San Fernando Valley State College

THE EFFECT OF THREE COGNITIVE VARIABLES ON
THE AESTHETIC COMMUNICATION PROCESS

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Arts in
Psychology

by

Thomas James Cherry

September, 1967
The thesis of Thomas James Cherry is approved:

San Fernando Valley State College
August, 1967
To my wife Susan and the other Samaritans along the way

ACKNOWLEDGMENTS

The author is greatly indebted to the following:

Dr. Louis J. Nidorf for his constant support and assistance.
Dr. Robert V. Rainey for his patience.
Dr. Leo Pirojnikoff for his understanding.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Method</td>
<td>12</td>
</tr>
<tr>
<td>Results</td>
<td>17</td>
</tr>
<tr>
<td>Discussion</td>
<td>42</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
<tr>
<td>Bibliography</td>
<td>52</td>
</tr>
<tr>
<td>Appendix I</td>
<td>54</td>
</tr>
<tr>
<td>Appendix II</td>
<td>58</td>
</tr>
<tr>
<td>Appendix III</td>
<td>60</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE I
Analysis of Variance 25

TABLE II
Table of Means 26

TABLE III
Analysis of Variance 31

TABLE IV
Table of Means 32

TABLE V
Analysis of Variance 36

TABLE VI
Table of Means 37

TABLE VII
Analysis of Variance 41
ABSTRACT

THE EFFECT OF THREE COGNITIVE VARIABLES ON
THE AESTHETIC COMMUNICATION PROCESS

by

Thomas James Cherry

Master of Arts in Psychology

September, 1967

In this thesis, the effects of three cognitive variables were studied as they affect the aesthetic communication process. It was assumed that aesthetic communication is the process whereby the artist, through his work, communicates his feelings to the perceiver. Consequently, each subject was initially tested to determine if he were:

a. elative or depressive; b. variable or stable mood; c. sensitizer or repressor. The subjects were then measured on the accuracy of their perceptions of four aesthetic stimuli (paintings), two of which were elative, while the other two were depressive. Their accuracy was determined by comparing their responses to those of the artist.

The sample consisted of 104 introductory psychology students at San Fernando Valley State College.

The model for analyses was a 2x2x2x4 analysis of variance on repeated measures. Four analyses were performed, three resulting from variations in the method of scoring the subjects on the criterion variable, while the fourth resulted from varying the method of coding subjects as elative or depressive.
The results of this thesis give modest support to the hypotheses that:

1. The perceptions of the intended aesthetic communication will be more accurate when mood and aesthetic stimulus are consonant (elastic mood and elastic stimulus), than when they are not (depressive mood and elastic stimulus).

2. Variable mood individuals will be more accurate in their perceptions of aesthetic communication than will be stable mood individuals.

Possible reasons for these findings were entertained and suggestions were made for future research in this area.
INTRODUCTION

The focus of this thesis will be the effect of several cognitive variables upon the aesthetic communication process. It is assumed that art is a form of aesthetic communication in which the artist communicates to the perceiver via the stimulus properties of the painting. It will be of interest to examine how this process is affected by the three cognitive variables, mood, mood variability-stability, and repression-sensitization. The effects of these variables will be examined both independently and in interaction with one another.

Feelings. A survey of the literature shows that surprisingly little emphasis has been placed on the study of emotions and moods, particularly as they affect communication. Throughout the centuries, however, man has communicated about feelings and in his naive way has been able to find some consistency which allows him to identify the feelings of others. This ability has received some experimental support in the work of Fealek (1922) and Schlosberg (1941). In these studies where photographs posed by actors were used to study feelings, it was shown that students were able to classify the emotions expressed with a considerable degree of accuracy.

Though not a great deal of emphasis has been placed on the study of mood and emotion, psychologists have periodically felt some necessity to comment on the role of affect on human experience. William James said, "... the practically real world for each one of us, the effective world of the individual, is the compound world, the physical
facts and emotional values in indistinguishable combination" (James, 1902, p. 151). Henry A. Murray has said of affect that it is not simply the reflection of the rise and fall of tension in a system directed toward quiescence. It instigates, accompanies, facilitates, and sustains active engagement by human beings oriented toward complex worlds that they in part create (Murray, 1938, pp. 89-96).

Many different affective patterns of behavior are found among individuals. These patterns can in part be understood in terms of the uniqueness of every man's experience and consequent learning and in part in terms of the hereditary factors which are determinants of this behavior (Hall and Lindzey, 1957, pp. 541-542). These affects can alter, suppress, or combine with other affects. For example, fear can inhibit joy or interest, and distress can be intensified by anger. The different affective patterns among individuals, and the interactions of affects, are a constant source of difficulty for psychologists working in the area (Wessman and Ricks, 1966, pp. 7-8).

Feeling is an ambiguous word. In the psychological literature it has been used interchangeably with emotion, affect, and mood. For the sake of clarity, some distinctions must be made. Phenomenologically, two definite modes of feeling are of interest: subjective reference (mood) and objective reference (emotion). The individual feels without an object at which to direct it in the subjective reference mode. For example, the person is gay or melancholy without any specific reason. The objective reference mode of feeling (emotion) is quite distinct from the subjective reference mode (mood). In the objective mode feelings have an object. The individual feels about, or
because of something. Thus, the person is sad because of loss of a loved one, rather than simply being sad with no one or thing at which the sadness is directed. There is an objective reference in that the feelings are directed outward beyond the person.

Mood and Emotion. The usual definition for mood is: "A state of emotional or affective arousal of varying, but not permanent, duration" (Langfeld, 1950, p. 516). Emotions are more intense and of shorter duration than moods. Moods are seen as propensities to particular affective behaviors and to experience certain feelings. A mood may be contrasted with the typical emotion since it has only the general affective tone and some of the bodily symptoms in common with it. Moods have no specific cognitive component and because of this, it is frequently difficult to identify their source (Ruckmick, 1936, pp. 72-73).

For example, one may not recall that he is in a bad mood because of receiving a poor mark on an examination or perhaps a derisive look from a close friend. On the other hand, there are times when one can relate moods to specific causes. Moods are not momentary but rather are ordinarily extended for periods of time varying from hours to days.

Heidegger feels that man can understand his situation only by comprehending certain fundamental moods. An individual's mood at a particular moment establishes the entire nature of his relationships with the world. In one mood he perceives and encounters different things from those he does in another mood (Heidegger, 1927, pp. 172-176).

Ordinarily, emotions have a direct association with a particu-
lar object. These affective states, however, may generate into moods by expanding and predominating the person for some span of time. In this way, joy at someone or something may turn into a joyful mood, or trepidation may turn into an anxious mood when these feelings cease to relate to some object or notion.

Dimensions of mood. In their research, Wessman and Ricks have found two independent dimensions of mood, average mood and mood variability. Variation in mood, particularly hedonic level (elation-depression) appears to be an experience common to all individuals. Their studies indicate a predominance of pleasurable or elated moods over unpleasant or depressed moods. In their study, depression was "... in general characterized by a sense of sadness, dejection, or discouragement, accompanied by listlessness, apathy, and a lowering of self-esteem. In elation there was a sense of gladness and joy. The elative S's felt encouraged, freshened, and renewed. Self-confidence soared. .. The world seemed full and bright. The senses were lively, the mind keen and alert." (Wessman and Ricks, 1966, pp. 33-34).

The most general characteristic that Wessman and Ricks found related to mood variability was the contrast of the emotional openness of the variable people to the constriction of the stable people. The variable people were more open to their own inner lives, more involved with their fellow men, and more likeable. The variable mood men had more diffuse, active, and rich fantasy lives where suppression of feelings was minimal. The stable mood men, on the other hand, were relatively aloof, emotionally controlled, and not prone to fantasize. The stable men no longer searched out the alternative ways of life possible in their social environments but instead fitted into their social roles
without external struggle though with perhaps a good deal of conscious inner work directed toward control (Wessman and Ricks, 1966, pp. 186-187; 240).

Sensitization-repression. Byrne has found that though the terminology has varied somewhat across experiments, results with many response measures (e.g. Worchele's SAI and California F Scale) suggest that individuals fall along a continuum with respect to the characteristic way in which they respond to threatening stimuli. At one extreme of this continuum are behavior mechanisms of a predominantly avoiding (denying, repressing) type, while at the other extreme are predominantly approaching (intellectualizing, sensitizing) behaviors. Repressors are defined as those exhibiting a relatively elevated threshold for emotional material, and sensitizers are defined as those exhibiting a relatively lowered threshold for such material (Byrne, 1961, pp. 334-335).

Repression, as conceptualized and used by Byrne, has been shown to correspond with the clinical use of the term as reflected in clinical judgments or psychiatric ratings (Tempone, 1964, p. 441).

Aesthetic communication. The focus of this thesis is the effect of mood, mood variability-stability, and sensitization-repression upon the aesthetic communication process. Before these questions can be properly understood, however, some background information on the process of aesthetic communication is necessary.

