CALIFORNIA STATE UNIVERSITY, NORTHridge

THE MEASUREMENT OF GRAPHICS
IN ANALYZING NETWORK NEWS

A thesis submitted in partial satisfaction of the
requirements for the degree of Master of Arts in

Mass Communication

by

Nancy Hoerle Carter

May, 1975
The thesis of Nancy Hoerle Carter is approved:

California State University, Northridge
May, 1975
To My Husband,
With Love and Thanks
TABLE OF CONTENTS

ABSTRACT .. vii

Chapter

I. INTRODUCTION ... 1
 The Graphics ... 3
 The Measurement of Graphics 5
 Limitations .. 6
 Summing Up ... 7

II. SURVEY OF THE LITERATURE 9
 The Study of Graphics 9
 The Use of the Semantic Differential 11
 Analysis of Television News Presentations 14
 Overview ... 17

III. METHODOLOGY ... 19
 A Technique for Measuring Meaning 19
 Interpreters ... 22
 The Courtroom Illustrations 23
 Procedure ... 25
 Limitations of the Experiment 26

IV. ANALYSIS OF THE DATA 28
 'Profile' Frequency Distribution 28
 Group Analysis 38
LIST OF TABLES

1. Matrix Design for Comparisons 24
2. Profiles of the Illustrations 30
3. Richardson Refined Profiles 33
4. Agnew Refined Profiles 35
5. Hoffman Refined Profiles 36
6. Combined Refined Profiles 37
7. Number of Scales as Used by Each Group ... 39
8. Group Demographics 41
9. Eigenvalues and Represented Proportion of Variance 43
10. Rotated Factor Loadings 44
11. Analysis of Variance Summary Table for Factors 47
12. Cell Means for Analysis of Variance 48
ABSTRACT

THE MEASUREMENT OF GRAPHICS

IN ANALYZING NETWORK NEWS

by

Nancy Hoerle Carter

Master of Arts in Mass Communications

May, 1975

Recent communication research designed to analyze television network news has limited itself, to a great extent, to measuring only the audio content. Concern with the rejection of the video component as irrelevant, overrated or unmeasurable, led to this study in which the meaning of graphic content is used as the data base to compare networks' presentations of a news event.

An experiment was designed in which the semantic differential technique was applied to measuring the meaning of the courtroom drawings used in reporting the Spirio Agnew Income Tax Evasion Trial. The analysis of data based on the subject's perceptions of the drawings revealed that there were significant differences between the three networks' pictorial treatments. NBC's illustration featuring Judge Walter Hoffman was perceived as being significantly different than CBS's of ABC's drawing. Significant differences were also found
between the three networks' illustrations of Spirio Agnew and Elliot Richardson.

The methodological implications of the findings from the experiment suggest that when the semantic differential is applied to television news graphics, factors differing from those of previous verbal and aesthetic studies are likely to emerge. The factors identified suggest the assessment of these courtroom drawings as editorial comment expressed graphically, rather than an assessment of aesthetic qualities.

The experimental design used in the study demonstrated that graphics can quantitatively be measured and used as units of analysis in discerning differences between networks' presentations. This demonstration lends support to the premise that an analysis of television news is not complete without an analysis of graphic content.

This study has attempted to adapt a technique to the measurement of graphic content which, when combined with present methods of audio analysis, could provide a more complete analysis of television news presentations.
CHAPTER I

INTRODUCTION

Recent communication research designed to analyze differences between television network news has, to a great extent, limited itself to analyzing news content by coding symbols or items into various categories defined and interpreted by the researcher. Such content analyses have primarily measured audio content only. In many cases, researchers have been content to use scripts alone.

Such studies which have considered television as an audio communication have neglected or rejected the importance of the visual component as a means of communication.

A major concern with this research is that it measures only one aspect of a communication which has at the same time, an audio and video dimension. To apply a content analysis which dismisses one dimension is to limit researchers' findings.

In a recent study using a content analysis, researchers asserted that if symbol coding techniques revealed no significant differences between coding audio as opposed to audio and video they could then,

1) conclude that the visual component of television seems over-rated as a source of audience effects; 2) reject the applicability of standard symbol coding procedures as an instrument for getting at visual effects and proceed to develop other more sensitive techniques; or 3) conclude that one could more justifiably proceed to use transcripts of television news as a meaningful data base.
Unfortunately, many researchers are willing to accept the supposition that television visuals are over-rated as a means of communication and tend to deal only with the audio dimension when analyzing television news.

It is the contention of this study that before the importance of video content can be dismissed other forms of methodology need to be applied.

It seems ironical that researchers are so apt to dismiss a dimension of communication which television newsmen regard as necessary.

In recent years television news has come to rely heavily upon aesthetics as an avenue for presenting the days happenings. Network and local markets alike give precedence to a story accompanied by graphics. Often, reasons given for such reliance are that graphics provide an efficient, illustrative means of presenting complicated material; they lend credibility to a news story; and they provide the viewer with a more personalized view of the news event.

If gatekeepers of television newscasts do indeed, place such a high emphasis on video coverage, it becomes an intrinsic part of the broadcast which this study contends should not be omitted in an analysis of that communication.

To adequately deal with this video dimension then, future research in this area seems to necessitate new methodology or innovations in the application of existing methodology. This study is an attempt to deal with the video dimension of television news to provide a measuring technique which could supplement present methodology in yielding a more complete analysis of television news.
The premise of this study is that graphics in television newscasts can quantitatively be measured and used as units of analysis in television research.

The Graphics

Films, slides, photos, drawings, illustrations, etc. are often used as graphics in television broadcasts. For this study, to control the number of variables, 'graphics' will be limited to static, still drawings. Specifically, courtroom illustrations.

A recent article in Broadcasting described the use of courtroom illustrations in television news as, "A marriage of one of the oldest means of communications with one of the newest, brought about by the courts' continued refusal to admit any means of communication more advanced than pen or pencil." ²

Cameras and other electronic recording equipment have long been barred from courtrooms and until that ban is lifted, the American television audience must rely on the interpretations provided by courtroom artists for any visual representations.

Television's reliance on these drawings emphasize their importance as visual communication in reporting a news event.

This visual communication is not a live, unedited view of the courtroom captured by the television camera. These illustrations are interpretations of a news event by very individual artists. At the same time these artists are choosing what their journalistic sense tells them is worth drawing, they are sketching in such a way to emphasize the essence of a particular person or activity. They realize that the public must immediately know who is being portrayed
when that drawing is shown on the television screen.

As a part of television's reporting court trials, these forms of communication take on an importance of their own. This importance makes these drawings an excellent data base in the study of graphic measurement as a means to analyze television news.

The courtroom drawings used in reporting the Spirio Agnew Income Tax Evasion Trial were conveniently available for use in this study as a result of a project conducted by a Media Analysis class at California State University, Northridge.

In the fall of 1973, a group of graduate students, advised by Professors Samuel Feldman and Joseph Webb obtained from The Television News Archive of Vanderbilt University subject matter tapes consisting of all stories concerning Spirio Agnew which were presented on the three networks' (NBC, CBS, ABC) regular evening news programs during the time of the trial. The video tapes were used to evaluate the networks' treatment of Agnew on the day he announced his resignation as Vice President of the United States.

The video tapes, which were kept on file at the California State University, Northridge Audio Visual Department, contained the courtroom drawings the networks used in covering the Agnew trial. Nine of these illustrations were selected as the graphics for use in this study.

Although these particular drawings were chosen because of their availability, they are representative of other courtroom drawings which may be used in making a similar graphic analysis.

These illustrations were advantageous for several reasons:
1) They represented the three networks' courtroom coverage of a specific news event, thus eliminating differences in artistic techniques as a result of a time lapse. 2) Illustrations featuring the same individuals were used on all three networks. Hence, comparisons could be made concerning each network's representation of a particular figure in the same courtroom setting. 3) A more detailed analysis of the Agnew video tapes made by Feldman and Webb resulted in their article, "How TV Networks Covered Agnew's 'Day of Infamy'." Comparisons between their observations concerning the courtroom sketches and the findings of this study is then possible.

The Measurement of Graphics

Accepting the earlier stated reasoning by Pride and Wamsley that if one, "Rejects the applicability of standard symbol coding procedures as an instrument for getting at visual effects," one must then, "proceed to develop other more sensitive techniques." Therefore, an important aspect of this study will be the selection of a measuring technique which can quantitatively measure graphics, and the application of that technique in terms of how it performs or fails to perform. Special emphasis will be placed on accessing the limitations and advantages this technique demonstrates in measuring illustrations.

A focal point of this study is its attempt to design an experiment in which such a graphic analysis can be used in the study of television news.

The intent of the experiment is to analyze television network
news by measuring the 'meaning' of graphics used within television newscasts. By measuring audience perceptions of the courtroom drawings used by the networks in reporting the Spirio Agnew trial, the meaning of these illustrations can be used to analyze differences or similarities between and within the networks' presentations.

The hypothesis of this experiment is that a television viewing audience will perceive differences between the three major networks' pictorial presentation and at the same time, perceive patterns of similarities within illustration styles of a particular network artist.

Limitations

This study is not intended to provide a complete method of analysis nor does it suggest that the application of the experimental design be used as a sole tool in analyzing coverage of a news event. Rather it is intended that this study test a possible measuring technique which can be used to supplement present methodology in achieving a more accurate, complete analysis of television news.

The exploratory nature of the study makes the control of variables difficult. In designing the experiment, or in the application of the measuring technique, variables unaccounted for are likely to emerge. Although this may effect the internal validity of the study, the emergence of such variables can be noted and identified for future research designs.

As stated earlier, there are many different kinds of graphics used in television news. The particular illustrations chosen for
this study are not meant to represent all of television's aesthetic communication, but are rather a starting point for assessing graphic meaning. Other aesthetics may indeed provoke different results, but hopefully the development of the experimental design can later be successfully applied to other non-verbal message forms used in television news.

Summing Up

In summary then, the purpose of this study is to suggest that the video dimension of television news is indeed an important aspect of communication and that it cannot readily be dismissed in television research. Support of this premise is to be provided by designing an experiment in which specific graphic content can quantitatively be measured to discern differences between and within network news presentations.
FOOTNOTES FOR CHAPTER I

2 "TV Journalism Relies Upon Old Art Form to Cover Court for Newer One," Broadcasting, January 13, 1975, p. 20.

CHAPTER II

SURVEY OF THE LITERATURE

Because this study is combining three areas of research; the study of graphics, the use of the semantic differential, and the analysis of television news presentations, a review of relevant literature necessitates touching, at least briefly, on all three areas.

The Study of Graphics

Many studies dealing with illustrations and pictures in mass communication to date have been concerned with readership or attention value of the graphics. These researchers have equated the importance of the illustration with its ability to stimulate interest.

Little research has been done concerning the subject matter or composition of graphics used in mass communication.

In this study, emphasis is placed on decoding the communicative message of illustrations, specifically in this study, the courtroom drawings.

