

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

DEVELOPING A CMS PHP FRAMEWORK

WITH SYMFONY

A thesis submitted in partial fulfillment of the requirements

For the degree of Master of Science in Software Engineering

by

Justin Khoi Bao Han-Nguyen

December 2016

ii

Copyright © Justin Khoi Bao Han-Nguyen 2016

All Rights Reserved

iii

The thesis of Justin Khoi Bao Han-Nguyen has been approved by:

Professor Richard Covington Date Approved

Professor Li Liu Date Approved

Professor Taehyung “George” Wang, chair Date Approved

California State University, Northridge

iv

PREFACE

This thesis is submitted for the degree of Master of Science in Software Engineering

at the California State University at Northridge. The work described herein was done under

the supervision and advice of a committee headed by Professor Taehyung “George” Wang

in the department of Computer Science between January 2016 and December 2016.

 This work is done for the purpose of creating an easy to use PHP framework for

web developers looking to develop Content Management Systems (CMS). Since most PHP

frameworks are made generically, there is nothing focused for CMS development. This

work is original to the best of my knowledge, except where acknowledgements and

references are made.

Justin Khoi Bao Han-Nguyen

December 2016

v

ACKNOWLEDGEMENTS

 I would like to thank my committee chair, Professor Taehyung “George” Wang, for

his support and supervision. I would like to thank my committee members, Professor

Richard Covington and Professor Li Liu, for taking their time to be available to help me

with my thesis, providing me their valuable input and ideas.

I would like to thank the friends and peers whom I’ve met at the College of

Engineering and Computer Science at the California State University at Northridge for

providing me with

 Finally, I would also like to thank my family and friends for supporting me with

my decision to give up my pursuit of a medical degree in order to pursue my passion in

programming and engineering.

vi

TABLE OF CONTENTS

Copyright .. ii

Signature Page ... iii

Preface.. iv

Acknowledgements ..v

List of Figures .. viii

Abstract .. ix

CHAPTER 1 INTRODUCTION ...1

1.1 The Objectives ...1

1.2 The Motivations ...2

1.3 The Approach...2

1.4 The Tools ...3

1.5 The Next Chapters ...3

CHAPTER 2 REVIEW OF POPULAR PHP FRAMEWORKS ...5

2.1 The Common Problem ...5

2.2 Laravel Framework ..5

2.3 CakePHP Framework...6

2.4 CodeIgniter Framework ...7

2.5 Why Symfony? ..8

CHAPTER 3 THE REQUIREMENTS ..10

3.1 Who Are the Users? ...10

3.2 Gathering Requirements ..10

3.3 Functional Requirements ...11

3.4 Non-functional Requirements ..11

CHAPTER 4 FRAMEWORK DESIGN ..13

4.1 Design Decisions and Structure ...13

4.2 High Level Overview ...15

4.3 Inside the Code ..16

4.4 Behind the Reasoning ..17

vii

CHAPTER 5 TESTING PROCESS ..19

5.1 Codeception ...19

5.2 PHPUnit ...20

5.3 SimpleTest ...21

5.4 Our Testing Process ...21

CHAPTER 6 TOOLS AND TECHNOLOGIES ...23

6.1 XAMPP ..23

6.2 Atom.io for Text Editing..24

6.3 Dreamweaver CS 5 ..25

6.4 Google Chrome for Debugging ...26

6.5 Toad for MySQL..27

6.6 Symfony PHP Reference Documentation ..28

CHAPTER 7 IMPACT ON END USER ...29

7.1 Level of Experience Required ...29

7.2 Installation Method ..30

7.3 Value to the End User ..31

7.4 Value to the Project Stakeholders ..33

7.5 Possible Value ..34

CHAPTER 8 THE FINALE ..35

8.1 The Problems ...35

8.2 Thoughts on the Project ...36

8.3 Future Work ...37

8.4 Conclusion ...39

WORKS CITED ..41

APPENDIX A: GLOSSARY ...43

APPENDIX B: CODE EXCERPT OF SELECT API CALL ..44

viii

LIST OF FIGURES

4.1 CMS Framework UML Diagram ...14

4.2 CMS Database Object UML Diagram ...14

4.3 High Level Overview of the Framework ...15

4.4 Framework Instantiation Code ...16

4.5 Excerpt of code from Select API Call ..17

6.1 XAMPP Control Panel ...24

6.2 Atom.io UI ...25

6.3 Dreamweaver CS 5 ..26

6.4 Google Chrome Developer Tools for Debugging ..27

6.5 Toad for MySQL..28

7.1 Using createtable controller to create a new table ...32

7.2 Sample Code of API Calls ...32

ix

ABSTRACT

DEVELOPING A CMS PHP FRAMEWORK WITH SYMFONY

By

Justin Khoi Bao Han-Nguyen

Master of Science in Software Engineering

 Open-source programming is very popular in the computer science world today.

There are various open-source technologies out there that are currently in use – libraries,

frameworks, APIs, etc. Web developers who develop in PHP have a choice for frameworks

to use – most of which are open-source. However, there is a small amount, if not none, of

open-source frameworks that are focused on CMS solutions.

This project sought to develop a CMS focused framework using Symfony, a PHP

framework, as the base. Development was supported by a tutorial and Symfony’s detailed

documentation, aided by the use of mostly open-source software, such as Toad for MySQL,

Atom.io, and XAMPP.

1

CHAPTER 1

INTRODUCTION

 There are many PHP frameworks that are popular and widely used to develop

websites and applications. The most commonly used open-source PHP frameworks are

Laravel, CodeIgniter, CakePHP, and Symfony; however, these are generic and do not focus

on any particular type of system. Although there are commercial PHP frameworks that are

focused on delivering Content Management Systems or other types of management

systems, the objective of this project is to create a framework similar to those commercial

frameworks and make them available via open-source.

1.1 The Objectives

 The main objective of this project was to create a functional PHP framework that

could be used by developers to quickly and efficiently develop CMS solutions. The

framework needed to pass these criteria:

• The CMS framework shall consist of multiple standalone modules to facilitate

development.

• The modules shall be generic, usable for different types of data.

• The modules shall not require other modules to function.

• The framework shall be used to develop a basic CMS webpage.

• This basic CMS webpage shall have used all of the functionality listed in our

documentation.

• The developed webpage shall perform every function without error.

2

• The amount of time needed for the development of the webpage using the

framework shall be recorded and compared to average values.