Aesthetic communication is defined as the process whereby the artist, through his work, communicates his feelings to the perceiver (Nidorf, 1966, p. 1). That which perverts or distorts the communication process is defined as interference. Interference arising from the perceiver is of primary interest here, and the possible sources of inter-
ference which are of concern are: a. conflicting mood state; b. mood stability; c. repression.

A. **Conflicting mood state.** Conflicting organismic mood states involve conflict between affective states with which the individual comes to the situation and the feelings elicited by the aesthetic stimulus. Although moods are not object directed, they absorb the structure of the object world, coloring all perceptions of things and events (Jacobson, 1957, p. 86). It is the incorporative nature of moods which provides the necessary condition for conflict with the feeling called for by the aesthetic stimulus. Since moods do color perceptions, veridical perceptions of aesthetic communication would be expected where the mood and aesthetic stimuli are consistent, and distorted perceptions where they are not.

B. **Mood stability.** In Weissman and Ricks' sample (1966, p. 187), stable mood people exercised a great deal of emotional control in order to maintain stable mood states. It would therefore be expected that where stable mood persons' moods are not consistent with the feelings elicited by the aesthetic stimulus, they would suppress those feelings in order to maintain a stable mood state. This suppression would distort their perceptions of the intended aesthetic communication.

C. **Repression.** Repression may operate so that veridical perceptions of aesthetic communication do not occur. The following is an illustration of this. At some level a male observer might respond with very strong sexual feelings toward the painting of a very sensuous woman and at the same time the painting might remind him of an aunt. Since in our society sexual feelings would be incompatible with the role relationship (nephew to aunt) repression of the sexual response would
be probable. This repression from consciousness would protect the individual from feelings of guilt that would occur if these sexual feelings became conscious. It would also, however, interfere with the accurate perception of the intended communication.

In summary, the three cognitive variables, mood, mood variability-stability, and repression-sensitization were discussed. Examination of how these variables might distort the aesthetic communication process followed, and predictions as to when these distortions would occur were made.

Assumptions. In the body of this introductory section, the following assumptions have been made:

1. Art communicates feeling.

2. Variable mood people are more open to their own inner lives than are stable mood people, who are more emotionally controlled.

3. Repression will distort veridical perceptions of aesthetic communication.

4. We will have veridical perceptions where mood and aesthetic stimuli are consonant, and distorted perceptions where they are not.

Given assumptions one and four, we would expect:

H1: Elation mood S's*will be more accurate in their perceptions of elative stimuli than will be depressive mood S's.

H2: Depressive mood S's will be more accurate in their perceptions of depressive stimuli than will be elative mood S's.

*The method of operationally defining the three cognitive variables, elation-depression, mood variability-stability, and sensitization-repression appears in the Results section.
H3: S's who are sensitizers* will be more accurate in their perceptions of aesthetic stimuli than will be S's who are repressors.

Given assumptions one, three and four, we would expect:

H4: Depressive mood S's who are sensitizers will be more accurate in their perceptions of depressive aesthetic stimuli than will be elative mood S's who are sensitizers.

H5: Elative mood S's who are sensitizers will be more accurate in their perceptions of elative aesthetic stimuli than will be depressive mood S's who are sensitizers.

Given assumptions one and two, we would expect:

H6: Variable mood S's will be more accurate in their perceptions of aesthetic stimuli than will be stable mood S's.

Given assumptions one, two and four, it follows that:

H7a: With elative aesthetic stimuli, the perceptions of variable mood elative S's will be more accurate than those of stable mood elative S's. These stable mood elative S's, in turn, will be more accurate than stable mood depressive S's.

H7b: With elative aesthetic stimuli, the perceptions of variable mood elative S's will be more accurate than those of variable mood depressive S's. These variable mood depressive S's, in turn, will be more accurate than stable mood depressive S's.

H8a: With depressive aesthetic stimuli, the perceptions of variable mood depressive S's will be more accurate than those of stable mood depressive S's. These stable mood depressive S's, in turn, will be more accurate than stable mood depressive S's.

* The method of operationally defining the three cognitive variables, elation-depression, mood variability-stability, and sensitization-repression appears in the Results section.
be more accurate than stable mood elative S's.

H₉b: With depressive aesthetic stimuli, the perceptions of variable mood depressive S's will be more accurate than those of variable mood elative S's. These variable mood elative S's, in turn, will be more accurate than stable mood elative S's.

Given assumptions one, two and three, we would expect:

H₉a: Regardless of the stimulus, the perceptions of variable mood S's who are sensitizers will be more accurate than those of stable mood S's who are sensitizers. These stable mood S's who are sensitizers, in turn, will be more accurate than stable mood S's who are repressors.

H₉b: Regardless of the stimulus, the perceptions of variable mood S's who are sensitizers will be more accurate than those of variable mood S's who are repressors. These variable mood S's who are repressors, in turn, will be more accurate than stable mood S's who are repressors.

Given assumptions one, two, three and four, it follows that:

H₁₀: Variable mood elative S's who are sensitizers will be more accurate in their perceptions than stable mood depressive S's who are repressors when the aesthetic stimulus is elative.

H₁₁: Variable mood depressive S's who are sensitizers will be more accurate in their perceptions than stable mood elative S's who are repressors when the aesthetic stimulus is depressive.

In the following sections the method, results, and discussion of the experiment which was designed to test these hypotheses will be considered.
METHOD

Subjects. The sample consisted of 104 students enrolled in an introductory psychology course at San Fernando Valley State College.* Because the research involved the use of college students as S's, the data are limited to that group. In addition, to the extent that students in the class and introductory psychology students at San Fernando Valley State College in general represent a special group, the reported results may be inappropriate for other college populations.

The aesthetic stimuli: Thirty-five mm slides of four paintings were used as the stimuli for this study (see Appendix I). These paintings varied on two dimensions, mood and feeling state (i.e., two paintings were representational** while two were non-representational). One

* Initially there were 171 S's (69 males and 102 females). Before performing our experiment, however, we decided to construct our cells so that each cell would have the same n. Therefore, after determining the cell which had the least S's in it, we randomly eliminated S's from the other cells so that the n for all cells was equal. This gave us the N 104. The sex of the S was not considered in this thesis because Davitz (1964) and Nidorf (1967) have found that males and females do not differ significantly in their ability to perceive emotional communication.

** Paintings are here defined as representational if they contain recognizable objects (e.g., chair, banana, person). They are defined as non-representational if they do not contain these recognizable objects.
of each was depressive while the other set was elative. Fritz Faiss,* the artist, chose the paintings as representing the two dimensions.

The experimental task. In order to operationally define the feelings which the artist intended to communicate, a twenty-five scale Semantic Differential was used (see Appendix II). The artist was instructed in the use of the scale and then asked to evaluate his four paintings on each of the twenty-five scales. The obtained profile of scale scores operationally defined the intended communication.

The phase of the experiment in which the S's evaluated the paintings was carried out during a regular session of the class. Each S was given a seven-page booklet. Page one requested factual information such as name and sex. Page two was a measure of the S's ability to physiognomically schematize.** Pages three through seven each contained the twenty-five scales of the Semantic Differential (Appendix II). Upon completion of page two, the S's were given the following instructions in the use of the Semantic Differential:

"The scales you have in front of you are being used to ascertain your feelings about pictures which will be presented to you. Let's consider the scale hot-cold. If you feel that a picture is very hot, you should circle the colon which is most extreme in that direction. If you feel, however, that the picture is very cold, you should circle the colon most extreme in that direction. Now, if you feel that the picture

* Fritz Faiss, an internationally known artist, is a member of the faculty at San Fernando Valley State College.

** This measure was obtained for use in other research.
lies at some point intermediate between hot and cold, you should circle the colon which most closely indicates your feeling about the picture. Similarly you should circle the appropriate colon for the other twenty-four scales. Make sure that you respond to each of the twenty-five scales for all five pictures. Be sure that you circle the colon; that is, do not make checks in the spaces between colons, but circle the colon. Are there any questions? You will now be shown each of the five pictures briefly before you respond to them."

After the instructions were read, each of the four pictures plus a fifth picture, a view of the campus, was projected on a screen for thirty seconds to minimize any order effects. Then each picture was shown for three minutes while the S's responded to it on the scales of the semantic differential. The campus scene was presented first as a practice trial to avoid the effects of novelty. The practice trial was followed by presentations of the non-representational and representational paintings in abba form, beginning with a non-representational painting.

When the S's had finished evaluating the paintings, they were given the following instructions in the use of Wessman and Ricks' "Personal Feeling Scales":

"The questionnaire you have in front of you is being used to determine your present feelings. Please read carefully the ten descriptive statements for each of the six scales. Select the statements which describe your feelings at this moment. Probably the descriptive statements will not correspond exactly with what you feel, so regard them as approximations from which you will select those statements which are closest to your own feelings at this time. Remember, we want to know how you are feeling now. Be sure to mark one and only one of the statements for each of the six scales. Are there any questions?"