Seth Spaulding in a summarization of "Research On Pictorial Illustrations," cited in Audio Visual Communication Review, expresses his concern with the decoding of graphics. He says that illustrations, to be an effective communication medium, must not only interest the viewer but must be interpreted by him accurately. And since illustrations involve degrees of abstraction, they are interpreted
based on the viewers past experiences. Therefore, the presenter (encoder) should carefully consider the intended viewers previous artistic and environmental experiences.

For the present study, Spaulding's findings would seem to indicate that courtroom artists, to produce effective communicative illustrations, must consider the viewers experience with, and ability to interpret courtroom scenes.

These encoders must be concerned with those who are decoding the messages since the decoders give meaning to the messages.

Many studies dealing with non-verbal communication have explored the various cues a decoder extracts from a message to interpret meaning.

Jeffrey G. Shapiro in his article, "Responsivity to Facial and Linguistic Cues," deals with decoding cues. He was particularly concerned with situations in which communication involved contradictory cues; messages in which facial cues may be contradictory to linguistic cues. For example, how an individual would respond to an angry voice coming from a smiling face.

To investigate this, 77 subjects were given booklets which contained forty-six combinations of faces and sentences. Thirty-two of the face sentence combinations were inconsistent in emotional communication as judged by previous raters. The subjects were told to rate the words and faces for degree of pleasantness on a nine-point self-anchor scale.

The results showed that individuals could be reliably
differentiated according to facial or linguistic cues. Some subjects respond consistently more to signs originating in the facial expressions and others to signs originating in verbal expressions.

The importance of these results for the present study lies in the contention that verbal content of television news is not sufficient in itself to make accurate analysis possible. If, in fact, the video portion of broadcast were in contradiction to the audio component, some viewers would take their cues for meaning from the audio, and others from the video. An analysis of such broadcasts would necessitate an analysis of both forms of communication to yield a complete finding.

Even though there has been very little research done dealing specifically with the content of illustrations used in mass communication, literature from related fields seems to support this study's contention that graphics used as a means of communication utilize both encoding and decoding processes, much in the same way as linguistic or written material does. The lack of attention graphics have been accorded by many media researchers to date, emphasizes the lack of a measuring technique suited for their analysis.

The Use of the Semantic Differential

The semantic differential technique has often been used to measure aesthetics in non-verbal research. Careful examination of the technique illustrates its possibilities for application to studies of mass media, particularly video analyses. A review of research utilizing the semantic differential helps clarify the advantages for such application.
One extensive study of aesthetics was conducted by William T. Tucker, University of Illinois, in 1955. The study's significance in correlation with this endeavor is its use of the semantic differential technique to measure graphics.

As part of his study, Tucker hypothesized that artists and non-artists would judge paintings differently. To demonstrate this difference, he judged subjects judgments of representational paintings as compared with non-representational (abstract) paintings.

Eleven paintings were presented on projected slides to 33 non-artists and 10 artists. They were allowed one minute to view each picture before recording judgments on a differential form containing 40 scales. The D^2 method of factoring was used to define the structures of judgments.

The data from both subject groups, when analyzed over all 11 paintings, generated three factors (comparable to those obtained by Osgood and Suci for verbal concepts): activity, evaluative and potency. Thus it would seem when paintings are analyzed using the semantic differential, the results to be expected may be quite similar to those of linguistic studies using the same technique.

Other studies applying the semantic differential technique to the study of aesthetics have involved perceptions of pictorial signs, studies in color meanings and effects of a musical background in stage and TV drama. The studies similarly share the finding that aesthetic perceptions seem semantically equivalent to linguistic signs.

Studies in mass communication which have used the semantic differential technique have usually been limited to the single
evaluative dimension of the semantic space and are therefore, studies involving attitude changes as reflected in the Evaluative Dimension. One exception is a study conducted by Percy H. Tannenbaum in 1955, "What Effect When TV Covers A Congressional Hearing?" This study was one of the first to use an actual television telecast to analyze changes in information and meaning.

Tannenbaum was concerned with the changes subjects would register after watching the televising of a congressional sub-committee meeting.

Prior to the hearings, a panel of 68 subjects divided into two equal groups; TV and non-TV. Each subject was asked to keep a record of his communication exposure during the hearings and undertook an information and meaning test. Immediately following the hearings, subjects repeated these tests.

The meaning test was comprised of five concepts. Each concept was judged against the same set of ten semantic differential scales by each subject in both pre and post tests.

From an array of D-scores generated from the analysis of data, substantial differences were noted in the TV Group.

The results of the study reveal important guidelines for the present endeavor. Specifically, that the semantic differential when applied to a telecast, results in identifying the same three semantic factors (evaluative, potency, activity) that Osgood and others have identified in verbal studies. However, one important deviation resulted. Unlike most of the previous studies using the
semantic differential in which the most change is noted in the evaluative factor, Tannenbaum found the dimension showing the largest changes over all five concepts to be in the potency dimension. The instrument had, in this study, revealed effects that might have been completely overlooked by ordinary attitude scales or straight polling-type questions.

These findings add support to the contention that the semantic differential, when applied to studies of mass communication may supply information not previously identified by the techniques presently used.

Analysis of Television News Presentations

There has been an abundance of research in the past few years measuring television news coverage. Most of these studies have used a form of content analysis to discern findings. One of the recent highly publicized studies, Edith Efron's, *The News Twisters*, serves as a prime example.

The research method used was simple and direct. She coded material from newscasts she had taped and transcribed into 26 categories. Then, for each category she counted and tallied words she considered 'bias'. From this data she then drew her conclusions.

A refutal to Efron's methodology was soon forthcoming. *Journalism Quarterly*, Summer 1973, published an article, "Untwisting The News Twisters: A Replication of Efron's Study," which emphasized certain shortcomings of her technique: 1) that the categories were not all-inclusive; 2) that the categories were not
mutually exclusive; and 3) that no rules were used for identifying material to be coded, or how to code.

One striking similarity between the two studies existed. Neither coded, or attempted to deal with the graphic material. The 'Replication' study simply made the assumption that the film treatment of the three candidates being studied was comparable.

Unfortunately, this seems indicative of most research dealing with television news.

A recent study by Richard A. Pride and Gary L. Wamsley tried to deal with graphic material in television news the same way they measured the verbal content. They reported finding no significant differences when comparing results of coding audio only, or coding audio and video together. They concluded that transcripts could then be used as data base in studies of television news.

Beginning with the question, "Was CBS's (or ABC's) coverage of the Laos incursion disproportionately negative for the United States and South Vietnam and disproportionately positive for North Vietnam?", Pride and Wamsley analyzed the Laos coverage of CBS and ABC for 30 days. Symbol coding was the technique they choose for analysis. Coders were instructed to code the material from the perspective of an average, attentive viewer, coding for both direction (positive, negative and neutral) and dimension (strength and morality).

One team of coders both watched and listened. The other team listened but did not watch the material. They concluded from
their findings that with the methods used, the absence of video did not alter the coders perceptions of direction or dimension. Thus; if one believed video does, in fact, have an impact on viewer's perceptions, independent of the verbal, other techniques would be necessary.

Again this seems to suggest that the methodology used in these studies is not suited to measuring all aspects of the content. Other techniques need to be applied before the importance of video content can be dismissed.

Many recent studies of television news have been a comparison of the three major networks. It is often assumed in such studies that the networks' news presentations are essentially the same. A study by James B. Lemert\(^9\) seems to support this supposition.

Lemert compared news item duplication between the three networks. All early-evening and late evening network newscasts available for a 14-day period were coded and analyzed. Coders used a prepared form including categories: 1) story topic; 2) starting time for each item on the newscast; 3) visuals, including details and lengths of remotes; and 4) story characteristics, i.e. hard or soft news.

Analysis of the coding indicated that 70% of the stories carried by one network Monday-Friday, were also covered by at least one of the other two. Not only duplication of story topics, but also duplication of their location in that day's program were shown.
As in the Efron study, Lemert devised and defined the categories his coders were to use. In the present study, categories are defined by the decoders of the messages. Those intended receivers of the day's newscasts.

Overview

An overview of the findings in the three areas of literature surveyed indicate that methods presently used to compare television networks have not dealt with graphic content. Much of this research has used a form of content analysis in which the experimenter has defined the coding categories. Using this method of analysis, small differences in the audio portion between the networks have been discerned.

Studies which have dealt with the content of illustrations indicate that in many ways graphics can be viewed in the same way as verbal content. Both means of communication involve encoding and decoding processes and when the semantic differential technique is applied, both yield factors identified as evaluative, potency and activity. The significant difference between measurement of graphics using this technique is that unlike verbal studies, the potency factor accounts for the most variance; indicating that unless such techniques are applied in mass media research a complete finding is unattainable.
FOOTNOTES FOR CHAPTER II

8Ibid., p. 636.

9James B. Lemert, "Content Duplication by Networks," Journalism Quarterly 51 (Summer 1974): 238-44.
CHAPTER III

METHODOLOGY

As summarized in Chapter I, the purpose of this study is to emphasize the importance of graphic analysis in the study of television news. To support this premise, an experiment was designed to analyze television news by measuring audiences perceptions of courtroom illustrations in discerning differences or similarities in networks' presentations.

The hypothesis of this experiment is that a television viewing audience will perceive differences between the three major networks' pictorial presentation and at the same time, perceive patterns of similarities within illustration styles of particular network artists.

An important aspect of this hypothesis is its reliance on the television viewing audience to analyze news presentations based on their interpretations of graphic content.

In selecting a measuring technique for the experiment, concern must be given to both its applicability in measuring graphic content and its appropriateness when administered to a general public.

A Technique for Measuring Meaning

The content analyses used in much of today's communication research, measure precisely what its title implies, the content of verbal messages. If this study is to substitute graphic
communication for verbal messages, it seems logical to assume that graphic content must then be measured.

If graphic content were to be analyzed by the intended receivers of television news, the home viewing audience, the meaning of each graphic for individual viewers would probably differ.

The selected measuring technique must be capable then, of dealing with these varying interpretations.

A technique specially designed to measure meaning has in its basic premise the supposition that, "Although everyone sees things a bit differently, sometimes very differently, there must be some common core of meaning in all concepts," (in this study graphics). This technique, the semantic differential, is adept at finding a common meaning in the varying interpretations of subjects' judgments.

Its use in verbal studies has been proven successful and one of its 'inventors', Charles E. Osgood finds its application to graphic studies promising.

In, The Measurement of Meaning, Osgood defines some basic differences between verbal and graphic communication. He surmises that aesthetic communication may differ from linguistic messages by being more continuously than discretely coded. They may also differ in being more associated with the connotative, emotional reactions of the encoder and decoder, than with denotative reactions. He emphasizes that, "It is precisely because the semantic differential taps the connotative aspects of meaning more immediately than the highly diversified denotative aspects that it should be readily
applicable to aesthetic studies.2

The semantic differential is essentially a combination of scaling procedures and controlled associations. Subjects are presented with a concept to be judged and a set of bipolar adjective scales. The subject is to indicate the direction and intensity of his judgment on a seven-step scale. Each semantic scale, measures one, sometimes two, of the basic dimensions or factors that Osgood, Suci and Tannenbaum have identified using various factor analyses: evaluation, potency and activity.