1.2 The Motivation

 The motivating factor behind this development project is the lack of open-source

PHP frameworks focused on business applications. Commercial PHP frameworks have a

variety of costs and could be useful in developing applications that require CMS services,

but there are many PHP developers who do not have the capital to buy licenses for these

commercial PHP frameworks. Commercial PHP frameworks are also part of a niche

market.

As PHP developers, we wanted to develop this new framework in order to provide

ourselves, as well as other PHP developers, a foundation that we would lay down for all

future projects, used for clients or companies. With this project complete, all of our future

projects would have their foundations laid out before the development process even began.

1.3 The Approach

 The Symfony PHP framework can be leveraged to create a more focused and

specialized framework. To facilitate this, the documentation for Symfony also has an

exceptionally detailed tutorial to get the development started. We utilized this tutorial to

create the backbone of the framework and then expanded on it with our own designs and

classes to produce the modules with the functionality to meet our requirements.

 Since the finished product would be a framework, we believed the best testing

process for each module of this project would make use of the framework to develop a

3

simple website that utilized the completed module. We thoroughly tested each module to

ensure that it met the user stories and our requirements before beginning development on

the subsequent modules.

 When all modules were developed and each module was thoroughly tested, we

created a website that required the functionality of every module and verified that there

were no errors, bugs, or functional anomalies.

1.4 The Tools

 We used Symfony PHP as a base to begin development of this CMS focused

framework. We also used a simple text editor called Atom.io to write our code and develop

the framework. To test our code, we created a local LAMP-like stack using the software

XAMPP. XAMPP is an open-source package that installs Apache, MariaDB, PHP, and

Perl onto Windows, Linux, or Mac OS X. For our database testing, we used Toad for

MySQL. We also used Dreamweaver CS 5 to develop a test web site that utilizes the project

framework and then we debugged the web site with the Google Chrome web browser’s

developer tools.

1.5 The Next Chapters

 In the next chapter, we will be reviewing the popular PHP frameworks and

explaining our decision for not using those frameworks for creating CMS solutions.

Chapter 3 discusses the requirements the project must meet. We will detail our design of

the solution in Chapter 4.

4

Beginning with Chapter 5, we will be discussing the various testing suites and our

testing process, laying out the reasons we made those decisions. We will expand on the

tools we used in Chapter 6, fully explaining Symfony PHP, Atom.io, and XAMPP. Chapter

7 will discuss the value this framework provides to the end user, the web developer. Finally,

we will conclude with our findings and the results of our work in Chapter 8.

5

CHAPTER 2

REVIEW OF POPULAR PHP FRAMEWORKS

 There is a plethora of PHP frameworks available in the PHP community, such as

Laravel, CakePHP, CodeIgniter, Symfony, and Zend Framework. These frameworks make

development of web applications and web sites faster as they provide an implementation

of a Model-View-Controller (MVC) architecture pattern, making the routing easy to set up

by changing some configuration settings. Of all the available frameworks, the most popular

frameworks are Laravel, CakePHP, CodeIgniter, and Symfony. We will review and discuss

Laravel, CakePHP, and CodeIgniter in this chapter, and explain why we chose Symfony as

our base framework to build upon.

2.1 The Common Problem

The PHP frameworks we are discussing all share a common problem: they were

developed to hasten the development of web applications and websites for all applications,

so they are all generic and without focus in any particular area. Because of this, using these

frameworks would prove to be faster for certain developers over others. A CMS solution

developer, for example, would need more time to complete his project than a simple static

website developer.

2.2 Laravel Framework

Currently, Laravel is considered to be the most popular PHP framework. [Winspire

and Hitesh] In order to understand its popularity in the PHP community, we must review

6

the features. Hitesh and Winspire Web Solution described Laravel as the number one PHP

framework, but they each discussed Laravel’s “number one” status in different aspects –

Hitesh looked at it from a viewpoint of popularity while Winspire discussed it from the

viewpoint of the “best” functionally. [Winspire and Hitesh]

The official website for Laravel discussed how Laravel’s documentation and

screencasts provide the developer with tutorials and help with getting started – this allows

the developer or development team to deliver “rapid … [and] amazing” applications.

[Laravel] In today’s software development culture, rapid delivery of quality applications is

a main focusing point, especially with more technologies implementing continuous

integration and continuous delivery processes. [CGI] Laravel is able to fit in today’s culture

because it can facilitate a rapid delivery, even if it cannot be used with the continuous

delivery process.

 Rapid delivery of applications is not the only feature that makes Laravel popular

and respected. There is an inherent database version control provided by Laravel. It uses

“restful routing … [which] connects resources smoothly.” Laravel is also bundled with

Eloquent, an object-relational mapping tool, and Blade, a templating engine. With built-in

unit testing, Laravel allows developers to develop anything from simple websites to

enterprise-level applications. [Winspire and Hitesh] These benefits were taken into

consideration when we were deciding which framework to use.

2.3 CakePHP Framework

Like Laravel, CakePHP is an open-source PHP framework designed for rapid

development. CakePHP was one of the more popular frameworks in the period between

7

2006 and 2010, but the popularity of CakePHP, along with Zend Framework, CodeIgniter,

and other frameworks, began to decline as the popularity of Laravel began to increase.

[Winspire] Even with the decline, CakePHP 3.0 is considered to be within the top 7 PHP

frameworks by the community. It is still widely used by developers and companies, such

as Bavarian Motor Works, blendtec, and Billabong. [CakePHP]

CakePHP, at its core, offers the same features as Laravel, such as MVC

conventions, security, and built-in functions: database access, caching, validation,

authentication, etc. [CakePHP] Laravel is powerful due to the availability of its templating

engine, Blade, which allows developers to build the product faster, while CakePHP does

not have a templating engine. Instead, it provides code generation and scaffolding, allowing

developers to build prototypes quickly; Laravel does not have code generation. [CakePHP]

The features provided by CakePHP support more traditional software development

processes with the rapid prototyping capabilities. In contrast, the features provided by

Laravel support more modern software development processes, using both continuous

integration and delivery such as Agile and Scrum. Since we were not focused on prototype

building, we decided that the benefits of using CakePHP were not attractive enough for the

project.

2.4 CodeIgniter Framework

Unlike CakePHP, CodeIgniter’s popularity did not change drastically. CodeIgniter

is still considered to be in the top 5 PHP frameworks. [Winspire] The reason it kept a steady

grip on its popularity is the ease of learning and becoming proficient with it. According to

CodeIgniter, it has “no restrictive coding rules, … no need for templating language, …

8

[and focuses on] simple solutions over complexity.” [CodeIgniter] The simplicity, in

conjunction with its detailed documentation, makes this framework a great beginner level

PHP framework.

