Article

Electron Counting and a Large Family of Two-Dimensional Semiconductors

In comparison with conventional semiconductors, most two-dimensional semiconductor (2DSC) materials are dissimilar in structure and composition. Herein, we use electron-counting rules to propose a large family of 2DSCs, which all adopt the same structure and are composed of solely main group elements. Advanced density functional theory calculations are used to predict a number of novel 2DSCs, and we show that they span a large range of lattice constants, band gaps, and band edge states. As a result, they are good candidate materials for heterojunctions. This family of two-dimensional materials may be instrumental in the fabrication of 2DSC devices that may rival the currently employed 3D semiconductors.

Items in ScholarWorks are protected by copyright, with all rights reserved, unless otherwise indicated.