By its nature, when the semantic differential is applied, unlike most scales which measure only the direction of subjects' judgments, both direction and intensity of each judgment is measured.

Through research Osgood and his colleagues have identified the evaluative factor as the, "Attitudinal variable in human thinking."3 This factor is the largest and accounts for usually one-half to three-fourths of the extractable variance. The potency dimension usually has only half as much variance as the evaluative factor and is concerned with the power and size of things (weight, toughness, etc.). The third dimension, activity, is usually small in magnitude and is concerned with excitement, warmth, quickness, etc.

For this study, 25 bipolar scales were selected which, through previous study, Osgood and others have demonstrated to be identified with one of these three factors.
Of the 25 scales, 13 were representative of the evaluative factor:

- optimistic - pessimistic
- harmonious - dissonant
- dark - light
- ugly - beautiful
- negative - positive
- accidental - controlled
- simple - complex

- incomplete - complete
- cruel - kind
- plausible - painful
- meaningful - meaningless
- subtle - obvious
- hazy - clear

Six were representative of the potency dimension:

- hard - soft
- lenient - severe
- light - heavy

- free - constrained
- mild - intense
- prohibitive - permissive

And six of the activity factor:

- active - passive
- muted - blatant
- ordered - chaotic

- rational - emotional
- calm - upset
- unintentional - intentional

These scales were selected based on their apparent applicability to the measurement of graphics as concepts instead of the usual verbal units. It was also carefully considered that these scales should represent potential judgments of the graphic content as communication and not the subjects' feelings about specific persons depicted within the graphic. For this reason, such scales as good - bad, clean - dirty, reputable - disreputable were omitted, even though they usually are highly loaded on the factors.

Interpreters

By using the semantic differential technique, the intended receivers of television's communication, the general television viewing audience, can be used as interpreters of the graphic
communication; therefore, eliminating the need for categories defined by the researcher and coded by trained colleagues. Instead of dealing with the manifest content of the message, probable intent of communicator, or likely perception by the receiver, the semantic differential generates data scored by the intended receivers of the communication being analyzed.

Ideally, subject sample would be a representative cross-section of this general television viewing audience. It is however, difficult and expensive to obtain such a sample. Since the study is exploratory in nature in that it is using the hypothesis more to guide it in finding an acceptable experimental design than to establish irrefutable findings, a convenience sample seems justified.

Since it was desirable to have a quasi cross-section of the community, five groups of students (senior and graduate level) from different disciplines of study at California State University, Northridge were asked to participate in the experiment. These groups were enrolled in classes of: 1) Journalism, 2) Education, 3) Anthropology, 4) Marketing, and 5) Mass Communication. The groups ranged from an N of 12 to an N of 29. There were a total of 100 participants.

The Courtroom Illustrations

As stated earlier, nine courtroom illustrations which the three major networks used in reporting the Spirio Agnew Income Tax Evasion Trial were selected as the graphics for this study.

Three illustrations, one from each network featured the defendant, Spirio Agnew. Three, the prosecuting attorney, Elliot
Richardson, and three, the presiding judge, Walter E. Hoffman.

Each illustration was treated as a single concept for measurement on a semantic differential.

By selecting three illustrations from each network featuring the same individuals, comparisons between and within networks can be made.

Defined in terms of a matrix, the illustrations indicate the possibilities for comparison. Data generated from illustration number one can be compared with scores from numbers two and three to distinguish differences between networks and with four and seven to discern similarities within a network.

In other words, comparisons made across the matrix indicate the subjects perceived similarities within a network, while comparisons down the matrix will determine if the subjects perceived differences between the networks treatment of a particular individual.

TABLE I

MATRIX DESIGN FOR COMPARISONS

<table>
<thead>
<tr>
<th></th>
<th>Agnew</th>
<th>Richardson</th>
<th>Hoffman</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>Illustration 1</td>
<td>Illustration 4</td>
<td>Illustration 7</td>
</tr>
<tr>
<td>NBC</td>
<td>" " 2</td>
<td>" " 5</td>
<td>" " 8</td>
</tr>
<tr>
<td>CBS</td>
<td>" " 3</td>
<td>" " 6</td>
<td>" " 9</td>
</tr>
</tbody>
</table>
Procedure

The bipolar scales used in the semantic differential were pre-tested by a group of twelve graduate students. The purpose of the pre-test was to determine the amount of time subjects would need to complete the scales and to determine if the number of concepts used could be judged during one session.

Each of the five test groups used in the actual experiment was administered the tests separately.

In each group, after subjects were given test booklets containing nine semantic differential forms, one for each of the nine illustrations, instructions from the booklet's cover were explained. The Appendix contains a sample booklet.

After subjects recorded the requested demographic information, the first illustration was projected on the wall screen and subjects were allowed 60 seconds to view the illustrations without marking judgments. Then the illustration was removed and the subjects recorded their judgments on the usual graphic form of the differential before proceeding to the next illustration. Hence for all nine illustrations. The order in which the illustrations were shown one group was reversed for the next group to eliminate central tendency as the subjects grew familiar with the scales.

By completing the scales, subjects registered their perceptions of the meaning of the illustrations. Analyses of the data should determine if a subject is perceiving differences between the networks and/or if there are patterns of similarities within
a network.

The approximate time each group required to complete the entire test was 30 minutes.

Limitations of the Experiment

The wall sized screen was used to enable each subject in the group to clearly distinguish the illustrations. Ideally, the graphics would be shown on the medium for which they were intended, a regular television screen. This would however, necessitate very small test groups and an unusual amount of time.

Since the original courtroom illustrations were not used, technical problems dictated that the illustrations be projected as black and white drawings. Earlier studies applying the semantic differential technique to color indicate that some variation in results may occur if color were used opposed to black and white. This limitation however, assumes that the intended receiver watched a color illustration. This assumption is not valid. For if the receiver viewed the news on a black and white set, as many people do, this objection would be superfluous.
FOOTNOTES FOR CHAPTER III

2 Osgood, et. al., op. cit., p. 290.

3 Ibid., p. 72.
CHAPTER IV

ANALYSIS OF THE DATA

The data from the semantic differentials was analyzed in three separate ways to answer questions posed by the study. First, a frequency distribution was analyzed to provide a description of the graphics in terms of the subjects' preference for certain scales in registering their perceptions of the graphics. Secondly, a factor analysis was performed to determine the number and nature of the underlying variables among the scales on the semantic differentials. In other words, the factor analysis serves to indicate which scales belong together -- which ones measure the same thing and to what degree. This information makes a comparison possible between previous studies using the semantic differential and the results of this study. The third treatment of the data was an analysis of variance based on factor scores. This testing of the data can be used to address the assumptions of the study that there are differences between networks and similarities within a specific network in terms of the underlying variables.

'Profile' Frequency Distribution

The raw scores from the subjects' (N=100) semantic differentials (N=9) were tabulated by the computer to determine the percentage of subject agreement for all positions of the bi-polar adjective scales for each concept (graphic).
An analysis of this distribution reveals those scales which the subjects indicated were most significant in interpreting that graphic. A composite of such scales, extracted from a particular differential, provides a 'Profile' or description of that graphic in terms of the scales.

It was arbitrarily decided that a particular scale must register at least 40 percent subject agreement on the two extreme positions (3 + 2) of a scale to qualify as a significant indication of the relevance in describing a particular illustration.

Less than 40 percent subject agreement was assumed: 1) to indicate a dispersion across the scale meaning it was not suited for the measurement of that graphic, or 2) that the direction of the subject agreement leaned toward one end of the scale, but did not register as much intensity of agreement as other scales. For example, the frequency distribution for NBC's graphic featuring Judge Hoffman shows:

<table>
<thead>
<tr>
<th>Scale</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lenient</td>
<td>1%</td>
<td>2%</td>
<td>5%</td>
<td>14%</td>
<td>17%</td>
<td>25%</td>
<td>36%</td>
</tr>
</tbody>
</table>

The percentage distribution of this scale indicates that 61 percent of the subjects used 'severe' or 'very severe' to interpret this graphic. Within the criteria outlined above then, this scale can be used to 'Profile' NBC's graphic of Hoffman.

The 'Profiles' which emerged from the frequency distribution are listed in Table 2.

From these 'Profiles' like concepts (Agnew ABC, NBC, CBS) can be compared to distinguish differences or similarities between
TABLE 2

PROFILES OF THE ILLUSTRATIONS

<table>
<thead>
<tr>
<th></th>
<th>Elliot Richardson Graphics</th>
<th>Spirio Agnew Graphics</th>
<th>Walter Hoffman Graphics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51% constrained</td>
<td>42% intentional</td>
<td>55% constrained</td>
<td></td>
</tr>
<tr>
<td>48% intense</td>
<td>41% ordered</td>
<td>51% upset</td>
<td></td>
</tr>
<tr>
<td>46% complex*</td>
<td>40% rational*</td>
<td>46% emotional</td>
<td></td>
</tr>
<tr>
<td>43% hard*</td>
<td></td>
<td>43% heavy</td>
<td></td>
</tr>
<tr>
<td>43% hazy*</td>
<td></td>
<td>42% painful</td>
<td></td>
</tr>
<tr>
<td>42% severe*</td>
<td></td>
<td>43% complex</td>
<td></td>
</tr>
<tr>
<td>42% dark*</td>
<td></td>
<td>42% intentional</td>
<td></td>
</tr>
<tr>
<td>40% controlled</td>
<td></td>
<td>45% prohibitive*</td>
<td></td>
</tr>
<tr>
<td>40% intentional</td>
<td></td>
<td>46% heavy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45% intentional*</td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42% intentional</td>
<td>62% constrained</td>
<td>49% ordered</td>
<td></td>
</tr>
<tr>
<td>41% ordered</td>
<td>61% intense</td>
<td>47% intense</td>
<td></td>
</tr>
<tr>
<td>40% rational*</td>
<td>56% dissonant</td>
<td>46% emotional</td>
<td></td>
</tr>
<tr>
<td>40% constrained</td>
<td>54% pessimistic</td>
<td>45% pessimistic</td>
<td></td>
</tr>
<tr>
<td>40% intense</td>
<td>53% hard</td>
<td>43% heavy</td>
<td></td>
</tr>
<tr>
<td>46% dissonant</td>
<td>50% severe</td>
<td>43% painful</td>
<td></td>
</tr>
<tr>
<td>45% pessimistic</td>
<td>47% complex</td>
<td>42% complex</td>
<td></td>
</tr>
<tr>
<td>43% controlled*</td>
<td>46% obvious</td>
<td>44% upset</td>
<td></td>
</tr>
<tr>
<td>42% complex</td>
<td>46% painful</td>
<td>43% negative</td>
<td></td>
</tr>
<tr>
<td>42% intentional</td>
<td>45% blatant*</td>
<td>41% dark*</td>
<td></td>
</tr>
<tr>
<td>41% hard</td>
<td>44% upset</td>
<td>40% intentional</td>
<td></td>
</tr>
<tr>
<td>40% painful</td>
<td>43% emotional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40% emotional</td>
<td>44% prohibitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>47% negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46% complex</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>46% heavy</td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58% active*</td>
<td>55% constrained</td>
<td>49% ordered</td>
<td></td>
</tr>
<tr>
<td>49% intense</td>
<td>51% upset</td>
<td>44% hard</td>
<td></td>
</tr>
<tr>
<td>42% controlled*</td>
<td>47% intense</td>
<td>43% severe</td>
<td></td>
</tr>
<tr>
<td>40% ordered</td>
<td>40% constrained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40% constrained</td>
<td>40% controlled</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46% complex</td>
<td>46% heavy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46% emotional</td>
<td>45% prohibitive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46% heavy</td>
<td>43% negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>46% complex</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 2 (cont.)