While CodeIgniter encourages the MVC pattern, it does not force developers to

conform to it in the same manner as CakePHP and Laravel. It also allows developers to use

their own coding and naming conventions provided that they do not create class name

conflicts with the built-in modules. With virtually zero configuration needed, CodeIgniter

can simply be downloaded – 2 MB download size including the user guide – and used on

most hosting platforms. CodeIgniter’s exceptionally high performance and maintenance,

alongside its other features, are other reasons it is considered to be the best framework for

beginners. [Winspire]

 Because CodeIgniter was the first PHP framework we had ever used, we felt more

comfortable with the idea of utilizing it for our project. The familiarity with CodeIgniter

was one of the main reasons we had placed it on our list of possible frameworks we could

leverage, even though we considered the features of Laravel and CakePHP to be superior

to CodeIgniter. We also thought that the performance and maintainability of CodeIgniter

made it a competitor in our search.

2.5 Why Symfony?

Ultimately, we made our decision based on the needs of the project, choosing the

Symfony framework as our “canvas.” So, why did we choose Symfony? It features similar

built-in features as the other frameworks discussed above. However, the deciding factor

was the flexibility of Symfony to be adapted – Symfony lets developers customize every

9

part of the framework to their specifications. [Symfony] This was in line with our project

and fulfilled our needs the best compared to the other frameworks – the documentation

contained a step-by-step tutorial on how to create your framework by customizing the base

framework.

10

CHAPTER 3

THE REQUIREMENTS

 Software engineering has implemented many different software development

processes, from traditional waterfall to Agile and Scrum. However, all of the development

processes have a phase or activity of gathering the software requirements and

specifications. This is the step in which the development team meets with the customers or

users to determine what they are expecting from the software. The requirements are

formally written down and separated into functional and non-functional requirements.

3.1 Who Are the Users?

 In the PHP community, open-source tools are almost a necessity. Most of the

available PHP frameworks are open-source, which makes them easier for developers to

access. The PHP frameworks previously discussed in Chapter 2 are generic, so developers

need to customize them when they incorporate a framework. This project’s goal was to

develop niche framework for CMS developers. Therefore, the users of our finished product

will be web developers using the PHP language to develop CMS solutions. We will be the

first users of this product, making our CMS development work much simpler to rapidly

build for current and future clients.

3.2 Gathering Requirements

Working with fellow CMS developers and coworkers, we discussed the issues that

come with developing a CMS solution using the common popular PHP frameworks.

11

Together, we came up with a list of inadequacies that we felt would make our development

work easier. Line by line, we transformed each inadequacy into a requirement, if possible.

We will discuss these requirements in the following section.

3.3 Functional Requirements

These requirements were compiled together with fellow CMS developers and

coworkers. The functional requirements for this project are:

• The framework must provide an API, or class, to access the database through

MySQL.

• The database API must allow the developer to set up the database connection

dynamically.

• The database API must allow table creation and revisions through an API call.

• The database API must provide API calls for the different types of queries.

• The database API must provide API calls for manipulating views and procedures.

• The database API should be made generic to accommodate any database design.

• The database API should be extendable.

• The database API must be secure from SQL injection.

3.4 Non-functional Requirements

 The non-functional requirements of this project are:

• The database API should have a faster processing time.

• The database API should have robust documentation.

12

• The database API should not change the innate database engine of the Symfony

framework base.

These requirements were used to write the specifications for the framework design.

We will discuss our design in the following chapter.

13

CHAPTER 4

FRAMEWORK DESIGN

 From the requirements, we fine-tuned the specifications, then we used the

specifications to design the database API to fulfill all of the “must have” functional

requirements, then used UML diagrams to depict our designs. This chapter will show the

finalized design with an explanation for every design decision we made.

4.1 Design Decisions and Structure

The finished framework in Symfony’s tutorial can only handle requests and routing,

but other functionalities can be added to it as needed. We decided that we only needed to

build upon the initial tutorial framework. Figure 4.1 shows the UML class diagram for the

framework we created. CMS solutions are built on top of databases, so the essential

functions are database queries and construction, so we made sure that our framework could

handle all of the most common database functions, in a generic manner.

In conjunction with the framework, we needed a class to encapsulate the database

connection, as pictured in Figure 4.2 below. The class needs a variable to contain the path

to the configuration file and a variable to contain the database connection object. We made

the decision to only support MySQL for the first release, so the database connection object

is of type mysqli_link, created by the mysqli PHP system class.

14

CMS\Framework

+__construct(UrlMatcher

$urlMatcher, ControllerResolver

$controllerResolver,

ArgumentResolver

$argumentResolver, Database

$db)

-$db

-$urlMatcher

+handle(Request $request)

-$controllerResolver

-$argumentResolver

+select(Fields $fields, Tables $tables, JoinType $type, [Parameters $params])

+customSelect(Query $query, Parameters $params)

+insert(Fields $fields, Table $table, Values $values)

+customInsert(Query $query, Parameters $params)

+update(Fields $fields, Table $table, Values $values, Condition $searchCon)

+delete(Table $table, Condition $searchCon)

+createTable(Table $table, Fields $fields)

+alterTable(Table $table, Fields $fields)

+dropTable(Table $table)

+createView(View $view, Query $query)

+alterView(View $view, Query $query)

+dropView(View $view)

+createProcedure(Procedure $procedure, Query $query)

+alterProcedure(Procedure $procedure, Query $query)

+dropProcedure(Procedure $procedure)

Figure 4.1 CMS Framework UML Diagram

CMS\Database

-$config

-$db

+__construct(Path $config)

+prepare($query)

Figure 4.2 CMS Database Object UML Diagram

The framework also requires a controller for the MVC pattern implementation of

Symfony. We kept the default model, controller, and view in addition to adding a custom

controller and view, providing a user interface for the developer to initially set up the

database, for the release. Once the framework has been “installed” to their machine, the

developers can add their own controllers and views when they start the development on

15

their CMS solutions. The developers will need to reference Symfony’s documentation if

they have any questions on how to implement their own models, controllers, and views.

4.2 High Level Overview

Symfony

MODEL

VIEW

CONTROLLER

Pro
vid

es d
ata

 m
odel Interacts and notifies

Updates model

FRAMEWORKDB

Access and

return

A
P

I c
a

lls

a
n

d
 re

tu
rn

d
a

ta

In
te

ra
c

t

a
n

d

v
ie

w

CLIENT

DEVELOPERWrites code

Figure 4.3 High Level Overview of the Framework

 Figure 4.3 (above) depicts the high level overview of the framework developed for

this project. Symfony and its MVC architecture is the base of the framework – the CMS

framework provides an API for the controllers of the Symfony framework to perform the

database functions. The end user for this framework is the web (application) developer.

