages true

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 1.30

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /GrayImageDict <<

 /QFactor 1.30

 /HSamples [2 1 1 2] /VSamples [2 1 1 2]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 10

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 10

 >>

 /AntiAliasMonoImages false

 /CropMonoImages false

 /MonoImageMinResolution 300

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 300

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.50000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects true

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile ()

 /PDFXOutputConditionIdentifier ()

 /PDFXOutputCondition ()

 /PDFXRegistryName ()

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ENU ([Based on 'Smallest File Size\(embed all fonts\)'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)

 >>

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /ConvertToRGB

 /DestinationProfileName (sRGB IEC61966-2.1)

 /DestinationProfileSelector /UseName

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure true

 /IncludeBookmarks true

 /IncludeHyperlinks true

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.250000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /NA

 /PageMarksFile /RomanDefault

 /PreserveEditing false

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [612.000 792.000]

>> setpagedevice