After the instructions were read, S's responded to each of the six scales. This measure was then taken for eleven consecutive class meetings.
The day of the seventh administration of "Personal Feeling Scales," the S's were given the following instructions in the use of Byrne's Repression-sensitization Scale:

"You have in front of you a questionnaire consisting of 128 statements. You are to indicate by marking them true or false whether or not these statements are characteristic of you. Thus, if you feel a statement is characteristic of you, you would mark it true. If you do not think it is characteristic of you, you would mark it false. Be sure to respond to each of the 128 statements. Are there any questions?"

The S's then responded to the scale.

The average level of mood and mood variability-stability were determined using the "Personal Feeling Scales" devised by Wessman and Ricks. Each scale contained ten descriptive statements ranging from extreme feelings at one end of the continuum, through more neutral feelings, to extreme contrasting feelings at the opposite end (Wessman and Ricks, p. 27). For people who might question the validity of this direct measurement of mood, a statement made by Ryle (1950, p. 103) is recalled: "The significance of avowals as primary data cannot be denied. They are the first and best index of mood states." Under ordinary conditions, avowals of mood are to be trusted.

A measure of the degree to which a S was a repressor or sensitizer was obtained by use of Byrne's Repression-sensitization Scale. This scale utilizes 128 MMPI items which are scored by a method he developed (1963, pp. 324-327).

In summary, S's evaluated each painting on the twenty-five scales of the Semantic Differential. Beginning on the day the paintings were evaluated, S's responded to "Personal Feeling Scales" for eleven consecutive class meetings. Thus, measures of average mood and mood variability-stability could be obtained. During the session in which
the seventh mood measure was obtained, the S's were administered Byrne's Sensitizer-repressor Scale to determine whether they were sensitizers or repressors.
RESULTS

Four Analyses of Variance on repeated measurements were performed.* The different analyses arose from variations in the method of classifying persons on the independent variables and in scoring their responses to the pictures. In this section, the hypotheses will first be restated and then each analysis will be examined separately. The method of coding S's on the independent variables and scoring their responses to the pictures will be indicated at the beginning of the discussion of each analysis.

The hypotheses again are:

H₁: Elative mood S's will be more accurate in their perceptions of elative stimuli than will be depressive mood S's.

H₂: Depressive mood S's will be more accurate in their perceptions of depressive stimuli than will be elative mood S's.

H₃: S's who are sensitizers will be more accurate in their perceptions of aesthetic stimuli than will be S's who are repressors.

H₄: Depressive mood S's who are sensitizers will be more accurate in their perceptions of depressive aesthetic stimuli than will be elative mood S's who are sensitizers.

* Chi Square analyses were performed on the factors and two factors, sensitization-repression and elation-depression, were found to be related (P < .05).
H₅: Elative mood S's who are sensitizers will be more accurate in their perceptions of elative aesthetic stimuli than will be depressive mood S's who are sensitizers.

H₆: Variable mood S's will be more accurate in their perceptions of aesthetic stimuli than will be stable mood S's.

H₇a: With elative aesthetic stimuli, the perceptions of variable mood elative S's will be more accurate than those of stable mood elative S's. These stable mood elative S's, in turn, will be more accurate than stable mood depressive S's.

H₇b: With elative aesthetic stimuli, the perceptions of variable mood depressive S's will be more accurate than those of variable mood depressive S's. These variable mood depressive S's, in turn, will be more accurate than stable mood depressive S's.

H₈a: With depressive aesthetic stimuli, the perceptions of variable mood depressive S's will be more accurate than those of stable mood depressive S's. These stable mood depressive S's, in turn, will be more accurate than stable mood elative S's.

H₈b: With depressive aesthetic stimuli, the perceptions of variable mood elative S's will be more accurate than those of variable mood elative S's. These variable mood elative S's, in turn, will be more accurate than stable mood elative S's.

H₉a: Regardless of the stimulus, the perceptions of variable mood S's who are sensitizers will be more accurate than those of stable mood S's who are sensitizers. These stable mood S's who are sensitizers, in turn, will be more accurate than stable mood S's who are repressors.
H9b: Regardless of the stimulus, the perceptions of variable mood S's who are sensitizers will be more accurate than those of variable mood S's who are repressors. Those variable mood S's who are repressors, in turn, will be more accurate than stable mood S's who are repressors.

H10: Variable mood elative S's who are sensitizers will be more accurate in their perceptions than stable mood depressive S's who are repressors when the aesthetic stimulus is elative.

H11: Variable mood depressive S's who are sensitizers will be more accurate in their perceptions than stable mood elative S's who are repressors when the aesthetic stimulus is depressive.

From this point, the hypotheses will be referred to by number.

Analysis one. In the first analysis, the S's were coded on the independent variables as follows:

A. Elation-depression. The Personal Feeling Scales, which were given at the time the pictures were responded to, were used to determine whether S's were elative or depressive. A median split was performed and those S's falling above the median were classified as elative, while those falling below the median were classified as depressive.

B. Mood stability-variability. To determine mood stability-variability, the Personal Feeling Scales were again used. The variability of each S was determined for the eleven administrations of the scales. Again, a median split was performed. Those S's falling above the median were classified as variable mood S's, while those falling below the median were classified as stable mood S's.
C. Sensitization-repression. To determine if S's were sensitizers or repressors, Byrne's Repression-sensitization Scale was used. This scale was scored using the method suggested by Byrne (1961, p. 337). With this method of scoring, a high score indicated sensitization and a low score indicated repression. A median split was done on the obtained scores and those S's falling above the median were classified as sensitizers, while those falling below the median were classified as repressors.

The method of scoring a S's responses to the pictures was the following:

Each of the semantic differential scales had eight points (see Appendix II). These scales were divided down the middle so that four points of each of the scales fell to the left of the midpoint and four points fell to the right. The direction in which the artist responded to each of the twenty-five scales for the four paintings was then determined; that is, whether he responded to the left or right for each scale. If a S responded in the same direction as the artist, he was credited with responding accurately. If not, he received no credit for that scale. A 2x2x2x4 Analysis of Variance for repeated measures was used to analyze the obtained accuracy scores. The results of this analysis appear in Table I. The main effects and interactions, however, will now be considered in more detail.

Main effects. The main effect for pictures was the only one that was significant (P<.05). This indicates that the S's responded with differing accuracy to the four pictures. Failure to obtain significance for the other main effects using the F Statistic constitutes lack of confirmation of the hypotheses as follows:
A - H_3: There was no statistically significant difference in the accuracy of sensitizers and repressors in their perceptions of aestheticic communication.

C - H_6: Variable mood S's did not differ statistically in their perceptions of aesthetic stimuli from stable mood S's.

Interactions. Only one interaction, $A \times B \times C \times P$, was significant at the .05 level. In order to understand this result and the implication for H_{10} and H_{11}, the components of the $A \times B \times C \times P$ interaction will be examined. This will be postponed, however, in order to discuss all component analyses together. In not finding significant interactions, the following hypotheses were not confirmed.

$A \times C - H_{9A}$: In their perception of aesthetic stimuli, variable mood S's who were sensitizers were statistically no different in the accuracy of their perceptions of aesthetic communication than were stable mood S's who were sensitizers. Those stable mood S's who were sensitizers, in turn, were statistically no different in their accuracy than stable mood S's who were repressors.

$A \times C - H_{9B}$: In their perceptions of aesthetic stimuli, variable mood S's who were sensitizers were statistically no different in their accuracy than variable mood S's who were repressors. Those variable mood S's who were repressors, in turn, were statistically no different than stable mood S's who were repressors.

$B \times P - H_1$: Elative mood S's were statistically no more accurate in their perceptions of elative stimuli than were depressive mood S's.

$B \times P - H_2$: Depressive mood S's were statistically no more accurate in their perception of depressive stimuli than were elative mood S's.
BxP - H₄: Depressive mood S's who were sensitizers did not differ significantly in the accuracy of their perceptions of depressive aesthetic stimuli from elative mood S's who were sensitizers.

AxBxP - H₅: Elative mood S's who were sensitizers were statistically no more accurate in their perceptions of elative aesthetic stimuli than were depressive mood S's who were sensitizers.

ExCxB - H₇a: With elative stimuli, variable mood elative S's did not differ significantly from stable mood elative S's in their perceptions of the aesthetic communication. These stable mood elative S's, in turn, were statistically no more accurate than stable mood depressive S's.

ExCxB - H₇b: With elative stimuli, variable mood depressive S's were statistically no more accurate than variable mood depressive S's. Those variable mood depressive S's, in turn, were statistically no more accurate than stable mood depressive S's.

ExCxB - H₈a: With depressive stimuli, variable mood depressive S's did not differ significantly from stable mood depressive S's in their perceptions of aesthetic communication. These stable mood depressive S's, in turn, did not differ significantly from stable mood elative S's.

ExCxB - H₈b: With depressive stimuli, variable mood depressive S's were statistically no more accurate than variable mood elative S's. These variable mood elative S's, in turn, did not differ statistically from stable mood elative S's.