The developer interacts with the API through custom controllers that the Symfony MVC

architecture will use to display the views and update the models. Only the framework and

the controllers will be able to access the database, with the controller updating the model

and database as changes are made by the client through the view.

16

4.3 Inside the Code

 The CMS\Database class contains the database connection and the database

configuration information. When a controller handles an event, such as table creation, the

CMS\Database class is instantiated with a file path passed into the constructor to connect

to the database configured in the configuration file. After the connection has been

established, the framework uses the connection create prepared statements to perform the

SQL statements in a secure manner.

 The framework must be instantiated for it to be usable – the instantiation code is

depicted in Figure 4.4 below. The constructor for the framework requires a MySQL

connection object as a parameter, so the CMS\Database class must be instantiated prior to

instantiating the framework. Then the instance of the framework saves the connection

within a protected member variable – this allows the user to make API calls through the

instance without the need to establish a database connection every time the call is made.

Figure 4.4 Framework Instantiation Code

 Each API call will generate a MySQL statement based on the functionality that it

is responsible for – for example, the insert call will generate a MySQL insert statement

using the parameters passed into it as a guide. A prepared statement is then created by the

database object and the variables passed through the call are bound as parameters. This

binding is what minimizes the risk of SQL injections. Figure 4.5 shows the partial code of

how this process is implemented. After the parameters are bound to the prepared statement,

the statement is then executed and error checking verifies whether the execution was a

success or failure. The user interface will display the results of the verification to the user

17

so they will know if their API call was completed successfully or not. Appendix B is a

longer excerpt of the Select API call.

Figure 4.5 Excerpt of code from Select API Call

 The user is able to read the source code for our custom controller to learn how to

use our framework within the controller. It is possible for them to make changes to the

source code, but we hope that the end user will realize that any changes to our controller

may cause the create table user interface to cease functioning.

4.4 Behind the Reasoning

We will now discuss our reasoning behind each design decision discussed in the

previous sections. First, we decided to create the framework by using the framework built

in the tutorial as a base and expanding it by adding functions to it. We made this decision

because we needed to make up for time lost due to the gathering and refining of our

requirements. We also made this decision because the tutorial had everything set up in a

certain way and we did not wish to spend more time than necessary on essential parts.

The next decision we made was the decision to only support MySQL as the

database query language. Since Oracle and MySQL have the highest market share right

now [DB-Engines Ranking], we believed that the target audience, open-source developers,

18

would be more likely to use MySQL than any other database engine. Later, we would like

to add support for other database engines, such as NoSQL, DB2, and PostgreSQL.

This framework would come with a custom controller and view that facilitates the

creation of the tables in their defined database. The user interface for this view allows the

user to define table and field names and the script behind the controller would create the

table as We had made this design decision because we wanted to stay in line with the other

frameworks since they all had default controllers and views in their release builds.

 Symfony 3.0 requires PHP 5.5.9 or newer, which may pose an issue for some

developers since migrating to newer PHP versions requires refactoring and, in some cases,

complete code rewrite because some features have been deprecated or removed

completely. However, we decided to use Symfony 3.0 and PHP 5.5.9 or newer because the

users of this framework will, usually, be looking to begin new CMS projects, not updating,

upgrading, or migrating existing projects. As such, we wanted the users to use recent

technology for their new projects and not rely on old technology.

 PHP has a mysqli class library for connecting to and using MySQL databases. The

mysqli library has great tools and functions; however, in order to use some of these

functions, the server hosting the PHP code must be running on mysqlnd (MySQL Native

Driver). There are methods of verifying that mysqlnd is running – these methods can be

referenced by the user through a web search. We decided to use the mysqlnd because it

gave us more functions for dealing with prepared statements in PHP. In Appendix B, there

is a portion after the execute where it gets the result from the query – the get_result function

requires mysqlnd to be usable.

19

CHAPTER 5

TESTING PROCESS

To make sure the project was completed to our specifications, we needed a rigorous

testing plan involving unit testing for our modules to verify that the functions were being

called correctly and functioned as designed and developed. In order to accomplish this, we

looked into PHP testing frameworks, such as Codeception, PHPUnit, and SimpleTest. The

utilities offered by each framework were considered; however, the utilities added too much

overhead to the project for the functionality we needed. The first few sections will discuss

each testing framework and why we decided not to use them. Following that, we will

provide a discussion of the testing process we did implement and an explanation on our

reasoning for choosing this testing plan.

5.1 Codeception

 Codeception is a PHP testing framework that is capable of acceptance testing,

functional testing, and unit testing. [Codeception] We had no interest in acceptance testing

because our project “users” were the developers and not a web application end user. We

believed that the acceptance testing procedures covered in the Codeception documentation

would not be helpful to us in our testing plan. While Codeception’s acceptance testing can

be run on any website and can test JavaScript and ajax requests [Codeception], our project

needed only to test our CMS related functionality.

 We looked at functional testing with Codeception and we thought that we could

utilize it for our project. When we considered the interactions between our project and a

20

test application, we realized that it would create more overhead to test the test application

with Codeception. We would have had to create two applications, one to call the framework

objects and another to test that application – this lead to too much work so we decided to

forego this plan.

 Codeception was built upon PHPUnit and will have a similar usage to PHPUnit. If

unit testing with Codeception is similar to PHPUnit, we believed that it would be easier to

test our modules using PHPUnit instead. [Codeception]

5.2 PHPUnit

 Since we knew that Codeception was built upon PHPUnit, we decided to review

PHPUnit as a possible testing framework we could leverage for the purposes of testing our

project’s functionality. To do this, we perused the documentation for the possible test

functionalities we could use. We focused our attention on the database testing API because

our framework deals with managing the content that is saved in our database.

To our disappointment, the database testing API provided with PHPUnit required

the usage of the table names and fields within the test code. [Bergmann] This was not a

possibility for us because our system would allow the developer to use general functions

to interact with the database. The functionalities include, but are not limited to, creating

tables, changing tables, querying data, and deleting information. With the API functions

available [Bergmann], we would not be able to test the functionalities of our framework.

Due to this issue, we believed that we could not utilize PHPUnit to its fullest potential and

that using PHPUnit would add more overhead to the project.

21

5.3 SimpleTest

 SimpleTest is a PHP testing framework that can handle unit testing and web testing.