<table>
<thead>
<tr>
<th></th>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45% rational</td>
<td>44% obvious</td>
<td>41% meaningful</td>
</tr>
<tr>
<td></td>
<td>40% dark</td>
<td>40% blatant</td>
<td></td>
</tr>
</tbody>
</table>

* Scales appearing only on that network registering at least 40 percent subject agreement.

** By rank order of percentage subject agreement.

the three networks. This can be accomplished by: 1) determining which scales registering over 40 percent subject agreement occur on only one network, 2) comparing the percentage of agreement of a particular scale across all three networks, and 3) comparing the rank position of a scale within a network with its position in the other networks. This analysis will further refine each 'Profile' to distinguish those scales particularly relevant in describing a specific graphic.

Appraising the 'Profile' of Elliot Richardson graphics one immediately ascertains that the subjects registered agreement on more scales for CBS (9) than for either of the other two networks. This indicates that 'Richardson' was most clearly defined by the scales on CBS. However, ABC registered the highest agreement on a particular scale, 'active' - 58 percent.

There were no scales which were rated similarly by all three networks. There were however, three scales which were shared by the two networks indicating a slight similarity between these
networks' illustrations of Richardson:

<table>
<thead>
<tr>
<th></th>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48% intense</td>
<td>41% ordered</td>
<td>40% ordered</td>
</tr>
<tr>
<td></td>
<td>42% controlled</td>
<td></td>
<td>48% intense</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>42% controlled</td>
</tr>
</tbody>
</table>

It is important to note that in relationship to the other scales in these 'Profiles' these scales rate a relatively low percentage of subject agreement, further emphasizing that the similarity is slight.

Scales which register agreement on only one network are particularly relevant in describing or 'Profiling' that graphic. For example, 'complex', 'hard', 'dark', 'severe', and 'hazy' register only on CBS while 'rational' appears only on NBC and 'active' only on ABC.

Other comparisons show 'constrained' as being the highest ranked scale of CBS-51% and as the lowest ranked on ABC-40%. Both its positioning and higher percentage of agreement relate it to the CBS graphic.

'Intentional' shows very little percentage difference on NBC-42% and CBS-40%. Again though, its rank position identifies which network graphic it 'Profiles'. NBC ranked it as its highest scale and CBS as lowest.

A summarization of these comparisons reveal the 'Refined Profiles' listed in Table 3.

These 'Refined Profiles' indicate that the subjects were, indeed, finding differences between the networks based on their scale preferences.
TABLE 3
RICHARDSON REFINED PROFILES

<table>
<thead>
<tr>
<th></th>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex*</td>
<td></td>
<td>intentional</td>
<td>active*</td>
</tr>
<tr>
<td>hard*</td>
<td></td>
<td>rational*</td>
<td></td>
</tr>
<tr>
<td>hazy*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>severe*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dark*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constrained</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Scales registering more than 40 percent subject agreement only on that network.

There were decidedly more scales registering subject agreement for the 'Agnew' graphics than for the 'Richardson' drawings. Like the 'Richardson' graphics though, there is distinct evidence of differences and some slight similarities.

'Intense' and 'pessimistic' listed below, are ranked similarly for ABC and CBS, but are ranked significantly higher for NBC. Thus, they can be said to 'Profile the NBC graphic.

<table>
<thead>
<tr>
<th></th>
<th>Intense</th>
<th>Pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>NBC</td>
<td>61%</td>
<td>54%</td>
</tr>
<tr>
<td>ABC</td>
<td>47%</td>
<td>45%</td>
</tr>
<tr>
<td>CBS</td>
<td>48%</td>
<td>45%</td>
</tr>
</tbody>
</table>

The rank position of 'emotional' by ABC and CBS shows it to describe ABC even though there is very little difference in the percentage of subject agreement.

There were several scales which indicated differences between CBS and NBC but failed to achieve even 40% agreement on ABC, again emphasizing the differences in subjects perceptions between the
Likewise 'heavy' was ranked by NBC-50% and ABC-43% but failed to register on CBS.

As in the Richardson 'Profiles' there were scales which registered only on one network emphasizing their importance in describing that graphic. 'Blatant' and 'dark' registered only on NBC and 'controlled' only on CBS.

There were several scales which were rated similarly for all three networks, particularly 'constrained' which was ranked as the highest scale for all three networks. Likewise, 'emotional', 'painful' and 'complex' were rated similarly for the three networks. However, as with the 'Richardson' scales indicating similarities, these scales also rate a low percentage of subject agreement when compared with the percentages of those scales indicating differences. Again this seems to indicate the similarities are slight.

A summarization of the scales comprising the 'Agnew Refined Profiles' are listed in Table 4.

There are several observations to be made when evaluating the 'Hoffman Profiles'. First that NBC registers by far the highest subject agreement of the three networks, both percentage wise and in terms of the number of scales showing more than 40 percent subject agreement. Secondly, CBS does not register even one scale with over
TABLE 4
AGNEW Refined Profiles

<table>
<thead>
<tr>
<th></th>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>negative</td>
<td>dark*</td>
<td>emotional</td>
</tr>
<tr>
<td></td>
<td>controlled*</td>
<td>dissonant</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>hard</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>severe</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>obvious</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>intense</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>pessimistic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>heavy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>blatant*</td>
<td></td>
</tr>
</tbody>
</table>

*Scales registering more than 40 percent subject agreement only on that network.

40 percent subject agreement. A review of the semantic differentials recording the frequency distribution for this graphic (see Appendix) indicates that there are several scales which show a definite direction but fail to register the intensity of agreement specified by this analysis. Scales which registered more than 50 percent subject agreement on one side of the neutral position are: ordered, controlled, rational, heavy, calm, intentional, heavy and constrained. Although these scales do not register the necessary intensity of agreement needed to identify them with this particular profile, their direction can be used when making comparisons between the networks.

'Ordered' by its rank position can be assumed to describe ABC's graphic of Hoffman. The other three scales registering on ABC's 'Profile' show less subject agreement than for NBC's graphics. Because of the large number of scales registered on NBC, only those with over 50 percent subject agreement will be used in the
'Refined Profile'.

There were no scales used by all three networks.

These graphics, more than the other two sets, clearly illustrate the subjects perceptions of different treatment by the network artists of the same individual.

Table 5 lists the 'Hoffman Refined Profiles'.

TABLE 5

HOFFMAN REFINED PROFILES

<table>
<thead>
<tr>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>controlled*</td>
<td>ordered</td>
<td></td>
</tr>
<tr>
<td>hard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pessimistic*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>severe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intense*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>prohibitive*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intentional*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>constrained*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Scales registering more than 40 percent subject agreement only on that network.

Those scales which were rated similarly for all three networks are:

<table>
<thead>
<tr>
<th>Richardson</th>
<th>Agnew</th>
<th>Hoffman</th>
</tr>
</thead>
<tbody>
<tr>
<td>constrained</td>
<td>emotional</td>
<td></td>
</tr>
<tr>
<td>painful</td>
<td>complex</td>
<td></td>
</tr>
</tbody>
</table>

Table 6 is a matrix featuring all of the 'Refined Profiles'.
TABLE 6

COMBINED REFINED PROFILES

<table>
<thead>
<tr>
<th></th>
<th>Richardson</th>
<th>Agnew</th>
<th>Hoffman</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td>constrained complex*</td>
<td>controlled*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hard*</td>
<td>negative</td>
<td></td>
</tr>
<tr>
<td></td>
<td>dark*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hazy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td>rational*</td>
<td>intense</td>
<td>controlled*</td>
</tr>
<tr>
<td></td>
<td>intentional</td>
<td>dissonant</td>
<td>pessimistic*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pessimistic</td>
<td>prohibitive*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hard</td>
<td>hard</td>
</tr>
<tr>
<td></td>
<td></td>
<td>severe</td>
<td>severe</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heavy</td>
<td>intense</td>
</tr>
<tr>
<td></td>
<td></td>
<td>obvious</td>
<td>intensional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>blatant*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>dark*</td>
<td>constrained</td>
</tr>
<tr>
<td>ABC</td>
<td>active*</td>
<td>emotional</td>
<td>ordered</td>
</tr>
</tbody>
</table>

Scales registering more than 40 percent subject agreement only on that network.
Group Analysis

The frequency distribution used in extracting the 'Profiles' was a distribution for all 100 subjects as one group.

A frequency distribution was also tabulated for each of the five subject groups individually. These five distributions can then be compared to discern differences between the groups.

The same criteria for individual scales was used for this analysis as for the 'Profiles'. That is, at least 40 percent subject agreement was required on two polar positions of the scale for it to be considered as relevant in measuring that graphic. Unlike the 'Profile' analysis in which specific scales were compared, this analysis uses the total number of scales registering over 40 percent agreement and the Mean of that agreement for all nine semantic differentials for each group. The matrix in Table 7 lists the results.

One way of making comparisons between the groups is to assume that the more scales registering 40 percent agreement, on a particular graphic, the more 'defined' that graphic would be. In other words, the more scales the subjects used to register their perceptions of a specific graphic, the more clearly defined that graphic would be in terms of the scales. Using this criteria then, comparisons can be made between the groups individually and to the group as a whole.