Since the F Test is an overall test of means, examination of the relevant individual means (Table II) will facilitate later discussion about the stated hypotheses.
In examining the component means of the BxP interaction (Table IIa) it is found that one of the BxP2 components was significant (P < .05). That is, for picture two, an elative stimulus, elative S's were significantly more accurate in their perceptions of the aesthetic communication than were depressive S's. This would be expected from H1.

In examining the component means of the AxBxP interaction, one of the AxBxP2 components was significant (P < .05). Thus, for picture two, an elative stimulus, elative S's who were sensitizers were more accurate than depressive S's who were sensitizers. This would be anticipated from H2.

Looking at the component means of variance of the BxCxP interaction, one BxCxP1 and one BxCxP2 component were found significant (P < .05). Consequently, for picture one, an elative stimulus, variable mood depressive S's were significantly more accurate than were stable mood depressive S's. For picture two, an elative stimulus, variable mood elative S's were more accurate than variable mood depressive S's. Both results would be anticipated from H3a.

At this point the component means of the AxBxCxP interaction will be examined. It should be recalled that it was significant (P < .05). Only one component, AxBxCxP1, was significant. It was, however, highly significant (P < .005). Thus, in perceiving elative aesthetic stimuli (picture one) variable mood elative S's who were sensitizers were significantly more accurate than stable mood depressive S's who were repressors. This confirms H10. Since none of the other components of interaction was significant, H11 was not confirmed, i.e., variable mood depressive S's who were sensitizers were statistically no more accurate in their perceptions of depressive aesthetic stimuli than
were stable mood elative S's who were repressors.

In this analysis, there was no support for H_2, H_3, H_4, H_6, H_7a, H_8, H_{gb}, H_{ga}, H_{gb}, and H_{11}. Hypotheses 1, 7b, and 9a and 10 received modest support.
<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>1,711.50</td>
<td>103</td>
<td>.62</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>48.47</td>
<td>1</td>
<td>48.47</td>
<td>2.88</td>
</tr>
<tr>
<td>C</td>
<td>25.01</td>
<td>1</td>
<td>25.01</td>
<td>1.49</td>
</tr>
<tr>
<td>AxB</td>
<td>5.08</td>
<td>1</td>
<td>5.08</td>
<td></td>
</tr>
<tr>
<td>AxC</td>
<td>17.77</td>
<td>1</td>
<td>17.77</td>
<td>1.06</td>
</tr>
<tr>
<td>BxC</td>
<td>.35</td>
<td>1</td>
<td>.35</td>
<td></td>
</tr>
<tr>
<td>AxBxC</td>
<td>.05</td>
<td>1</td>
<td>.05</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>1,614.15</td>
<td>96</td>
<td>16.82</td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>4,692.00</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pictures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AxP</td>
<td>750.48</td>
<td>3</td>
<td>250.16</td>
<td>20.51**</td>
</tr>
<tr>
<td>BxP</td>
<td>73.75</td>
<td>3</td>
<td>24.58</td>
<td>2.02</td>
</tr>
<tr>
<td>CxP</td>
<td>39.86</td>
<td>3</td>
<td>13.29</td>
<td>1.09</td>
</tr>
<tr>
<td>AxBxP</td>
<td>88.36</td>
<td>3</td>
<td>29.45</td>
<td>2.42</td>
</tr>
<tr>
<td>AxCxP</td>
<td>50.16</td>
<td>3</td>
<td>16.72</td>
<td>1.37</td>
</tr>
<tr>
<td>BxCxP</td>
<td>36.13</td>
<td>3</td>
<td>12.04</td>
<td></td>
</tr>
<tr>
<td>AxBxCxP</td>
<td>33.12</td>
<td>3</td>
<td>11.04</td>
<td></td>
</tr>
<tr>
<td>Error</td>
<td>3,512.46</td>
<td>288</td>
<td>12.20</td>
<td></td>
</tr>
</tbody>
</table>

A - Sensitizer
Bgl - Elation
Cv - Variable Mood
Brep - Depression
CSt - Stable Mood

** Significant at below the .05 level
TABLE II

Tables of Means

IIa*

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE1</td>
<td>16.096</td>
<td>14.500</td>
<td>16.327</td>
<td>11.788</td>
</tr>
<tr>
<td>BDep</td>
<td>15.096</td>
<td>12.962</td>
<td>16.154</td>
<td>12.924</td>
</tr>
</tbody>
</table>

* Critical difference 1.1359 (P < .05)

IIb*

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5,BE1</td>
<td>16.231</td>
<td>14.885</td>
<td>16.192</td>
<td>11.962</td>
</tr>
<tr>
<td>A5,BDep</td>
<td>16.154</td>
<td>12.654</td>
<td>15.808</td>
<td>12.808</td>
</tr>
<tr>
<td>A9,BE1</td>
<td>15.962</td>
<td>14.115</td>
<td>16.462</td>
<td>13.923</td>
</tr>
<tr>
<td>A9,BDep</td>
<td>14.038</td>
<td>13.269</td>
<td>16.500</td>
<td>13.038</td>
</tr>
</tbody>
</table>

* Critical difference 1.608 (P < .05)

IIc*

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEn,Cv</td>
<td>16.808</td>
<td>14.269</td>
<td>17.000</td>
<td>12.654</td>
</tr>
<tr>
<td>BDep,Cv</td>
<td>15.962</td>
<td>12.269</td>
<td>16.423</td>
<td>13.577</td>
</tr>
<tr>
<td>BE1,CSt</td>
<td>15.385</td>
<td>14.731</td>
<td>15.654</td>
<td>13.231</td>
</tr>
<tr>
<td>BDep,CSt</td>
<td>14.231</td>
<td>13.654</td>
<td>15.885</td>
<td>12.269</td>
</tr>
</tbody>
</table>

* Critical difference 1.608 (P < .05)
TABLE II

(Continued)

<table>
<thead>
<tr>
<th></th>
<th>F_1</th>
<th>F_2</th>
<th>F_3</th>
<th>F_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_g</td>
<td>17.538</td>
<td>14.154</td>
<td>16.846</td>
<td>12.462</td>
</tr>
<tr>
<td>A_R</td>
<td>12.462</td>
<td>15.000</td>
<td>16.154</td>
<td>12.923</td>
</tr>
<tr>
<td>$A_{R-Dep-Cst}$</td>
<td>16.308</td>
<td>15.000</td>
<td>16.000</td>
<td>14.000</td>
</tr>
<tr>
<td>$A_{R-Bg1-Cst}$</td>
<td>15.846</td>
<td>15.846</td>
<td>15.769</td>
<td>15.000</td>
</tr>
</tbody>
</table>

* Critical difference 2.274 ($P < .05$)
Analysis two. Again, the model was that for a $2 \times 2 \times 2 \times 4$ Analysis of Variance for repeated measures. The method of coding S's on the independent variables was not changed from that of analysis one (see pp. 19-20). The change came in scoring the S's reactions to the aesthetic stimuli. Of the twenty-five semantic differential scales used for each picture, four were activity scales (ex. Active-passive). Since it seemed reasonable that these scales would be particularly sensitive to variations in the valence of the aesthetic stimulus along the dimension elation-depression, these scales were used for this analysis. The S's responses for these scales were scored as follows: The eight points of the scale were coded from 1 to 8, with 1 being the extreme in the passive direction and 8 being the extreme in the active direction. The S's numerical scores on each of these scales were obtained for the four pictures. A difference score was then attained by subtracting the numerical value of the artist's response to each of the four scales for the four pictures from that of each of the S's. Thus, in terms of the artist's intended communication, the smaller the difference, the more accurate the S's perception of the intended communication. The results of this analysis for these difference scores appear in Table III. The main effects and interactions will again be considered in more detail.

Main effects. The main effects for Factor B and for pictures were significant ($P < .05$). Thus, regardless of the stimulus, elative S's were significantly more accurate in their perceptions of aesthetic communication than were depressive S's. This would not be expected from any of the present hypotheses, and the implications will be considered in the discussion section. Again, it is found that S's
responded with differing accuracy to the four pictures (analysis one, p. 20). Failure to obtain significance for the other main effects leads to lack of confirmation of H_3 and H_6. *

Interactions. None of the interactions was significant ($P < .05$). Consequently, the following hypotheses were not confirmed: H_{9a}, H_{9b}, H_1, H_{2**}, H_4, H_5, H_{7a}, H_{7b}, H_{8a}, H_{8b}***, H_{11}****. In this analysis, H_{10} was also not confirmed. Thus, variable mood eliciting S's who were sensitizers did not differ significantly in their perceptions of eliciting aesthetic stimuli from stable mood depressive S's who were repressors. This differs from the results of analysis one, p. 23. Again, since the F Test is an overall test of mean differences, examination of the relevant component means (Table IV) will facilitate later discussion about the stated hypotheses.