Similar to the previously mentioned testing frameworks, we believed that we would be

unable to using SimpleTest for our testing process. SimpleTest is presented as a tool to

make the testing of the “common but fiddly PHP tasks, such as logging into a site, [easier].”

[SimpleTest] The documentation for SimpleTest shows that the functionality of it is even

simpler than that of PHPUnit. For this reason, we decided that SimpleTest would not be

able to fulfill our needs and requirements.

5.4 Our Testing Process

 The testing frameworks that we reviewed did not meet our needs and requirements

so we ultimately had to come up with our own testing process. We had to separate our

testing plan into sections, focusing on one test at a time. During the development of the

framework, we needed to test the functionality of each subclass we created. To test each

subclass, we created simple scripts, each script using a particular function, and executed

them. Then we checked the database and/or output to make sure we arrived at our expected

results. We executed these scripts multiple times to ensure there were no unexpected bugs.

Once we were satisfied with the results, we would work on the next subclass.

The main objective of this project was to create a framework that alleviates

developers’ workloads when they are developing a CMS solution for a client or for their

company, so we decided to test our framework by creating a simple CMS solution using

the framework. This solution would have a simple textual user interface to keep the focus

on the functionality of the framework. This allowed us to make sure there were no bugs or

22

errors. Since this solution is a functional application, we could use one of the testing

frameworks mentioned above to run tests to make sure that the test system used the

frameworks correctly, thereby giving us the expected results. We felt that running unit tests

on our test system would prove to give us a low return on investment of time.

23

CHAPTER 6

TOOLS OF THE TRADE

 The end product of this project is a PHP framework for web CMS development, so

we needed a web server environment for development and testing, an IDE for coding, and

a web browser to test the code. We used XAMPP to create the environment. We used

Atom.io as our development text editor, Dreamweaver CS 5 as our testing IDE, and Google

Chrome for our web browser as well as a debugging tool. For reference, we used the

documentation for Symfony PHP found on their website. We will go into detail about their

use and purpose in this chapter.

6.1 XAMPP

To save money and resources, we did not dedicate a server; instead, we used

XAMPP to create a virtual Apache web environment on our Windows machine. XAMPP

is an open source package that installs an Apache web server distribution with MariaDB,

PHP, and Perl. The package can be downloaded from the Apache Friends web site, located

at http://www.apachefriends.org/index.html, and installation is as easy as running an

executable file. Once installed, the settings can be accessed through the control panel,

shown in Figure 6.1 below. The settings can be configured by editing the *.ini files for

each component using any text editor. [Apache Friends]

We chose XAMPP because there is a community available through the Apache

Friends forum, allowing for support whenever a problem arises. The Apache Friends web

site also recommended Stack Overflow as a resource to get answers and support. These

http://www.apachefriends.org/index.html

24

readily available resources for help combined with the cost-free nature of being an open

source package made it an easy decision to use XAMPP for our project.

Figure 6.1 XAMPP Control Panel

6.2 Atom.io for Text Editing

For our text editor, Atom.io proved to be a very useful application. Shown in Figure

6.2 below, Atom.io is a text editor that color codes special keywords that are specific to

various languages based on the extension of the file. Atom.io is also great for styling the

code in an easy to read manner. An example of a file that was opened in Atom.io is shown

in Figure 6.2 below. The file in the figure is a PHP script with the *.php file extension; as

you can see, special keywords are color coded differently from variables and data.

25

Figure 6.2 Atom.io UI and text example

6.3 Dreamweaver CS 5

Our user acceptance testing process involved developing a simple CMS website, so

we used Dreamweaver CS 5 for the development. Dreamweaver has its own FTP engine

so synchronizing to the web server can be done with a few mouse clicks. Dreamweaver

also provides a dual view mode, where the page can be viewed in code mode and design

mode simultaneously, as well as separately. Seen in Figure 6.3 below, the design mode

only worked well for html pages linked to CSS pages, and not PHP pages.

26

Figure 6.3 Dreamweaver CS 5

6.4 Google Chrome for Debugging

 Google Chrome is a very commonly utilized web browser – it has the highest

browser market share currently, at 54.41% of the total market share [Netmarketshare].

Taking this large market share into consideration, we decided to focus on confirming that

our project works on Google Chrome. We used the native Developer Tools for tracking the

data that was being sent to and from the server; we were able to ascertain the correct data

and signals were being sent to our framework. Figure 6.4 below shows an example of the

Developer Tools interface as well as the functionalities it can track.

27

Figure 6.4 Google Chrome Developer Tools for Debugging

6.5 Toad for MySQL

 Database management was necessary to test our framework, since a CMS solution

needs to manage content, which is almost always stored in a database. While we could use

a CLI tool for this, we decided to keep the project management easy by using a GUI based

database tool. There are many GUI based database tools out there, both open-source and

commercial. We chose Toad for MySQL for multiple reasons, one of which is the open-

source nature of the tool. Figure 6.5 below depicts the GUI of Toad for MySQL, which

shows the schema for a table as well as an explorer to easily change between database

schemas to which the current logged in user account has access. [ToadWorld]

28

Figure 6.5 Toad for MySQL UI

 Toad for MySQL is a freeware tool distributed by Dell and is constantly updated

by a team of developers [ToadWorld]. Since MySQL is always being improved and

updated by Oracle [MySQL], having a constantly updated freeware tool for managing the

databases is a necessity for open-source developers. This is why we chose to use Toad for

MySQL for our project.

6.6 Symfony PHP Reference Documentation

Lastly, we used the tutorial and documentation of Symfony PHP to develop this

project. The documentation, including the tutorial, can be found on the Symfony website

at http://symfony.com/doc/current/create_framework/introduction.html#why-would-you-

like-to-create-your-own-framework, where the steps are outlined in detail. Support can also

be found on the website, within their community forums.

http://symfony.com/doc/current/create_framework/introduction.html
http://symfony.com/doc/current/create_framework/introduction.html

29

CHAPTER 7

IMPACT ON END USER

 The purpose of the project was to create a framework on top of the Symfony PHP

framework. This new framework will decrease the amount of time it takes web developers

to start the development of a CMS solution. An important part of a CMS solution is the

database. Thus, well-developed and well-maintained CMS solution has a database that is

normalized, easy to maintain, and designed for growth. This framework aimed to help the

developer with the creation and maintenance of the database.