From Table 7, it can be seen that the total scales used by the networks clearly corresponds to the 'Profile' analysis. For example, in terms of the number of scales used by the groups to define the 'Agnew' graphics, NBC (69 scales) was most clearly defined with CBS (52 scales) second and ABC (41 scales) third. A reference to
<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
<th>Group 4</th>
<th>Group 5</th>
<th>Total no. scales used for each network</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGNEW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>No. of scales</td>
<td>19</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Average %</td>
<td>51.9</td>
<td>56.4</td>
<td>46.9</td>
<td>44.4</td>
<td>43.8</td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td>No. of scales</td>
<td>21</td>
<td>19</td>
<td>16</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Average %</td>
<td>56.8</td>
<td>53.7</td>
<td>52.3</td>
<td>57.7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CBS</td>
<td>No. of scales</td>
<td>14</td>
<td>5</td>
<td>19</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Average %</td>
<td>48.0</td>
<td>42.1</td>
<td>60.3</td>
<td>43.8</td>
<td>47.5</td>
<td></td>
</tr>
<tr>
<td>Total scales</td>
<td>54</td>
<td>35</td>
<td>42</td>
<td>20</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>RICHARDSON</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>No. of scales</td>
<td>2</td>
<td>15</td>
<td>5</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Average %</td>
<td>48.3</td>
<td>53.3</td>
<td>51.7</td>
<td>51.8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td>No. of scales</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Average %</td>
<td>43.4</td>
<td>50.1</td>
<td>52.1</td>
<td>49.0</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>CBS</td>
<td>No. of scales</td>
<td>19</td>
<td>5</td>
<td>7</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Average %</td>
<td>52.4</td>
<td>44.2</td>
<td>52.5</td>
<td>51.5</td>
<td>46.3</td>
<td></td>
</tr>
<tr>
<td>Total scales</td>
<td>26</td>
<td>22</td>
<td>14</td>
<td>29</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HOFFMAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABC</td>
<td>No. of scales</td>
<td>3</td>
<td>10</td>
<td>7</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Average %</td>
<td>44.8</td>
<td>52.7</td>
<td>47.6</td>
<td>53.1</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>NBC</td>
<td>No. of scales</td>
<td>20</td>
<td>21</td>
<td>13</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Average %</td>
<td>56.6</td>
<td>51.9</td>
<td>52.9</td>
<td>54.4</td>
<td>51.4</td>
<td></td>
</tr>
<tr>
<td>CBS</td>
<td>No. of scales</td>
<td>8</td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Average %</td>
<td>43.1</td>
<td>47.4</td>
<td>45.3</td>
<td>41.7</td>
<td>43.7</td>
<td></td>
</tr>
<tr>
<td>Total scales</td>
<td>31</td>
<td>33</td>
<td>28</td>
<td>24</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Registering over 40 percent subject agreement.
Table 2 reveals that the frequency distribution for the group as a whole uses this same order of defining the graphics. The rank order by number of scales used for 'Richardson' and 'Hoffman' show these same comparisons to the group as a whole.

There are however, differences found within the matrix. Group one used the most scales to define 'Agnew' on NBC as did groups two and four. However, group three and five registered the most scales on CBS, thus, indicating they defined the CBS graphic more clearly. The demographic information for the groups listed in Table 8 gives some explanation for this difference.

Groups three and five are similar in two ways: 1) The Mean age for each group is very similar and the difference between the ages within each group is also much greater for these groups than for the others. 2) The gender of the group is also decidedly more heterogeneous than for the other groups. Group three was made up of 22 women and 2 men. Group five consisted of 14 men and two women. The other groups were more evenly balanced, or more homogenous in this sense.

Table 7 also reveals that 'Richardson' was most clearly defined on CBS (44 scales used). Comparisons between the groups show that groups one, three, four and five concur with this finding, but group two most clearly defines 'Richardson' on ABC and uses as many as three times the number of scales as they registered on CBS.

'Hoffman' was most clearly defined in terms of total scales on NBC (78 scales). Each of the five groups concurred.
TABLE 8

GROUP DEMOGRAPHICS

<table>
<thead>
<tr>
<th>GROUPS</th>
<th>No. in Group</th>
<th>Age Range</th>
<th>Mean</th>
<th>B.A.</th>
<th>M.A.</th>
<th>Ph.D.</th>
<th>M</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Journalism</td>
<td>29</td>
<td>19-45</td>
<td>24.4</td>
<td>28</td>
<td></td>
<td></td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>2. Mass Communication</td>
<td>19</td>
<td>23-38</td>
<td>28.7</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>3. Education</td>
<td>24</td>
<td>23-53</td>
<td>35.7</td>
<td>2</td>
<td>22</td>
<td></td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>4. Anthropology</td>
<td>12</td>
<td>20-45</td>
<td>29.2</td>
<td>10</td>
<td>2</td>
<td></td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>5. Marketing</td>
<td>16</td>
<td>22-61</td>
<td>35.3</td>
<td></td>
<td></td>
<td>16</td>
<td>14</td>
<td>2</td>
</tr>
</tbody>
</table>

Summing across each personality (Agnew - ABC, NBC, CBS) for each group, identifies which 'personality' a particular group most clearly defines in terms of the total number of scales used for that 'figure'.

Groups one, two and three register the most scales on the 'Agnew' graphics while group four used more to define 'Richardson' and group five, 'Hoffman'. Taking this one step further and totaling the number of scales each group used for all three 'personalities', finds group one using 111; group two, 90; group three, 84; group four, 73 and group five only 39.

One final comparison from this matrix is the total number of scales used summing across 'sets' for each network reveals:
<table>
<thead>
<tr>
<th></th>
<th>CBS</th>
<th>NBC</th>
<th>ABC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agnew</td>
<td>52</td>
<td>69</td>
<td>41</td>
</tr>
<tr>
<td>Richardson</td>
<td>44</td>
<td>19</td>
<td>41</td>
</tr>
<tr>
<td>Hoffman</td>
<td>22</td>
<td>78</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>113</td>
<td>166</td>
<td>118</td>
</tr>
</tbody>
</table>

ABC and CBS show about the same number of scales being used to define their graphics, but NBC shows as much as 40 percent more scales used.

Comparisons between the individual groups has revealed some differences which may be explained by the demographic material. However, the direction of the scales and the over-all number of scales used correlate directly with the analysis of the group as a whole.

Factor Analysis

The judgmental scores from the semantic differentials were analyzed using the method of principal components. The eigenvalues associated with all of the factors and the proportion of variance accounted for by each are listed in Table 9.

Three factors, accounting for 51.77 percent of the total variance, were extracted and rotated using the normal varimax transformation which maintains orthogonality. The loadings for each corresponding scale are displayed in Table 10 along with the sums of squares for rows and columns.

The most salient factor, accounting for approximately 55% of the total variance is Factor I. Eliminating scales which were loaded on several factors and those with loadings below .55, Factor I
<table>
<thead>
<tr>
<th>Scale</th>
<th>Eigenvalues</th>
<th>Percentage of Variance</th>
<th>Cumulative Percentage of Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.76</td>
<td>31.02</td>
<td>31.02</td>
</tr>
<tr>
<td>2</td>
<td>3.65</td>
<td>14.59</td>
<td>45.61</td>
</tr>
<tr>
<td>3</td>
<td>1.54</td>
<td>6.16</td>
<td>51.77</td>
</tr>
<tr>
<td>4</td>
<td>1.11</td>
<td>4.44</td>
<td>56.21</td>
</tr>
<tr>
<td>5</td>
<td>1.07</td>
<td>4.28</td>
<td>60.49</td>
</tr>
<tr>
<td>6</td>
<td>0.88</td>
<td>3.52</td>
<td>64.01</td>
</tr>
<tr>
<td>7</td>
<td>0.85</td>
<td>3.40</td>
<td>67.41</td>
</tr>
<tr>
<td>8</td>
<td>0.69</td>
<td>2.76</td>
<td>70.17</td>
</tr>
<tr>
<td>9</td>
<td>0.67</td>
<td>2.68</td>
<td>72.85</td>
</tr>
<tr>
<td>10</td>
<td>0.61</td>
<td>2.44</td>
<td>75.29</td>
</tr>
<tr>
<td>11</td>
<td>0.59</td>
<td>2.36</td>
<td>77.65</td>
</tr>
<tr>
<td>12</td>
<td>0.55</td>
<td>2.20</td>
<td>79.85</td>
</tr>
<tr>
<td>13</td>
<td>0.52</td>
<td>2.08</td>
<td>81.93</td>
</tr>
<tr>
<td>14</td>
<td>0.48</td>
<td>1.92</td>
<td>83.85</td>
</tr>
<tr>
<td>15</td>
<td>0.45</td>
<td>1.80</td>
<td>85.65</td>
</tr>
<tr>
<td>16</td>
<td>0.45</td>
<td>1.80</td>
<td>87.45</td>
</tr>
<tr>
<td>17</td>
<td>0.43</td>
<td>1.72</td>
<td>89.17</td>
</tr>
<tr>
<td>18</td>
<td>0.41</td>
<td>1.64</td>
<td>90.81</td>
</tr>
<tr>
<td>19</td>
<td>0.39</td>
<td>1.56</td>
<td>92.37</td>
</tr>
<tr>
<td>20</td>
<td>0.36</td>
<td>1.44</td>
<td>93.81</td>
</tr>
<tr>
<td>21</td>
<td>0.35</td>
<td>1.40</td>
<td>95.21</td>
</tr>
<tr>
<td>22</td>
<td>0.33</td>
<td>1.32</td>
<td>96.53</td>
</tr>
<tr>
<td>23</td>
<td>0.31</td>
<td>1.24</td>
<td>97.77</td>
</tr>
<tr>
<td>24</td>
<td>0.30</td>
<td>1.20</td>
<td>98.97</td>
</tr>
<tr>
<td>25</td>
<td>0.27</td>
<td>1.08</td>
<td>100.05</td>
</tr>
</tbody>
</table>

shows seven of the thirteen scales used in this study which were identified as 'Evaluative' in previous studies, loaded high on this factor. Also, all of the scales previously identified as 'Potency' highly loaded on this factor.