Examining the components of the AxC interaction (Table IVa) leads to the discovery that one component was significant. Thus, regardless of the aesthetic stimulus, variable mood S's who were sensitizers were more accurate in their perceptions of aesthetic communication than were stable mood S's who were sensitizers. This would be anticipated from H_{9a}.

* These findings are interpreted in analysis one, p. 21.
** These findings are interpreted in analysis one, p. 21.
*** These findings are interpreted in analysis one, p. 22.
**** This finding is interpreted in analysis one, p. 23.
Looking at the components of the BxP interaction, it is found that one of the BxP₁ components and one of the BxP₂ components were significant \((P < .05) \). That is, for pictures one and two, elative stimuli, elative S's were significantly more accurate in their perceptions of aesthetic communication than were depressive S's. This would be expected from \(H₁ \) and is consistent with the finding of analysis one, p. 23.

In examining the components of the BxCxP interaction, it is found that one BxCxP₂ component was significant \((P < .05) \). Consequently, for picture two, an elative stimulus, variable mood elative S's were more accurate in their perceptions of aesthetic communication than were variable mood depressive S's. We would anticipate this result from \(H₇b \), and it is consistent with the findings of analysis one, (p. 23).

In this analysis, there was no support for \(H₂, H₃, H₄, H₅, H₆, H₇a, H₈a, H₈b, H₉b, H₁₀, H₁₁ \). Hypotheses 1, 7b, and 9a received modest support.
TABLE III

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>2,109.25</td>
<td>103</td>
<td>19.91</td>
<td>1.02</td>
</tr>
<tr>
<td>A#</td>
<td>19.91</td>
<td>1</td>
<td>19.91</td>
<td>5.69**</td>
</tr>
<tr>
<td>B</td>
<td>130.51</td>
<td>1</td>
<td>130.51</td>
<td>2.66</td>
</tr>
<tr>
<td>C</td>
<td>51.95</td>
<td>1</td>
<td>51.95</td>
<td>-</td>
</tr>
<tr>
<td>AxB</td>
<td>.69</td>
<td>1</td>
<td>.69</td>
<td>-</td>
</tr>
<tr>
<td>AxC</td>
<td>12.11</td>
<td>1</td>
<td>12.11</td>
<td>-</td>
</tr>
<tr>
<td>BxC</td>
<td>21.68</td>
<td>1</td>
<td>21.68</td>
<td>1.11</td>
</tr>
<tr>
<td>AxBxC</td>
<td>.21</td>
<td>1</td>
<td>.21</td>
<td>-</td>
</tr>
<tr>
<td>Error</td>
<td>1,872.19</td>
<td>96</td>
<td>19.50</td>
<td>-</td>
</tr>
<tr>
<td>Within</td>
<td>9,817.25</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pictures</td>
<td>4,749.57</td>
<td>3</td>
<td>1,583.19</td>
<td>95.03**</td>
</tr>
<tr>
<td>AxP</td>
<td>96.46</td>
<td>3</td>
<td>32.15</td>
<td>1.93</td>
</tr>
<tr>
<td>BxP</td>
<td>40.40</td>
<td>3</td>
<td>13.47</td>
<td>-</td>
</tr>
<tr>
<td>CxP</td>
<td>83.35</td>
<td>3</td>
<td>27.78</td>
<td>1.67</td>
</tr>
<tr>
<td>AxBxP</td>
<td>6.08</td>
<td>3</td>
<td>2.03</td>
<td>-</td>
</tr>
<tr>
<td>AxCxP</td>
<td>14.11</td>
<td>3</td>
<td>4.7</td>
<td>-</td>
</tr>
<tr>
<td>BxCxP</td>
<td>18.54</td>
<td>3</td>
<td>6.18</td>
<td>-</td>
</tr>
<tr>
<td>AxBxCxP</td>
<td>10.93</td>
<td>3</td>
<td>3.64</td>
<td>-</td>
</tr>
<tr>
<td>Error Within</td>
<td>4,797.81</td>
<td>288</td>
<td>16.66</td>
<td>-</td>
</tr>
</tbody>
</table>

*AS - Sensitizer Bg1 - Elation CV - Variable Mood
AR - Repressor BDep - Depression CSb - Stable Mood

** Significant at below the .05 level
TABLE IV

Tables of Means

IVa

<table>
<thead>
<tr>
<th></th>
<th>A5</th>
<th>A6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CV</td>
<td>6.135</td>
<td>6.038</td>
</tr>
<tr>
<td>Cst</td>
<td>7.183</td>
<td>6.404</td>
</tr>
</tbody>
</table>

Critical difference 1.048 (P<.05)

IVb

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bg1</td>
<td>4.269</td>
<td>2.327</td>
<td>4.885</td>
<td>12.038</td>
</tr>
<tr>
<td>B Dep</td>
<td>5.865</td>
<td>4.038</td>
<td>5.923</td>
<td>12.173</td>
</tr>
</tbody>
</table>

* Critical difference 1.436 (P<.05)*

IVc

<table>
<thead>
<tr>
<th></th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bg1,Cv</td>
<td>4.385</td>
<td>2.115</td>
<td>4.115</td>
<td>10.577</td>
</tr>
<tr>
<td>B Dep,Cv</td>
<td>5.731</td>
<td>4.462</td>
<td>5.731</td>
<td>11.577</td>
</tr>
<tr>
<td>Bg1,Cst</td>
<td>4.154</td>
<td>2.538</td>
<td>5.654</td>
<td>13.500</td>
</tr>
<tr>
<td>B Dep,Cst</td>
<td>6.000</td>
<td>3.615</td>
<td>6.115</td>
<td>12.769</td>
</tr>
</tbody>
</table>

* Critical difference 1.879 (P<.05)*
Analysis three. For this analysis, as before, the model was that for a 2x2x2x4 Analysis of Variance for repeated measures. The method of coding S's on independent variables A and C was the same as for analysis one (pp. 19 and 20).

The method of coding S's on Factor B, however, was altered. Instead of using the mood measure obtained on the day the S's responded to the pictures, the average mood of each S was computed for the eleven repetitions of the Personal Feeling Scales (see Appendix III). A median split was done on these averages, and those S's falling above the median were classified as elative mood S's, and those below as depressive mood S's. The method of scoring a S's responses to the pictures was the same as for analysis one (p. 20). The results of this analysis appear in Table V. Again, consider the main effects and interactions.

Main effects. As in the first analysis, the main effect for pictures was the only one which exceeded the value necessary for significance ($P < .05$). This again indicates that the S's responded with differing accuracy to the four pictures. Non-significant results for the other main effects again lead to lack of support for H_3 and H_5.*

Interactions. As in analysis two, none of the interactions was significant ($P < .05$). Consequently, the following hypotheses were

* These findings are interpreted in analysis one, p. 21.
not confirmed: $H_{9a}, H_{9b}, H_{1}, H_{2}, H_{4}, H_{5}, H_{7a}, H_{7b}, H_{8a}, H_{8b}, H_{11}$*

and H_{10}.** The relevant component means will again be examined
(Table VI) since the F Test is an overall test of mean differences.
This will facilitate later discussion of the hypotheses.

Observing the components of the BxP interaction, it is found that
one of the BxP_2 components of interaction was significant ($F < .05$).
Thus, again for picture two, an elative stimulus, elative S's were
significantly more accurate in their perceptions of aesthetic com-
munication than were depressive S's. This would be expected from H_1
and is consistent with the findings of analysis one (p. 23) and analy-
sis two (p. 30).

In examining the components of the $AxBxP$ interaction, it is found
that one of the $AxBxP_2$ components of interaction was significant ($F < .05$).
Consequently, for picture two, an elative stimulus, elative mood S's
who were sensitizers were significantly more accurate in their percep-
tions of aesthetic communication than were depressive mood S's who were
sensitizers. This would be anticipated from H_5, and is consistent with
the findings of analysis one (p. 23).

Looking at the components of the $BxCxp$ interaction, one finds that
one $BxCxp_1$ and one $BxCxp_2$ component were significant. For picture one,
an elative stimulus, variable mood depressive S's were significantly
more accurate in their perceptions than were stable mood depressive S's.

* These findings are interpreted in analysis one, pp. 21-23).

** This finding is interpreted in analysis two, p. 29.)
This finding is consistent with that of analysis one, p. 23. For picture two, which is also an elative stimulus, variable mood elative S's were more accurate in their perceptions of aesthetic communication than were variable mood depressive S's. This finding is consistent with that of analysis one, p. 20 and analysis two, p. 26. These results would be anticipated from H7b.

Examination of the AxBxCxP interaction leads to the discovery that one of the AxBxCxF1 components was significant ($P < .05$). Thus, as in analysis one, p. 23, variable mood elative S's who were sensitizerizers were significantly more accurate in perceiving elative aesthetic stimuli (picture one) than stable mood depressive S's who were represors. This would be expected from H10.