7.1 Level of Experience Required

 Although this framework was designed with the CMS developer in mind, there is a

requirement for the developer to understand: (a) how MySQL (or relational) databases are

designed, and (b) their functionality. Not all web developers are familiar with the concept

of normalized relational databases – usually only DBAs, database administrators, are

knowledgeable about database design and the implications of performance and

maintainability that the design holds. However, lately, a larger amount of web developers,

typically full stack developers, are becoming experienced in database design.

 Knowledge of a database’s design should be considered necessary for a CMS

solution developer. We believe the developer can only develop a CMS well if they have a

firm understanding of the underlying database’s topology and design. Without this

understanding, the application that is developed cannot fully utilize the database in an

efficient manner. However, many application developers do not have any database design

30

experience, or knowledge, and this could lead to databases that are unable to grow

according to the changing scope and functionality of the application. If the database cannot

adapt to the changes in the application’s scope and functionality, then the data model will

become a major obstacle in the future.

Though it is designed to help web developers with faster development of CMS

solutions, the first build of the framework will only be of use to developers with experience

in database design and management. This was a design decision made to have a focus on

facilitating the LAMP stack developers’ work, allowing them to quickly begin developing

the application.

7.2 Installation Method

 Setting up Symfony on any development machine required using either the

Symfony installer or Composer, the dependency manager. Although these two methods are

not difficult to use, it still requires more time to set up than unloading a zip file or running

an executable file. For example, CodeIgniter is fast to download and fast to set up. It is a 2

MB zip file, downloaded from the official CodeIgniter home page, which you unarchive

using an unzipping tool, such as WinZip, 7z, or the tool built into recent versions of

Windows.

 The framework will be released in an archived, prepackaged version of Symfony,

similar to CodeIgniter. The end user would only be required to download the zip file from

a source and then unarchive the entire folder structure inside to their server, usually in the

directory “/var/www/html” for Linux servers. After the framework has been transferred to

the server, the developer can immediately begin developing on the framework.

31

7.3 Value to the End User

 Like other applications and tools, there must be value to the end user. If there is no

value provided by an application, then it will have been a pointless venture, making the

entire project a failure. In this section, we will discuss the value this framework adds and

why it will be a great tool for more experienced CMS developers.

 One feature of this framework is the ability to create a table in the database by

filling out a form according to the documentation. The form is shown in Figure 7.1 below.

The interface starts the user with only field, but allows the user to add more fields

dynamically. The PHP script within the controller will verify each input field to make sure

there are no empty fields and then it will run the script, making an API call to the function

createTable($table, $fields) passing the parameters generated from the input fields on the

form. The $table variable must be a string and the $fields variable must be an array of

arrays where each element contains the name, attributes and type. The script uses prepared

statements to limit the risk of SQL injections.

 This feature allows the developer to quickly create tables if the database has been

designed and the tables and their fields have been detailed, decreasing the amount of time

spent on database creation and allows the developer to reallocate that saved time to another

task. The developer can also alter and drop the table using the API call depicted by the

example code in Figure 7.2.

 Similarly, procedures and views can be created using the corresponding API calls

depicted in Figure 7.2. All of the depicted API calls function similarly to one another.

Although the API calls for views and procedures can only handle simple views and

32

procedures, it is useful for the initial set up of the database since more complex views and

procedures can always be created or updated at a future time.

Figure 7.1 Using createtable controller to create a new table

Figure 7.2 Sample Code of API Calls

33

7.4 Value to the Project Stakeholders

 The framework provides value to not only the end users, but it may provide value

to other project stakeholders, such as the project manager, the lead developer, and the

development team manager. These stakeholders are responsible for managing the time

spent and quality of the product. This framework would not just benefit stakeholders who

are interested in time management as this framework can benefit stakeholders who are

interested in quality management.

Since the time spent on the initial database setup is reduced, the extra time can be

allotted to development or automated test script development which could result in the

early completion of the project. The time would be valuable to the project manager and

maybe the development team manager. If the amount of time saved was recorded for each

project, the managers could see a trend in the time saved, allowing them to use this

information in their estimations for project time of completion. A consistent trend of time

saved would increase the accuracy of their estimated time of completion projections based

on the level of effort required for that project.

Symfony has coding standards and conventions that are recommended and

encouraged but not forced. If all the developers on a development team were using the

same coding standards and conventions, then code reviews would be completed more

efficiently and the quality of the code would be ensured provided that every developer is

strict in sticking to the standards. Debugging other developers’ code would also be

improved because the code will all be conforming to a single “format.” Another problem

with code reviews and debugging other developers’ code is the difference in the logic used

34

by different people. Strict coding standards may help to alleviate this issue, which would

also increase the efficiency of code reviews and debugging, thus increasing the quality of

the source code.

7.5 Possible Value

 Cost is a factor in the decision of which tool or product to use (i.e. is it expensive,

cheap, or free?) so this framework may have value to the financial/business stakeholders

of the project. Since this framework was built on an open-source package, we will be

releasing this as an open-source package as well. There will be zero cost to use our

framework, which may make it attractive to small businesses or individual developers.

35

CHAPTER 8

THE FINALE

 We have arrived at the end of this creative undertaking, and now we have a finished

product that we can distribute and use in the future. Although we finished the project, we

met with difficulties along the way. In this final chapter, we will discuss the problems that

arose, our thoughts on the entire project, and the future work that we could integrate.

8.1 The Problems

During the project, we ran into a few problems that prevented us from continuing

with development. The first problem we encountered was an unexpected one: when we

were roughly three-quarters complete, the hardware used for development suffered a crash,

causing us to lose the work. We had multiple backups at different levels of completed work,

but we believed all of our backups became corrupted and we would have to start from the

beginning. It turned out that only some of the more recent backups became corrupted. We

were forced to use an earlier backup. While it did not contain our entire work, it had most

of our initial configuration work saved, so we only had to re-implement our designs.

The second problem we had was gathering requirements for this project from

multiple perspectives. Contacting developers in the community to get their ideas was

harder than initially thought. We also tried contacting developers in our own company, as

well as project managers. Unfortunately, not many people were well versed in frameworks

to know what they wanted in a CMS framework.

36

8.2 Thoughts on the Project

The project was, to our surprise, required more work than we had initially thought

it would. We had initially estimated the time it would take to gather the requirements at

around two to three days, but it actually took almost a week due to the busy schedules of

those involved. Keeping in contact with everyone required us to write emails daily, asking

for possible useful features that this CMS framework would need to make projects easier

and faster to build.