Osgood, as explained in Chapter 3, METHODOLOGY, has defined the Evaluative Factor as the attitudinal variable in human thinking.
TABLE 10

ROTATED FACTOR LOADINGS

<table>
<thead>
<tr>
<th>Scales</th>
<th>Loadings</th>
<th>Sums of Squares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Powerful-Evaluative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cruel - kind</td>
<td>.80</td>
<td>-.05</td>
</tr>
<tr>
<td>hard - soft</td>
<td>.74</td>
<td>-.26</td>
</tr>
<tr>
<td>lenient - severe</td>
<td>-.74</td>
<td>.31</td>
</tr>
<tr>
<td>ugly - beautiful</td>
<td>.73</td>
<td>.16</td>
</tr>
<tr>
<td>dark - light</td>
<td>.71</td>
<td>.05</td>
</tr>
<tr>
<td>harmonious - dissonant</td>
<td>-.70</td>
<td>-.07</td>
</tr>
<tr>
<td>heavy - light</td>
<td>.70</td>
<td>-.16</td>
</tr>
<tr>
<td>pleasurable - painful</td>
<td>-.69</td>
<td>.03</td>
</tr>
<tr>
<td>prohibitive - permissive</td>
<td>.68</td>
<td>-.12</td>
</tr>
<tr>
<td>negative - positive</td>
<td>.67</td>
<td>.18</td>
</tr>
<tr>
<td>optimistic - pessimistic</td>
<td>-.65</td>
<td>-.05</td>
</tr>
<tr>
<td>mild - intense</td>
<td>-.64</td>
<td>.41</td>
</tr>
<tr>
<td>free - constrained</td>
<td>-.58</td>
<td>-.01</td>
</tr>
<tr>
<td>Aesthetic Ambiguity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>hazy - clear</td>
<td>.16</td>
<td>.68</td>
</tr>
<tr>
<td>meaningful - meaningless</td>
<td>-.20</td>
<td>-.68</td>
</tr>
<tr>
<td>incomplete - complete</td>
<td>.12</td>
<td>.64</td>
</tr>
<tr>
<td>active - passive</td>
<td>.14</td>
<td>-.55</td>
</tr>
<tr>
<td>accidental - controlled</td>
<td>-.21</td>
<td>.54</td>
</tr>
<tr>
<td>muted - blatant</td>
<td>-.41</td>
<td>.46</td>
</tr>
<tr>
<td>unintentional-intentional</td>
<td>-.24</td>
<td>.43</td>
</tr>
<tr>
<td>simple - complex</td>
<td>-.33</td>
<td>.36</td>
</tr>
<tr>
<td>Emotionality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rational - emotional</td>
<td>-.14</td>
<td>-.17</td>
</tr>
<tr>
<td>ordered - chaotic</td>
<td>-.03</td>
<td>-.30</td>
</tr>
<tr>
<td>calm - upset</td>
<td>-.41</td>
<td>-.01</td>
</tr>
<tr>
<td>subtle - obvious</td>
<td>-.33</td>
<td>.40</td>
</tr>
</tbody>
</table>

| Sums of Squares | 7.07 | 3.20 | 2.68 |
based on rewards and punishments both anticipated and received. It usually identifies Factor I and accounts for the largest percentage of the total variance. Potency he describes as being concerned with power, weight or toughness. This is usually identified as Factor II and accounts for one-half as much of the total variance as the Evaluative Factor.

In this study, the combination of evaluative and potency scales loading highly on Factor I may be an indication that this factor concerns both the assessment or evaluation of the 'personalities' within the illustrations (scales such as cruel-kind, ugly-beautiful, etc.) and at the same time the powerfulness of these 'personalities' as depicted by the illustrators (hard-soft, severe-lenient, mild-intense). Thus, Factor I seems to represent a Power - Evaluative dimension.

Factor II, accounting for 25 percent, or half-as-much variance as Factor I is described by three 'evaluative' scales and one 'activity' scale. The scales describing this factor may be a set related to assessing the illustration in its entirety, unlike scales in Factor I which may be a dimension addressed to a specific personality or component within the illustration.

Factor II loaded highest on meaningful-meaningless, hazy-clear, incomplete-complete, and active-passive. Factor II has been labeled Aesthetic Ambiguity.

Factor III accounts for 20 percent of the total variance which is slightly less than Factor II. This percentage corresponds to the
third factor of previous studies. Like them, this factor is characterized by high loadings of Activity scales. But unlike previous studies in which active-passive usually loaded as the highest scale, this study shows rational-emotional, ordered-chaotic, and calm-upset as the highest loading scales. These scales seem to describe an emotionality or composure dimension.

An analysis in which five factors were rotated using the normal varimax transformation was also performed. When compared with the analysis just described there was very little difference between the first three factors. Factors IV and V seemed an extension of the Aesthetic Ambiguity Factor and when collapsed, loaded on Factor II of the first analysis.

There was little evidence that the five factors better described the semantic space than the three factor analysis.

Analysis of Variance

The results from the Analysis of Variance based on the factor scores for each of the three factors in the Factor Analysis are displayed in Table II.

The cell means representing the mean of each illustration used in the experiment are given in the matrices in Table 12. The row and column means displayed represent the mean for each networks' 'set' of illustrations and the mean for each 'personality' summing across the networks, respectively.

The summary table for Factor I, Power-Evaluative indicates that significant differences were found between the networks as
TABLE 11
ANALYSIS OF VARIANCE SUMMARY TABLE FOR FACTORS

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Sequence</th>
<th>Degree of Freedom</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks</td>
<td>21.178</td>
<td>2</td>
<td>10.589</td>
<td>12.14</td>
<td>.001</td>
</tr>
<tr>
<td>Figures</td>
<td>7.083</td>
<td>2</td>
<td>3.541</td>
<td>4.00</td>
<td>.05</td>
</tr>
<tr>
<td>Networks x Figures Interaction</td>
<td>30.768</td>
<td>4</td>
<td>7.692</td>
<td>11.19</td>
<td>.001</td>
</tr>
<tr>
<td>Networks x Subjects</td>
<td>172.698</td>
<td>198</td>
<td>.872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figures x Subjects</td>
<td>175.395</td>
<td>198</td>
<td>.886</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NxFxS Interactions</td>
<td>272.271</td>
<td>396</td>
<td>.668</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>219.597</td>
<td>99</td>
<td>2.218</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary for Factor II

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Sequence</th>
<th>Degree of Freedom</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks</td>
<td>29.873</td>
<td>2</td>
<td>14.936</td>
<td>21.91</td>
<td>.001</td>
</tr>
<tr>
<td>Figures</td>
<td>8.633</td>
<td>2</td>
<td>4.316</td>
<td>4.10</td>
<td>.05</td>
</tr>
<tr>
<td>Networks x Figures Interaction</td>
<td>19.058</td>
<td>4</td>
<td>4.764</td>
<td>7.73</td>
<td>.01</td>
</tr>
<tr>
<td>Networks x Subjects</td>
<td>135.001</td>
<td>198</td>
<td>.682</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figures x Subjects</td>
<td>208.474</td>
<td>198</td>
<td>1.053</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NxFxS Interactions</td>
<td>243.943</td>
<td>396</td>
<td>.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>254.048</td>
<td>99</td>
<td>2.566</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary for Factor III

<table>
<thead>
<tr>
<th>Source of Variation</th>
<th>Sum of Sequence</th>
<th>Degree of Freedom</th>
<th>Mean Square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Networks</td>
<td>4.308</td>
<td>2</td>
<td>2.154</td>
<td>2.15</td>
<td>n.s.</td>
</tr>
<tr>
<td>Figures</td>
<td>114.933</td>
<td>2</td>
<td>57.466</td>
<td>59.08</td>
<td>.001</td>
</tr>
<tr>
<td>Networks x Figures Interaction</td>
<td>2.240</td>
<td>4</td>
<td>.560</td>
<td>.56</td>
<td>n.s.</td>
</tr>
<tr>
<td>Networks x Subjects</td>
<td>152.695</td>
<td>198</td>
<td>.771</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Figures x Subjects</td>
<td>192.587</td>
<td>198</td>
<td>.973</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NxFxS Interactions</td>
<td>244.041</td>
<td>396</td>
<td>.616</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subjects</td>
<td>188.222</td>
<td>99</td>
<td>1.901</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Illustrated by the F-value significant at .001 level of significance. Levels of significance were also obtained for differences between the 'personalities' and for the network by figure interaction, .05 and .001 respectively. The matrix for Factor I in Table 12 clearly
TABLE 12

CELL MEANS FOR ANALYSIS OF VARIANCE

Factor I Means

Power - Evaluative

<table>
<thead>
<tr>
<th></th>
<th>Richardson</th>
<th>Agnew</th>
<th>Hoffman</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td>.201</td>
<td>.053</td>
<td>-.276</td>
<td>-.008</td>
</tr>
<tr>
<td>NBC</td>
<td>-.204</td>
<td>.370</td>
<td>.409</td>
<td>.192</td>
</tr>
<tr>
<td>ABC</td>
<td>-.278</td>
<td>-.066</td>
<td>-.208</td>
<td>-.184</td>
</tr>
</tbody>
</table>

Factor II Means

Aesthetic - Ambiguity

<table>
<thead>
<tr>
<th></th>
<th>Richardson</th>
<th>Agnew</th>
<th>Hoffman</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td>.300</td>
<td>.197</td>
<td>.271</td>
<td>.256</td>
</tr>
<tr>
<td>NBC</td>
<td>.099</td>
<td>.035</td>
<td>-.438</td>
<td>-.102</td>
</tr>
<tr>
<td>ABC</td>
<td>-.337</td>
<td>.094</td>
<td>-.219</td>
<td>-.159</td>
</tr>
</tbody>
</table>

Continued next page
TABLE 12 (cont.)

Factor III Means
Emotionality

<table>
<thead>
<tr>
<th></th>
<th>Richardson</th>
<th>Agnew</th>
<th>Hoffman</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBS</td>
<td>.060</td>
<td>-.414</td>
<td>.322</td>
</tr>
<tr>
<td>NBC</td>
<td>.249</td>
<td>-.421</td>
<td>.440</td>
</tr>
<tr>
<td>ABC</td>
<td>-.009</td>
<td>-.602</td>
<td>.375</td>
</tr>
</tbody>
</table>

.100 -.479 .379 Ø

illustrates these results.

Interpretation of the cell means for Factor I shows that the highest mean for a networks' 'set' of illustrations was registered by NBC followed secondly by CBS and thirdly, ABC. Summing across 'personalities', 'Agnew' illustrations show the largest mean followed by 'Richardson' and then 'Hoffman'.

In the factor analysis this dimension was described by such adjectives as pessimistic, hard, severe, painful, heavy, ugly, negative, etc. Based on the three networks' 'set' means then, it can be said that the subjects found these adjectives most appropriate in describing NBC's set of illustrations and least appropriate applied to ABC's graphics. Similarly, the adjectives were most relevant in describing the 'Agnew' graphics and least relevant for the 'Hoffman' drawings.
The interaction of these illustrations on this factor (significant at .001), contrary to the hypothesis prediction, indicates no pattern of similarities within the networks exist, and instead, each illustration seems to be an entity in and of itself. This is emphasized by the fact that even though the 'Hoffman' illustrations, summing across all three networks, showed the lowest mean on Factor I, the single illustration evidencing the highest mean was for the Hoffman drawing on NBC. Thus, this drawing, in terms of the adjectives describing this dimension, is seen as being the most pessimistic, hard, severe, heavy etc.

The summary table for Factor II (Aesthetic Ambiguity) also shows significant differences between the network and figure interaction. However, the F-value for between network variance is almost twice as high for Factor II as for Factor I. Both F-values have significance at the .001 level of confidence but Factor II's higher value may be an indication that this dimension (Aesthetic Ambiguity) more clearly differentiates the networks.

The matrix for Factor II in Table 12 shows CBS as having the highest mean for network 'sets' followed by NBC and ABC. The adjectives from the factor analysis which describe this dimension are: incomplete, passive, muted, meaningless, accidental and hazy.