In this analysis, there was no support for H2, H3, H4, H6, H7a, H8a, H8b, H9a, H9b, and H11. Hypotheses 1, 5, 7b, and 10 received modest support.
TABLE V

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td>1,226.27</td>
<td>87</td>
<td>5.25</td>
<td>-</td>
</tr>
<tr>
<td>A*</td>
<td>5.25</td>
<td>1</td>
<td>5.25</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>12.00</td>
<td>1</td>
<td>12.00</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>5.75</td>
<td>1</td>
<td>5.75</td>
<td>-</td>
</tr>
<tr>
<td>AxB</td>
<td>51.78</td>
<td>1</td>
<td>51.78</td>
<td>3.68</td>
</tr>
<tr>
<td>AxC</td>
<td>9.24</td>
<td>1</td>
<td>9.24</td>
<td>-</td>
</tr>
<tr>
<td>BxC</td>
<td>15.99</td>
<td>1</td>
<td>15.99</td>
<td>1.14</td>
</tr>
<tr>
<td>AxBxC</td>
<td>.22</td>
<td>1</td>
<td>.22</td>
<td>-</td>
</tr>
<tr>
<td>Error</td>
<td>1,126.04</td>
<td>80</td>
<td>14.08</td>
<td>-</td>
</tr>
<tr>
<td>Within</td>
<td>4,334.25</td>
<td>264</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pictures</td>
<td>881.60</td>
<td>3</td>
<td>293.87</td>
<td>21.56**</td>
</tr>
<tr>
<td>AxF</td>
<td>27.28</td>
<td>3</td>
<td>9.09</td>
<td>-</td>
</tr>
<tr>
<td>BxF</td>
<td>45.17</td>
<td>3</td>
<td>15.06</td>
<td>1.11</td>
</tr>
<tr>
<td>CxF</td>
<td>51.65</td>
<td>3</td>
<td>17.22</td>
<td>-</td>
</tr>
<tr>
<td>AxBxP</td>
<td>4.21</td>
<td>3</td>
<td>1.40</td>
<td>-</td>
</tr>
<tr>
<td>AxCxP</td>
<td>35.34</td>
<td>3</td>
<td>11.78</td>
<td>-</td>
</tr>
<tr>
<td>BxCxP</td>
<td>27.77</td>
<td>3</td>
<td>9.26</td>
<td>-</td>
</tr>
<tr>
<td>AxBxCxP</td>
<td>10.73</td>
<td>3</td>
<td>3.58</td>
<td>-</td>
</tr>
<tr>
<td>Error Within</td>
<td>3,270.50</td>
<td>240</td>
<td>13.63</td>
<td></td>
</tr>
</tbody>
</table>

*Ag - Sensitizer Bx1 - Elation Cx - Variable Mood
Ag - Repressor BDep - Depression CxSt - Stable Mood

** Significant at below the .05 level
TABLE VI

Tables of Means

VIA*

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{E1}</td>
<td>15.618</td>
<td>13.727</td>
<td>16.409</td>
<td>12.386</td>
</tr>
<tr>
<td>B_{Dep}</td>
<td>15.227</td>
<td>12.341</td>
<td>16.341</td>
<td>12.955</td>
</tr>
</tbody>
</table>

* Critical difference 1.298 ($P < .05$)

VIb*

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_S, B_{E1}</td>
<td>16.682</td>
<td>13.682</td>
<td>16.864</td>
<td>13.136</td>
</tr>
<tr>
<td>A_S, B_{Dep}</td>
<td>14.955</td>
<td>11.727</td>
<td>16.136</td>
<td>13.000</td>
</tr>
<tr>
<td>A_R, B_{E1}</td>
<td>14.955</td>
<td>13.773</td>
<td>15.955</td>
<td>11.636</td>
</tr>
<tr>
<td>A_R, B_{Dep}</td>
<td>15.500</td>
<td>12.955</td>
<td>16.545</td>
<td>12.909</td>
</tr>
</tbody>
</table>

* Critical difference 1.836 ($P < .05$)

VIc*

<table>
<thead>
<tr>
<th></th>
<th>P_1</th>
<th>P_2</th>
<th>P_3</th>
<th>P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_{E1}, C_{V}</td>
<td>16.273</td>
<td>13.727</td>
<td>15.955</td>
<td>12.045</td>
</tr>
<tr>
<td>B_{Dep}, C_{V}</td>
<td>16.227</td>
<td>11.864</td>
<td>16.455</td>
<td>13.682</td>
</tr>
<tr>
<td>B_{E1}, C_{St}</td>
<td>15.364</td>
<td>13.727</td>
<td>16.864</td>
<td>12.727</td>
</tr>
<tr>
<td>B_{Dep}, C_{St}</td>
<td>14.227</td>
<td>12.818</td>
<td>16.227</td>
<td>12.227</td>
</tr>
</tbody>
</table>

* Critical difference 1.836 ($P < .05$)
<table>
<thead>
<tr>
<th></th>
<th>(P_1)</th>
<th>(P_2)</th>
<th>(P_3)</th>
<th>(P_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_{B_1}^{E_1} - C_V)</td>
<td>17.182</td>
<td>13.273</td>
<td>15.636</td>
<td>13.182</td>
</tr>
<tr>
<td>(A_{B_2}^{B_1} - C_{St})</td>
<td>14.273</td>
<td>13.545</td>
<td>15.909</td>
<td>12.273</td>
</tr>
<tr>
<td>(A_{B_3}^{B_2} - C_V)</td>
<td>15.727</td>
<td>11.364</td>
<td>15.727</td>
<td>13.818</td>
</tr>
<tr>
<td>(A_{B_4}^{E_1} - C_{St})</td>
<td>14.545</td>
<td>13.364</td>
<td>15.636</td>
<td>12.364</td>
</tr>
</tbody>
</table>

* Critical difference 2.597 (\(P < .05 \))
Analysis four. The author and his advisor, Dr. Louis Midorf, were curious to see if S's within each of the eight cells would respond homogeneously when the artist's judgments were not considered. Would the responses of the S's in the various groups also be heterogeneous? To obtain information about this, the author again used the model for a 2x2x2x4 Analysis of Variance for repeated measures. The S's were again coded on the independent variables as in analysis one, pp. 19 and 20. The activity scales described in analysis two, p. 20 were used. The S's scores for the activity scales for the four pictures were obtained and those scores were used in the present analysis. The results of the analysis appear in Table VII. In this analysis, examination of all the main effects and interactions leads to only one main effect that was significant (P < .05), and that was the main effect for pictures. This indicates that the S's responded differently on the activity dimension to the four pictures (Xp1 = 17.63, Xp2 = 24.20, Xp3 = 19.77, Xp4 = 18.01). In addition, an examination of the relevant component means for the main effects and interactions leads to no significant results.

Since the artist's judgments were not considered, there could be no confirmation or lack of confirmation of the hypotheses in this analysis.* All that can be said is that S's within the cells did not respond statistically more similarly to each other than they did to S's in other cells.

* Since this analysis is not relevant to our hypotheses, it will not be considered in the discussion section.
Before discussing the meaning and implications of the findings of analyses one, two, and three, the hypotheses which gained modest support will be reviewed:

- Analyses one, two, and three - H_1 and H_{1b}
- Analyses one and two - H_{9a}
- Analyses one and three - H_{10}
- Analysis three - H_5

Now the meaning and implications of these findings will be discussed.
TABLE VII

Analysis of Variance Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Between</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>104.06</td>
<td>1</td>
<td>104.06</td>
<td>3.52</td>
</tr>
<tr>
<td>B</td>
<td>9.54</td>
<td>1</td>
<td>9.54</td>
<td>-</td>
</tr>
<tr>
<td>AxB</td>
<td>3.29</td>
<td>1</td>
<td>3.29</td>
<td>-</td>
</tr>
<tr>
<td>AxC</td>
<td>2.95</td>
<td>1</td>
<td>2.95</td>
<td>-</td>
</tr>
<tr>
<td>BxC</td>
<td>1.50</td>
<td>1</td>
<td>1.50</td>
<td>-</td>
</tr>
<tr>
<td>AxBxC</td>
<td>12.11</td>
<td>1</td>
<td>12.11</td>
<td>-</td>
</tr>
<tr>
<td>Error</td>
<td>2,294.35</td>
<td>96</td>
<td>23.90</td>
<td></td>
</tr>
<tr>
<td>Within</td>
<td>14,080.25</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pictures</td>
<td>2,941.87</td>
<td>3</td>
<td>980.62</td>
<td>27.16**</td>
</tr>
<tr>
<td>A×P</td>
<td>151.05</td>
<td>3</td>
<td>50.35</td>
<td>1.39</td>
</tr>
<tr>
<td>B×P</td>
<td>46.24</td>
<td>3</td>
<td>15.41</td>
<td>-</td>
</tr>
<tr>
<td>C×P</td>
<td>189.95</td>
<td>3</td>
<td>63.32</td>
<td>1.75</td>
</tr>
<tr>
<td>A×B×P</td>
<td>88.04</td>
<td>3</td>
<td>29.33</td>
<td>-</td>
</tr>
<tr>
<td>A×C×P</td>
<td>42.00</td>
<td>3</td>
<td>14.00</td>
<td>-</td>
</tr>
<tr>
<td>B×C×P</td>
<td>112.60</td>
<td>3</td>
<td>37.53</td>
<td>1.04</td>
</tr>
<tr>
<td>AxBxC×P</td>
<td>90.39</td>
<td>3</td>
<td>30.13</td>
<td>-</td>
</tr>
<tr>
<td>Error</td>
<td>10,398.11</td>
<td>286</td>
<td>36.11</td>
<td></td>
</tr>
</tbody>
</table>

Ag - Sensitizer
AR - Repressor
Br1 - Elation
Br2 - Depression
Cv - Variable Mood
Csb - Stable Mood

** Significant at below the .05 level
DISCUSSION

The initial hypotheses will be considered in terms of the results of the experiment. With the exception of the stimulus variable, the hypotheses were constructed around three variables:

1. **Elation-depression.** In their perceptions of elative stimuli, it was expected that elative S's would be more accurate than depressive S's. Conversely, it was expected that depressive S's would be more accurate than elative S's when the stimulus was depressive.