 In hindsight, using a framework we had never used previously proved to add some

difficulty to this project because we were forced to learn the framework as we implemented

our design. The existence of the tutorial helped with the learning process but there were

more topics that were not covered in the tutorial. We had to learn about those topics to

make sure what we were doing would not affect the functionality and stability of the

framework as a whole. It may have been a better idea to use a framework we were familiar

with for this project.

 After development completed, we reviewed PHPUnit again, this time under greater

scrutiny than we had done previously. As a result, we discovered that PHPUnit’s database

testing API would have served us better as a testing suite than the testing method we had

decided to use. Initially, we thought that we needed to have static table and field names

and that we could not use dynamically created tables and fields in the testing API calls.

However, that was completely opposite to what PHPUnit was designed for because the

user passes the database information, including table and field names, as parameters to the

database testing API.

37

This would have significantly reduced the amount of time we needed to spend on

testing the functionality. We still needed a page to make the calls to our framework so the

overhead for the creation of the page remains the same, but the time spent on double

checking the database for verification that the procedure ran correctly and there were no

bugs or errors would have greatly been reduced. The automated testing would just require

an API call to PHPUnit and we would have verified whether or not the database was

changed according to the functionality.

 Overall, we thought this project was a success because we managed to create a

product that met most of our initial functional requirements. We will definitely be using

our product in our future CMS developments for clients. However, this project is not at its

end because there are more features we can improve upon, thereby adding to our future

workload for new builds and releases.

8.3 Future Work

This is just the initial build that we have completed. There are more features that

we would like to add to this project. In the future, we would like to improve this framework

by overhauling the process while keeping the main API calls the same. In this future build,

we want to make it even easier for the end users to create the database for their CMS

solution. The framework will have an additional controller and corresponding view, which

will house the user interface. Users will then be able to define the data structures they wish

to capture in the database and the framework will employ the best practices of database

design and create a normalized database for the end user. This functionality would most

likely only be able to support the MySQL database engine, unless we get developers

38

proficient with other database engines to join the project. With this value added, we believe

that it would be a great framework for beginner developers to use, requiring minimal

knowledge of databases.

 Another impactful change we would like to add to the framework is the support of

other database engines, such as NoSQL, DynamoDB, and MariaDB. This will be a

necessary addition because database engines are consistently being improved and new

engines are being introduced. Currently, we do not have the knowledge of these database

engines necessary to add this support. We hope to garner the attention of developers

knowledgeable in various database engines in order to add this change to the framework.

There are more features that could make this framework more robust. To discover

what other features should be added, we need to distribute this current build to other

developers and have them use the build to develop a CMS solution. We would like them

to write down their opinions and thoughts during the development process – as they

experience it, they may come up with new ideas, making it the best time to gather their

feedback. Afterwards, we would use their feedback and create a list of possible features we

could add and make decisions on which, if any, features would be implemented in the next

build.

Performance is always an important aspect that needs to be evaluated when making

a decision on what tool, product, vendor, etc. to use for any specific project. The importance

is even more prevalent in the field of software development because society is expecting

technology to improve its performance regularly. As such, we must evaluate this

framework’s performance and improve it regularly because the end user will only find

value in a product that is faster, more reliable, and easier to use than its competition.

39

Unfortunately, we did not get a chance to evaluate any of the performance aspects of this

framework; therefore, prior to release, we would like to evaluate the performance of all of

the API calls and compare them to the performance of another database tool, such as Toad

for MySQL or MySQL Workbench, running the same functionality.

The last bit of work we would like to complete prior to our first release would be

the refactoring of the entire source code we developed. In doing so, we hope to increase

the performance, as refactoring can affect the performance of a system. [Fowler] Fowler

has shown that refactoring could potentially improve the performance if refactoring was

done correctly. Fowler used an example where splitting one loop into two loops improved

its performance. [Fowler]

8.4 Conclusion

At the end of our journey, we have come to realize some things about our project

and the subsequent framework resulting from our development work. First, automated

testing is always better than manual testing if there is a possibility to do so. Second, when

working with a diverse group of users, especially those who cannot be contacted at the

same time, extra time must be allotted in the event that busy schedules prevents

requirements engineering from occurring according to plan. Third, it is important to

acknowledge that there are many technologies.

As discussed earlier, automated testing would have reduced the amount of time we

spent on verification of the functionality had we understood the full capabilities of PHPUnit

and its database testing API. This was a needed lesson we had to learn. Another lesson we

learned was requirements gathering could become difficult to perform when all the users

40

cannot be contacted in a timely manner. This had thrown our development off schedule,

leading us to believe that our group of users was too spread out. Lastly, new technologies

are being developed every day; current technologies are being updated every day. This

must be taken into account when decisions regarding which technologies to support.

Overall, we thought the project was a success. We accomplished what we had set

out to do, thanks the detailed tutorials and documentation of Symfony. Although we met

some difficulties along the way, we did not let it get our morale down and stop the project.

If we had stopped, we would not have created this product that we can now release once

we fully license the work. We hope future PHP developers can develop and build upon

what we have created, making it a larger open-source project.

41

Works Cited

1. "The Agile Cultural Shift: Why Agile Isn’t Always Agile." The Agile Cultural

Shift: Why Agile Isn’t Always Agile (2016): n. pag. CGI IT Services. CGI, 2016.

Web. 3 Nov. 2016. <https://www.cgi.com/sites/default/files/white-papers/agile-

culture-white-paper.pdf>.

2. "Apache Friends." Apache Friends RSS. N.p., n.d. Web. 04 Dec. 2016.

<https://www.apachefriends.org/index.html>.

3. Bergmann, Sebastian. PHPUnit Manual. N.p.: PHPUnit, 30 Oct. 2016. PDF.

4. "CakePHP - Build Fast, Grow Solid | PHP Framework | Home." CakePHP.

CakePHP, n.d. Web. 04 Nov. 2016. <https://cakephp.org/>.

5. "Codeception." Codeception. N.p., n.d. Web. 02 Mar. 2016.

<http://codeception.com/>.

6. "CodeIgniter Rocks." CodeIgniter Web Framework. CodeIgniter, n.d. Web. 05

Nov. 2016. <http://www.codeigniter.com/>.

7. "Create Your Own PHP Framework (current)." Create Your Own PHP

Framework (current). Symfony, n.d. Web. 02 Nov. 2016.

<http://symfony.com/doc/current/create_framework/index.html>.

8. "DB-Engines Ranking." DB-Engines Ranking - Popularity Ranking of Database

Management Systems. N.p., n.d. Web. 10 Nov. 2016. <http://db-

engines.com/en/ranking>.

9. Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing

Code. Boston: Addison-Wesley, 2000.