Taken in context of these adjectives then, the CBS illustrations were perceived by the subject: as the most Aesthetically Ambiguous and ABC as the least. The adjectives describing this dimension then, apply more to the 'Agnew' illustrations than the 'Richardson' drawings and least for the 'Hoffman' illustrations.
The single illustration having the highest mean, or demonstrating the most salience on this dimension was 'Richardson' CBS. If this illustration is then considered the most Aesthetically Ambiguous, the 'Hoffman' drawing on NBC can be considered the least Aesthetically Ambiguous.

Again, as in the analysis of variance for Factor I, the interaction of the network and figures is significant.

The analysis of variance for Factor III (Emotionality) in Table 12 shows no significant differences between the networks, nor is there a significant network by figure interaction. However, there is a highly significant difference noted between the 'figures'. In fact, this is the highest F-value for any of the three analyses. The corresponding matrix in Table 11 clarifies this finding.

The means for the networks' sets are very similar, but the means for the 'figures' summing across the networks are very different.

The factor analysis for this dimension shows ordered, rational and calm as the descriptive adjectives. The 'figure' means show these adjectives to best exemplify the 'Hoffman' graphics and least the 'Agnew' graphics.

The analysis of variance has both shown significant differences between networks and figures, and illustrated that each drawing is probably perceived by the subjects as a separate entity apart from the other drawings. This analysis has also provided a description of the drawings in terms of the factor adjectives and the cell means.
FOOTNOTES FOR CHAPTER IV

CHAPTER V

A DISCUSSION OF THE DATA ANALYSES

The Semantic Differential and Courtroom Drawings

An important aspect of this study has been the adaptation of a measuring technique to the measurement of television's graphics, specifically the courtroom illustrations. A discussion of the technique's performance is essential for future research.

As discussed earlier in Chapter II of this study, many of the verbal studies utilizing the semantic differential technique have corroborated Osgood's findings that the three factors appearing to dominate the semantic space, and in roughly the same order of magnitude are evaluation, potency and activity. This has, however, not been true for aesthetic research.

In Tucker's study, "Experiments in Aesthetic Communications," discussed in Chapter II, the factor which accounted for the most variance was the Activity dimension. This emergence of the Activity dimension as Factor I was also found by Lois L. Elliott and Percy H. Tannenbaum in their study of nonsense shapes. Two samples of nonsense shapes, containing 36 and 34 stimulus-shapes were judged on 20 bi-polar adjective scales. As in the Tucker study, the factor accounting for the greatest percentage of variance was identified as Activity.

If the Activity dimension is then considered to be highly
related to the perceptions of drawings or illustrations, it could be expected that in measuring the courtroom drawings of this study the Activity Factor would also be dominate. It has been shown that this is not the case. What then accounts for this difference?

It should be remembered that Tucker used abstract and representational paintings as the concepts for his study, while Elliott and Tannenbaum used nonsense shapes. The illustrations (courtroom drawings) used in this study do not appear to have the abstractness of the stimulus used in either of these previous studies. It may be, that the subjects were not assessing the courtroom illustrations as drawings per se in the art sense, but were rather perceiving the editorial comment inherent in these graphics. This would explain the high loading of Evaluative scales on Factor I, and relate this Factor to previous verbal studies.

It has been shown however, that Factor I in this study is not comprised only of Evaluative scales and therefore, cannot be said to be wholly an Evaluative dimension. The high loading of Potency scales on Factor I in this study, correlates to the findings of Percy Tannenbaum's study, "What Effect When TV Covers A Congressional Hearing." In this, Tannenbaum, analyzing changes in information and meaning, found the dimension showing the largest changes to be in the Potency dimension.

The relevance of the Potency dimension for both this and Tannenbaum's study may be a function of the medium being studied. This dimension may relate to assessing editorial comment expressed graphically by means of the television. It would be interesting to
see if this conjecture could be given credibility by using the semantic differential technique to study news photographs appearing in print as compared with their transmission by television.

Factor II which has been labeled Aesthetic Ambiguity, even though it is comprised mainly of Evaluative scales, seems to correspond to Tucker's Activity Factor. Each of these Factors seem to represent a dimension concerning the assessment of the aesthetic quality of the drawings.

Factor III, Emotionality, corresponds to the third Factor in previous studies in that Activity scales loaded highly. However, as the label implies, it seems to be a departure from the traditional Activity Factor in which active-passive is the dominant loading.

The semantic differential, then when applied to measuring these television courtroom drawings, evidences the emergence of Factors differing from those of previous studies both in terms of their order of magnitude, and in the dimension of semantic space they seem to be assessing.

Simply by using Osgood's terminology, that is identifying the scales used in the semantic differentials by means of previous studies, correlations between this study and earlier ones are possible. However, the differing combinations of these scales loading on the Factors (i.e. Evaluative and Potency combining on Factor I) give support to the conjecture that indeed, different Factors did emerge when measuring these particular courtroom drawings.
What Were The Subjects Assessing?

When selecting the scales to make up the semantic differential, considerable thought was given to selecting those scales that would represent judgments of the graphics, and not be a direct measurement of the persons depicted within these illustrations. In other words, concern was expressed that this study not be a measurement of the subjects feelings toward Agnew, Richardson or Hoffman, but rather a study assessing courtroom drawings. Just how successful these scales were in this measurement can be shown by the Analysis of Variance.

It would seem that if subjects were expressing their feelings toward the personalities instead of assessing the drawings they would be consistent across all three networks. That is, if they were on Factor I, judging Agnew as pessimistic, hard, severe; or optimistic, soft and lenient, they would indicate him as such regardless of the network on which he was shown. Similarly for Richardson and Hoffman. The high level of significant interaction between the cell means on Factor I shows this not to be the case. Each illustration was, rather, an entity in and of itself, independent of the other illustrations.

It is important to note then, that a high mean in this analysis of the Power-Evaluative Factor does not indicate that any one 'personality' was seen as powerful or weak, but rather that the illustration was perceived as powerful or not powerful. Similarly for Factor II, Aesthetic Ambiguity. This may be a direct function of the individual artists' technique. This would seem
particularly apt since the artists must exaggerate their drawings in the sense that they must immediately make known who is being portrayed in the few seconds time it appears on the television screen. This, "Leaping out at the viewer," as Freda Reiter, of ABC puts it, may be the 'power' the subjects are relating to.

A study of the cell means for the analysis of variance supports the contention that the illustrations and not the personalities were being judged. The Hoffman illustration on NBC registered the most salient means for both Factor I and Factor II, thus suggesting in terms of the adjectives describing the dimension, that this illustration was perceived as being the most powerful (hard, painful, severe, ugly) and at the same time was perceived as being the least Aesthetically Ambiguous (least muted, least hazy, least meaningless).

On the other hand, the Hoffman illustration on CBS for Factor I registered a very low mean score, indicating the reverse of NBC; the CBS illustration was perceived as not powerful, not hard, not severe. These are illustrations featuring the same personality, but the subjects are perceiving their representation differently.

On Factor II, the difference between the means for the Hoffman illustration on NBC and CBS also indicates exact opposites. The NBC illustration is seen as highly Aesthetically UNAmbiguous, while CBS's is highly Aesthetically Ambiguous.

Such comparisons can be made throughout the matrices and give credibility to the supposition that each illustration was independent in and of itself, and that the subjects seemed to be perceiving not the personalities, but the drawings.
The analysis of variance for Factor III, Emotionality, shows no significant difference between networks, nor a significant interaction between networks and figures. It does however, show a highly significant difference between the figures. This departure from Factors I and II leads to an interesting supposition. This dimension may be a measurement not of the personalities, nor of the illustration per se, but rather a measurement of the stereotype of positions held by the figures. For Hoffman this would be particularly evident. In all three illustrations he was clearly identified as the judge in the courtroom, both by his robe and position behind the bench. If this conjecture is valid it can be said that the subjects perceived the 'Judge Stereotype' as rational, ordered, and calm.

Agnew, although not identified in the illustrations as the defendant, may have been known as such to the subjects and this 'Role', according to the mean scores, is the antithesis of the 'Judge' -- emotional, upset, and chaotic. Richardson, it seems unlikely was identified as the prosecuting attorney, and that mean score is only slightly rational, calm, and ordered.

The analysis of variance has not only shown that there were significant differences perceived between the networks and figures by the subjects, but the significant interaction noted has also helped identify what the subjects were assessing.

'Profiles' Used to Make Comparisons

The assumption of consensuality or agreement among subjects in their ratings of each illustration was the basis for determining the scales relevant to describing or 'Profiling' each graphic. The
frequency distribution provided a tabulation of the subjects judgments for each illustration from which those scales meeting the established criteria were extracted. In terms of these scales, the 'Profiles' were compared to discern differences or similarities between or within the networks. Differences between the networks and between individual illustrations were clearly established. There were no indications of similarities within a particular network based on the common usage of scales.

Frequency distributions were also tabulated for each of the five groups making up the total population of subjects. Some differences were found between these groups, but over-all the direction of their responses corresponded.

An interesting addendum to the Group Analysis reported in Chapter IV is that over-all, Group I, which was comprised of students enrolled in Journalism used the most scales (111) to define the illustrations, and Group 5, students enrolled in a graduate marketing course, used by far the least (only 39). Since almost without exception, judgments were toward the negative pole of the semantic differential, this may be interpreted to mean that Journalism students judge a product of their profession more harshly than did an "outside group".

An Earlier Assessment of These Courtroom Drawings

As part of the study, "How TV Networks Covered Agnew's 'Day of Infamy'," by Samuel Feldman and Joseph Webb, the courtroom drawings from the Spirio Agnew Income Tax Evasion trail were used to make speculations about differences between the three networks,
ABC, CBS and NBC.

Although their study cannot be directly correlated or compared with this effort since they evaluated not only the drawings, but other components of television's coverage of this event, comments can be made comparing their assessment of the courtroom drawings and the findings of this study.

Feldman and Webb began their comments concerning the drawings by saying, "The three sets of sketches are astonishingly different but, significantly, each is in harmony with the tone of the story that each network has already set."5

Their assertion that the networks were "astonishingly" different based on the drawings, is clearly corroborated by this study's frequency distribution and analysis of variance, which showed a significant level of confidence, .001 for many comparisons.

Many of their comments concerning individual illustrations are also supported by this study. Their remark that CBS, "Sketched Judge Hoffman as pleasant-looking, almost smiling,"6 corresponds to the analysis of variance which finds this illustration as the least Powerful-Evaluative (least painful, least severe, least ugly).

Describing Elliot Richardson as being given a, "hard, tough profile—close to a bad-guy sternness,"7 by CBS is substantiated by this same illustrations mean score showing it as the most Powerful-Evaluative of any of the three networks representations of the attorney.