2. **Variability-stability.** It was expected that variable mood S's would be more accurate than stable mood S's regardless of the stimulus.

3. **Sensitization-repression.** It was anticipated that sensitizers would be more accurate than repressors, regardless of the stimulus. The apparent logical combinations of these variables were then taken and stated in the form of hypotheses.

In examining the results of the analyses, support is found for some of the hypotheses. Considering, however, that in every instance there were individual comparisons of relevant means which were not significant, this support was only modest. The hypotheses which received some support will now be considered.

Elation-depression. It was expected that elative mood S's would be more accurate in their perceptions of elative stimuli than depressive S's because, in one mood an individual perceives and encounters different things from those he does in another mood (Heidegger, p.175).
It was also expected because, "although moods are not object directed, they absorb the structure of the object world, coloring all perceptions of things and events" (Jacobsen, p. 86). Thus, since moods affect one's perceptions, veridical perceptions would be expected where the mood and aesthetic stimuli were consonant (e.g., elative mood and elative stimulus), and distorted perceptions where they were not (e.g., depressive mood and elative stimulus). Partial support is found for this in analyses one, two, and three where \(H_1 \) was supported. That is, in these analyses, elative mood S's were statistically more accurate in their perceptions of elative stimuli than were depressive mood S's.

Looking at analyses two and three, additional support is found for \(H_1 \). Thus, elative mood S's who were sensitizers were statistically more accurate in their perceptions of elative aesthetic stimuli than were depressive mood S's who were sensitizers. Since the sensitization-repression factor was held statistically constant, one would anticipate that any difference in the two groups would be a function of differences in their mood state. This adds support to the assumption that one would have veridical perceptions where the mood and aesthetic stimuli were consonant and distorted perceptions where they were not.

Reviewing analyses one, two, and three, one finds support for \(H_{7b} \). Therefore, with elative aesthetic stimuli, the perceptions of variable mood elative S's were statistically more accurate than those of variable mood depressive S's. Inasmuch as the mood variability was statistically held constant while the elation-depression dimension was varied, the results again lend partial support to the expectation that where mood and stimulus are constant, perceptions will be more veridical than where they are not.
Mood variability-stability. It was thought probable that variable mood S's would be more accurate in their perceptions than stable mood S's because Wessman and Ricks found that the most general characteristic related to mood variability-stability was the contrast of the emotional openness of the variable mood people to the constriction of the stable mood people (Wessman & Ricks, pp. 186-187). If this is a valid characteristic, one would anticipate that even when a S's mood was not consistent with the stimulus, variable mood S's would be more accurate in their perceptions of the aesthetic communication than would be stable mood S's. It will be recalled from the comments above that analyses one, two, and three lend support to H7b (p. 43). Accordingly, with elative aesthetic stimuli, the perceptions of variable mood depressive S's were statistically more accurate than those of stable mood depressive S's. Because mood state was statistically held constant while the S's were varied on the mood-variability-stability dimension, the obtained results lend partial support to Wessman and Ricks' findings.

Interactions. Under the assumptions that:

1. With elative stimuli, elative S's will be more accurate in their perceptions of aesthetic communication than depressive S's;

2. Regardless of the stimulus, variable mood S's will be more accurate in their perceptions than stable mood S's;

3. Regardless of the stimulus, sensitizers will be more accurate in their perceptions than repressors;

it was expected that with an elative stimulus, variable mood elative S's who were sensitizers would be more accurate in their perceptions of aesthetic stimuli than would be stable mood depressive S's who
were repressors (H_{10}). Viewing analyses one and three (pp. 23 and 35), support is found for this hypothesis.

Conclusion. The hypotheses which received any support were clustered around two of the three cognitive variables. They were elation-depression and mood stability-variability.

Elation-depression. Considering the dimension elation-depression, the hypotheses which had some support were derived from the general assumption that elative S's would be more accurate than depressive S's in their perceptions of elative stimuli. The converse was never supported, (i.e., depressive S's were never more accurate than elative S's in their perceptions of depressive stimuli). The author here offers possible explanations.

The analyses in which hypotheses were confirmed were those in which the S's responses to pictures were compared to those of the artist, (analyses one, two, and three). In analyses one and three, the S was credited with responding correctly if his response was in the direction of the artist's response (i.e., the magnitude of the difference between a S's response and that of the artist was not considered). In analysis two, the magnitude of this difference was used and elative S's were shown to be more accurate than depressive S's, regardless of the stimulus (Factor B significant $P < .05$).

If one's mood does affect one's perceptions of stimuli, then the mood of the artist at the time he responded to the paintings is a variable which should have been controlled in the experiment. For example if the artist were in an elative mood at the time he responded to the pictures, it would be expected that his perceptions of the depressive stimuli would be distorted in the direction more congruent with his
mood state.* It would also be expected that this same distortion would occur in the perceptions of the elative S's. If this did occur, it would be a factor biasing the results in favor of the elative S's. That is, since one would not expect the depressive S's responses to depressive stimuli to be distorted, the obtained magnitude of difference between the scores of elative and depressive S's might in part be an artifact of the artist's own mood. If the distortion were great enough, it could appear that elative S's were more accurate than depressive S's in their perceptions of depressive stimuli. It would be anticipated that this distortion would be most pronounced when the magnitude of the difference between the artist's and S's responses were considered. Thus, one would not be surprised at the results obtained in analysis three. In this analysis, elative S's were found to be significantly more accurate in their perceptions of both elative and depressive stimuli than depressive S's. The above argument is also a possible explanation of why depressive S's were never significantly better than elative S's in their perceptions of depressive stimuli. An alternate explanation might be the following:

In selecting Wessman and Ricks' Personal Feeling Scales to measure S's moods, the author made the implicit assumption that S's would be willing to have their personal lives invaded for the sake of science. Since the author had no opportunity to build rapport with the individual S's, it is altogether possible that some S's were not willing to em-

* Here we are assuming that the artist's mood at the time of his response to the pictures has particularly distorted his perception of the communication he originally intended to convey in his depressive paintings.
trust the most intimate details of their daily life to a stranger. They might have assumed that if they did not at least make some response, they would suffer the wrath of their professor. To avoid the wrath of the professor, and also to avoid revealing the details of their personal lives, they may have simply responded in a manner which would make them look comfortably elative and yet not make it obvious that they were giving inaccurate responses. If this occurred, the elative sample would have been artificially inflated, confounding the elation-depression variable, so that getting overall significance would be improbable. Since the mean of the S's for the mood measures was 6.6, which is indicative of a moderately elative mood state, this is a possible explanation of the observed overall non-significant results. The above arguments are obviously speculative, and further research must determine the validity of their merit.

Mood stability-variability. The cognitive variable, mood stability-variability will now be considered. The assumption that variable mood S's would be more accurate in their perceptions of aesthetic communication than stable mood S's received support only in those instances where the mood variability-stability variable was in interaction with other variables, H7b and H9a (pp. 30 and 29). Even though those variables were held constant statistically, the independent effect of mood variability-stability cannot be ascertained with certainty. Again a possible reason for the obtained results will be presented.

Return once again to the previous discussion about the use of Wessman and Ricks' Personal Feeling Scales. If S's continually responded in the mildly elative direction, this would greatly decrease the measure of their mood variability from that which would here be
expected had they responded accurately. Hence, we may not have an accurate measure of variable and stable mood S's. This confounding could easily have lead to the observed non-significant results. It may be that in dealing with large samples where the experimenter cannot establish individual rapport, an indirect measure of mood should be used to accurately assay their mood states and the fluctuations of their mood states. Again, this is speculation, and the answers must come from future research.