42

10. Hitesh, Ramoliya. "Why Laravel Is Best Php Framework In 2016?" Why Laravel

Is Best Php Framework In 2016? LinkedIn, 27 Jan. 2016. Web. 1 Nov. 2016.

<https://www.linkedin.com/pulse/why-laravel-best-php-framework-2016-

ramoliya-hitesh>.

11. "Market Share Reports (Source of Analytics Data)." Market Share for Mobile,

Browsers, Operating Systems and Search Engines. N.p., n.d. Web. 10 Nov. 2016.

<http://netmarketshare.com/>.

12. "Oracle MySQL." MySQL | The Most Popular Open-Source Database | Oracle.

N.p., n.d. Web. 04 Dec. 2016. <https://www.oracle.com/mysql/index.html>.

13. Otwell, Taylor. "Love Beautiful Code? We Do Too." Laravel. Laravel, n.d. Web.

03 Nov. 2016. <https://laravel.com/>.

14. "SimpleTest - Unit Testing for PHP." SimpleTest - Unit Testing for PHP. N.p.,

n.d. Web. 02 Apr. 2016. <http://simpletest.org/>.

15. "Toad for MySQL - Toad World." Toad for MySQL - Toad World. N.p., n.d.

Web. 04 Dec. 2016. <http://www.toadworld.com/products/toad-for-mysql>.

16. Winspire Web Solution. "7 Best PHP Frameworks for 2015." 7 Best PHP

Frameworks for 2015. LinkedIn, 3 June 2015. Web. 1 Nov. 2016.

<https://www.linkedin.com/pulse/7-best-php-frameworks-2015-winspire-web-

solution>.

43

APPENDIX A

GLOSSARY

API – Application program interface: set of definitions, protocols, and tools for connecting

two pieces of software.

CLI – Command-line interface: a means of interacting with a computer program where

the user (or client) issues commands to the program in the form of successive lines of text

(command lines).

CMS – Content management systems: a computer application that supports the creation

and modification of digital content using a simple interface to abstract away low-level

details unless required, usually supporting multiple users working in a collaborative

environment.

CSS – Cascading style sheets: a style sheet language used for describing

the presentation of a document written in a markup language, such as HTML.

GUI – Graphic user interface: a type of user interface that allows users to interact with

electronic devices through graphical icons and visual indicators such as secondary

notation.

HTML – Hypertext markup language: the standard markup language for creating web

pages and web applications.

IDE – Integrated development environment: a software application that provides

comprehensive facilities to computer programmers for software development, typically

consists of a source code editor, build automation tools and a debugger.

SQL – Structured query language: a special-purpose programming language designed for

managing data held in a relational database management system (RDBMS), or for stream

processing in a relational data stream management system (RDSMS).

UML – Unified modeling language: general-purpose, developmental, modeling language

in the field of software engineering, that is intended to provide a standard way to visualize

the design of a system.

44

APPENDIX B

CODE EXCERPT OF SELECT API CALL

$tnames = array();

$talias = array();

$tcount = 0;

foreach($tables as $t){

 $tnames[$tcount] = $t["name"];

 $talias[$tcount] = (!empty($t["alias"])?$t["alias"]:"");

 $tcount++;

}

if($fnames != "*"){

 $fnames = array();

 $fcount = 0;

 foreach($fields as $f){

 $fnames[$fcount] = $f;

 $fcount++;

 }

}

$hasParams = false;

if($params != null || !empty($params)){

 $hasParams = true;

 $pfield = array();

 $pvalue = array();

 $pcount = 0;

 foreach($params as $p){

 $pfield[$pcount] = $p["name"];

 $pvalue[$pcount] = $p["value"];

 $pcount++;

 }

}

$hasJoins = false;

if($type != null || !empty($type)){

 $hasJoins = true;

 $tsize = sizeof($type);

}

$query = "SELECT ";

if($fnames != "*"){

 for($i = 0; $i < $fcount; $i++){

 if($i != $fcount - 1 && $i != 0){

 $query .= ", ";

 }

 $query .= $fnames[$i]." ";

 }

}

else{

 $query .= "* ";

}

$query .= "FROM ".$tnames[0]." ".($talias[0] != ""?$talias[0]." ":"");

if($hasJoins){

 $index = 1;

 foreach($type as $join){

 $query .= $join["type"]." ".$tnames[$index].($talias[$index] !=

""?$talias[$index]." ":"")."ON (".$join["match"].") ";

 $index++;

45

 }

}

if($hasParams){

 $pstring = "";

 $query .= "WHERE ";

 for($i = 0; $i < $pcount; $i++){

 if($i != $pcount - 1 && $i != 0){

 $query .= "AND ";

 }

 $query .= $pfield[$i]." = ? ";

 $pstring .= "s";

 }

}

$stmt = $this->db->prepare($query);

if($hasParams){

 $a_param = array();

 $a_param[] .= & $pstring;

 for($i < 0; $i < $pcount; $i++){

 $a_param[] = & $pvalue[$i];

 }

 call_user_func_array(array($stmt, 'bind_param'), $a_param);

}

if($stmt->execute()){

 $res = $stmt->get_result();

 $data = array();

 while($row = $res->fetch_assoc()){

 array_push($data, $row);

 }

 $stmt->close();

 return $data;

}

else{

 return "Error: SELECT call encountered an error with the execution.";

}

	Copyright
	Preface
	Acknowledgements
	TableofContents
	ListFigures
	Abstract
	Chapter1
	Section1p1
	Section1p2
	Section1p3
	Section1p4
	Section1p5
	Chapter2
	Section2p1
	Section2p2
	Section2p3
	Section2p4
	Section2p5
	Chapter3
	Section3p1
	Section3p2
	Section3p3
	Section3p4
	Chapter4
	Figure4p1
	Section4p1
	Figure4p2
	Chapter5
	Section4p2
	Figure4p3
	Section4p3
	Figure4p4
	Figure4p5
	Section4p4
	Section5p1
	Section5p2
	Section5p3
	Section5p4
	Chapter6
	Section6p1
	Figure6p1
	Section6p2
	Figure6p2
	Section6p3
	Figure6p4
	Figure6p3
	Section6p4
	Section6p5
	Figure6p5
	Section6p6
	Chapter7
	Section7p1
	Section7p2
	Section7p3
	Figure7p1
	Figure7p2
	Section7p4
	Section7p5
	Chapter8
	Section8p1
	Section8p2
	Section8p3
	Section8p4
	WorksCited
	AppendixA
	AppendixB