Sensitization-repression. It was predicted that sensitizers would be more accurate than repressors, regardless of the stimulus, because results with many different response measures suggest that individuals fall along a continuum with respect to the characteristic way in which they respond to threatening stimuli. At one extreme of this continuum are behavior mechanisms of a predominantly avoiding (denying, repressing) type, while at the other extreme are predominantly approaching (intellectualizing, obsessional) behaviors. Repressors were defined as those exhibiting a relatively elevated threshold for emotional material (defense, disruption) while sensitizers were defined as those exhibiting a relatively lowered threshold for such material (Byrne, 1961, pp. 334-335). No independent support was found for this prediction in the analyses. Sensitizers were found to be statistically more accurate than repressors only when this variable was in interaction with other variables. Since those other variables were not held constant statistically, not even tenuous comments can be made about the effect of this cognitive variable. A possible explanation of the observed results follows.
It is possible that significant results on the sensitization-repression dimension were not obtained because a median split was used to categorize S's. Approximately fifty per cent of the sample fell within plus or minus ten points of the median, which was thirty-nine. It is possible that the large group around the mean so confounded sensitizers and repressors that the effects of actual sensitizers and repressors were masked. The use of a median split, in like manner, may have also been a cause for the lack of overall significance for the other cognitive variables. If the N had been large enough so that only those S's who were extremes of the three cognitive variables were used, the results might have been quite different. Again the answer must lie in future research.

One further possible reason for the observed results on all of the cognitive variables will now be offered. It is possible that the artist was biased in responding to his own paintings. For example, one of the scales on the semantic differential is true-false (Appendix II). It was found that the artist responded in the extreme true direction for each of his paintings. For the artist, this scale may be more an indication of his evaluation of the painting than his intended communication. This might have occurred more subtly on other scales so that the artist was not, in fact, indicating his intended communication accurately. If he did not accurately indicate his intended communication, this would have been confounded in the measure of the dependent variable and quite easily could have led to the observed non-significant results. And, again speculation. Now suggestions for further research will be considered.
Suggestions for further research. A model will be presented here for a future experiment which might eliminate some of the possible sources of error which may have been present in this experiment.

A random sample would be drawn from the general population and this sample would be measured on the three independent cognitive variables. Only those S's would be used who scored at the extremes on the variables, since at this point the interest is simply, "Do these variables affect the aesthetic communication process". This would necessitate a large N so that ultimately there would be an n of ten to fifteen S's in each of the eight cells. The S's would be tested on the criterion variable as follows: One half of the S's in each cell would be randomly assigned to receive the elative and depressive stimuli in the order abba, and the other half of the S's would receive them in the order baab. This should control for any unique order effects.

In all of the mood measurements an indirect measuring instrument would be used to minimize the possibility of inaccurate responses. A reputable artist would be selected and commissioned to paint two elative and two depressive non-representational paintings. His mood would be measured while he was painting the pictures, and again when he responded to the paintings. If there was disparity in his mood at the two times, this would be accounted for in the hypotheses. A randomly selected group of artists would also be used to determine if their perceptions of two paintings differed significantly from 1. those of the artist, and 2. those of the S's in the experiment. Their moods at the time of responding would, of course, be considered. If there were significant differences in the responses of artists whose mood states were consonant with that of the artist, and the artist, the possibility
would have to be considered that the artist's personal investment with his own paintings lead to distortions in his perceptions of his originally intended communication. It might then be decided that a more objective means of determining the artist's intended communication must be developed. For instance, this might be achieved by reducing the semantic scales to those which are more heavily loaded on the activity factor. Then several artists could be requested to paint pictures that were extremely active, excitable, sharp, and tense. They could also be requested to paint other pictures which were extremely passive, calm, dull, and relaxed. These paintings could then be used in experimentation on the effects of the three cognitive variables on the aesthetic communication process. This refinement of the present experiment would certainly give more information on the relation of the three cognitive variables, elation-depression, sensitization-repression, and mood variability-stability, to the aesthetic process. The experiment would also probably identify other important variables to be used in future refinements of that experiment.
BIBLIOGRAPHY

APPENDIX I

Picture 1
APPENDIX I

Picture 2
APPENDIX I

Picture 3
APPENDIX II

Semantic Differential Scales

<table>
<thead>
<tr>
<th>ACTIVE</th>
<th>Passive</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEEP</td>
<td>Shallow</td>
</tr>
<tr>
<td>CONTRACTING</td>
<td>Expanding</td>
</tr>
<tr>
<td>POWERFUL</td>
<td>Powerless</td>
</tr>
<tr>
<td>FAIR</td>
<td>Unfair</td>
</tr>
<tr>
<td>HEAVY</td>
<td>Light</td>
</tr>
<tr>
<td>GOOD</td>
<td>Bad</td>
</tr>
<tr>
<td>TIGHT</td>
<td>Loose</td>
</tr>
<tr>
<td>FALSE</td>
<td>True</td>
</tr>
<tr>
<td>COLD</td>
<td>Hot</td>
</tr>
<tr>
<td>PLEASANT</td>
<td>Unpleasant</td>
</tr>
<tr>
<td>SAD</td>
<td>Happy</td>
</tr>
<tr>
<td>EXCITABLE</td>
<td>Calm</td>
</tr>
<tr>
<td>SOFT</td>
<td>Hard</td>
</tr>
<tr>
<td>STRONG</td>
<td>Weak</td>
</tr>
<tr>
<td>FAVORABLE</td>
<td>Unfavorable</td>
</tr>
<tr>
<td>SWEET</td>
<td>Sour</td>
</tr>
<tr>
<td>MEAK</td>
<td>Bold</td>
</tr>
<tr>
<td>SHARP</td>
<td>Dull</td>
</tr>
<tr>
<td>COMPLEX</td>
<td>Simple</td>
</tr>
<tr>
<td>CRUEL</td>
<td>Kind</td>
</tr>
<tr>
<td>FEMININE</td>
<td>Masculine</td>
</tr>
<tr>
<td>FOOLISH</td>
<td>Wise</td>
</tr>
</tbody>
</table>
APPENDIX II

ROUNDED

ANGULAR

RELAXED

TENSE
APPENDIX III
Wessman and Ricks' Personal Feeling Scales

I. FULNESS vs. EMPTINESS of LIFE (how emotionally satisfying, abundant or empty, your life felt today)

10. Consummate fulfillment and abundance.
8. Filled with warm feelings of contentment and satisfaction.
7. My life is ample and satisfying.
6. Life seems fairly adequate and relatively satisfying.
5. Some slight sense of lack, vague and mildly troubling.
4. My life seems deficient, dissatisfying.
3. Life is pretty empty and barren.
2. Desolate, drained dry, impoverished.
1. Grieving sense of emptiness, hollowness, void.

II. RECEP'TIVITY TOWARDS and STIMULATION by the WORLD (how interested and responsive you felt to what was going on around you)

8. Senses lively. Great interest and delight in everything around me.
7. Open and responsive to my world and its happenings.
5. Slightly disinterested and unresponsive.
3. Dull and apathetic. Almost no interest or desire for anything.
2. Mired down in apathy. My only desire is to shut out the world.
1. Life is too much trouble. Sick of everything, want only oblivion.

III. OWN SOCIABILITY vs. WITHDRAWAL (how socially outgoing or withdrawn you felt today)

10. Immensely sociable and outgoing.
9. Highly outgoing, congenial and friendly.
8. Very sociable and involved in things.
7. Companionable. Ready to mix with others.
6. Fairly sociable. More or less accessible.
5. Not particularly outgoing. Feel a little bit unsociable.
4. Retiring, would like to avoid people.
3. Feel detached and withdrawn. A great distance between myself and others.
2. Self-contained and solitary.
1. Completely withdrawn. Want no human contact.
APPENDIX III

IV. ENERGY vs. FATIGUE (how energetic, or tired and weary, you felt)

8. Great energy and drive.
7. Very fresh, considerable energy.
6. Fairly fresh. Adequate energy.
2. Tremendously weary. Nearly worn out and practically at a standstill. Almost no resources.
1. Utterly exhausted. Entirely worn out. Completely incapable of even the slightest effort.

V. ELATION vs. DEPRESSION (how elated or depressed, happy or unhappy, you felt today)

9. Very elated and in very high spirits. Tremendous delight and buoyancy.
8. Elated and in high spirits.
7. Feeling very good and cheerful.
6. Feeling pretty good, "O.K."
4. Spirits low and somewhat "blue."
3. Depressed and feeling very low. Definitely "blue."
1. Utter depression and gloom. Completely down. All is black and leaden.

VI. IMPULSE EXPRESSION vs. SELF-RESTRAINT (how expressive and impulsive or internally restrained and controlled, you felt)

10. Wild and complete abandon. No impulse denied.
8. Quick to act on every immediate desire.
7. Allowing my impulses and desires a pretty free rein.
6. Moderate acceptance and expression of my own needs and desires.
5. Keep a check on most whims and impulses.
4. On the straight and narrow path. Keeping myself within strong bounds.
3. Obeying rigorous standards. Strict with myself.
APPENDIX III

2. Refuse to permit the slightest self-indulgence or impulsive action.