Their comments concerning NBC's drawing of Judge Hoffman, "A stern, harsh man, with heavy jowls and wise down-turned mouth,"; and
ABC's illustration of Richardson as, "Clean, sharp features," all correspond to the findings. For example, the analysis of variance for Factor I shows NBC's drawing of Judge Hoffman to be the most Power-Evaluative of any illustration within that matrix (hard, severe, painful, heavy). Similarly ABC's sketch of Agnew is shown by the analysis of variance for Factor III to have the most Emotionality (upset, chaotic, emotional).

Such comparisons emphasize the similarities between their conjectures concerning the drawings and the findings of this study. However, their assertion that, "Each is in harmony with the tone of the story that each network has already set," is more difficult to deal with.

The significant interaction of Factor I and Factor II in the analysis of variance, and the frequency distribution show little evidence to support the supposition that there are similarities within a particular network, or a network's artist's technique. There is no pattern established within the matrix, in fact, the interaction indicates that each illustration is independent in and of itself.

Without analyzing the other components of their study it is difficult to address the idea of the drawings showing harmony with the rest of the story. The "Tone" of the story can only be compared by studying the other aspects (news leads, language, commentaries, etc.) used in their analysis.
FOOTNOTES FOR CHAPTER V

5Ibid., p. 8.

6Ibid., p. 8.

7Ibid., p. 8.

8Ibid., p. 8.

9Ibid., p. 8.
CHAPTER VI
CONCLUSIONS

The results from the experiment support the hypothesis that a television viewing audience will perceive differences between the three major networks' pictorial presentations. It has been demonstrated that the subjects used in this experiment perceived significant differences between the networks' pictorial treatment of Agnew, Richardson and Hoffman based on the subjects' reactions to these courtroom drawings. If the findings of this study can be extended to the general television audience and these same differences are perceived, it can be assumed that how one perceives the trial being reported is partly dependent upon which network one chooses to watch. This is based on the assumption that the subjects in this experiment are representative of the general television audience and their perceiving the contents of the illustrations as being different can be extended to this larger audience.

However, the assumption of the hypothesis that patterns of similarities existing within illustration styles of a particular network artist was unfound. The frequency distribution and analysis of variance of the data suggest that no pattern of similarities is present among the illustrations. Rather, that each illustration was an entity independent of the other illustrations.

The findings of the experiment lend support to the general premise of the study that an analysis of television news is not
complete without an analysis of the graphic content.

Correlating Jeffrey G. Shapiro's findings that some individuals respond consistently more to signs originating in the facial expression (video) and others to signs originating in verbal expressions (audio), to the findings of this study, indicates that a segment of the general television viewing audience may be responding to the courtroom drawings, while others are responding, or forming their impressions from the audio accompanying these drawings. If one accepts this conjecture, an analysis of the scripts alone would only respond to that section of the audience taking their impressions from the audio component of the news presentation.

Further research is needed to identify the relationship between the audio and video components of the news and the differing impressions each component leaves with the viewing audience. This relationship can only be discussed after studying an analysis in which both components are adequately measured. The experimental design used in this study has proven to be an effective method in the measurement of a segment of television's graphics. By combining this experimental design with an analysis of the scripts, a more complete interpretation of this news event could be made.

The methodological implications of the findings from this experiment suggest that when the semantic differential is applied to television news graphics, factors differing from those of previous verbal and aesthetic studies are likely to emerge. The factors identified in this study suggest the assessment of these courtroom drawings as editorial comment expressed graphically. If this
interpretation is correct, further research needs to be undertaken to determine if this is a function of editorial comment expressed graphically by transmission on the television (a particular medium) or if these same factors identify similar graphics in the print media as well.

The graphics used in this study are only a small segment of the total graphic content in television news presentations. But the measurement of these courtroom drawings has demonstrated that graphics can be used as units of analysis to discern differences between the networks. This suggests that a similar assessment of other graphics could also be used to make such comparisons.

Again, in summary, the overall significance of this study lies in the assertion that communication research analyzing television news must deal with the graphic content as well as the verbal content to make a complete finding. For researchers to dismiss the video component because present methods fail to discern differences only emphasizes the need for adequate methodology to measure this component.

This study has attempted to provide a design which can measure graphic content and when combined with present methods of audio analysis, provide a more complete analysis of television news presentations. Hopefully, other methods will be adapted or applied to graphics in future research.
BIBLIOGRAPHY

Books

Journals

Lemert, James B. "Content Duplication by Networks." Journalism Quarterly 51 (Summer 1974): 238-44.

Articles

APPENDIX

Sample Scale Booklet Containing Percentages of Subject Agreement
INSTRUCTIONS:

The purpose of this study is to measure the meanings of the illustrations which you will be shown shortly. In taking this test, please make your judgments on the basis of what these illustrations mean to you. On each page of this booklet you will judge one illustration by marking a set of scales.

If you feel that the illustration is very closely related to one end of the scale you will place your check-mark in the blank indicated as number 3.

If you feel that the illustration is quite closely related to one end or the other, you should place your check-mark in the number two blank.

If the illustration seems only slightly related to one side as opposed to the other side (but not really neutral), the check will be placed in the blank indicated as number one.

If you consider the illustration to be neutral on the scale, or if it seems completely irrelevant and unrelated to the illustration then the middle space should be checked corresponding with zero.

IMPORTANT

(1) Place your check-marks in the middle of spaces, not on the boundaries.
(2) Be sure you check every scale for every illustration -- do not omit any.
(3) Never put more than one check-mark on a single scale.

DEMOGRAPHICS:

Age______________________

Sex______________________

College Major__________________________

Degree being sought_______________________

Occupation other than student__________________________

*Illustrations were identified only by number during the experiment.
Illustration No. 1 (Richardson - CBS)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimistic</td>
<td>2</td>
<td>9</td>
<td>10</td>
<td>27</td>
<td>18</td>
<td>25</td>
<td>9</td>
</tr>
<tr>
<td>pessimistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hard</td>
<td>17</td>
<td>26</td>
<td>30</td>
<td>10</td>
<td>12</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incomplete</td>
<td>23</td>
<td>10</td>
<td>22</td>
<td>24</td>
<td>7</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active</td>
<td>15</td>
<td>24</td>
<td>21</td>
<td>6</td>
<td>13</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lenient</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>16</td>
<td>26</td>
<td>24</td>
<td>18</td>
</tr>
<tr>
<td>severe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>harmonious</td>
<td>2</td>
<td>7</td>
<td>14</td>
<td>28</td>
<td>21</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>dissonant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>muted</td>
<td>14</td>
<td>12</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>blatant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cruel</td>
<td>11</td>
<td>12</td>
<td>24</td>
<td>36</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td>16</td>
<td>16</td>
<td>26</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>chaotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dark</td>
<td>21</td>
<td>21</td>
<td>25</td>
<td>26</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pleasurable</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>36</td>
<td>21</td>
<td>18</td>
<td>15</td>
</tr>
<tr>
<td>painful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rational</td>
<td>10</td>
<td>17</td>
<td>21</td>
<td>14</td>
<td>12</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>emotional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heavy</td>
<td>16</td>
<td>21</td>
<td>35</td>
<td>19</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ugly</td>
<td>12</td>
<td>13</td>
<td>20</td>
<td>41</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>beautiful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meaningful</td>
<td>10</td>
<td>17</td>
<td>22</td>
<td>23</td>
<td>7</td>
<td>8</td>
<td>13</td>
</tr>
<tr>
<td>meaningless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>free</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>11</td>
<td>26</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>constrained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calm</td>
<td>7</td>
<td>8</td>
<td>24</td>
<td>10</td>
<td>17</td>
<td>20</td>
<td>14</td>
</tr>
<tr>
<td>upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unintentional</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>24</td>
<td>23</td>
<td>24</td>
<td>16</td>
</tr>
<tr>
<td>intentional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td>15</td>
<td>22</td>
<td>17</td>
<td>23</td>
<td>14</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mild</td>
<td>1</td>
<td>5</td>
<td>13</td>
<td>9</td>
<td>24</td>
<td>21</td>
<td>27</td>
</tr>
<tr>
<td>intense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtle</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>16</td>
<td>18</td>
<td>23</td>
<td>10</td>
</tr>
<tr>
<td>obvious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accidental</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>14</td>
<td>29</td>
<td>28</td>
<td>14</td>
</tr>
<tr>
<td>controlled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prohibitive</td>
<td>8</td>
<td>20</td>
<td>27</td>
<td>31</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>permissive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hazy</td>
<td>25</td>
<td>18</td>
<td>20</td>
<td>11</td>
<td>8</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td>2</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>16</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Illustration No. 2 (Agnew - CBS)

<table>
<thead>
<tr>
<th>Term</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimistic</td>
<td>1</td>
<td>7</td>
<td>7</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>pessimistic</td>
</tr>
<tr>
<td>Hard</td>
<td>18</td>
<td>23</td>
<td>22</td>
<td>11</td>
<td>13</td>
<td>9</td>
<td>4</td>
<td>soft</td>
</tr>
<tr>
<td>Incomplete</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>30</td>
<td>5</td>
<td>10</td>
<td>11</td>
<td>complete</td>
</tr>
<tr>
<td>Active</td>
<td>8</td>
<td>20</td>
<td>17</td>
<td>12</td>
<td>13</td>
<td>18</td>
<td>12</td>
<td>passive</td>
</tr>
<tr>
<td>Lenient</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>16</td>
<td>23</td>
<td>21</td>
<td>19</td>
<td>severe</td>
</tr>
<tr>
<td>Harmonious</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td>19</td>
<td>25</td>
<td>21</td>
<td>dissonant</td>
</tr>
<tr>
<td>Muted</td>
<td>8</td>
<td>13</td>
<td>18</td>
<td>21</td>
<td>8</td>
<td>17</td>
<td>15</td>
<td>blatant</td>
</tr>
<tr>
<td>Cruel</td>
<td>5</td>
<td>20</td>
<td>22</td>
<td>24</td>
<td>13</td>
<td>13</td>
<td>3</td>
<td>kind</td>
</tr>
<tr>
<td>Ordered</td>
<td>10</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>23</td>
<td>13</td>
<td>6</td>
<td>chaotic</td>
</tr>
<tr>
<td>Dark</td>
<td>11</td>
<td>23</td>
<td>15</td>
<td>26</td>
<td>13</td>
<td>7</td>
<td>5</td>
<td>light</td>
</tr>
<tr>
<td>Pleasurable</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>31</td>
<td>18</td>
<td>22</td>
<td>14</td>
<td>painful</td>
</tr>
<tr>
<td>Rational</td>
<td>4</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>16</td>
<td>22</td>
<td>18</td>
<td>emotional</td>
</tr>
<tr>
<td>Heavy</td>
<td>14</td>
<td>19</td>
<td>20</td>
<td>23</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>light</td>
</tr>
<tr>
<td>Ugly</td>
<td>15</td>
<td>15</td>
<td>18</td>
<td>39</td>
<td>9</td>
<td>2</td>
<td>2</td>
<td>beautiful</td>
</tr>
<tr>
<td>Meaningful</td>
<td>13</td>
<td>16</td>
<td>18</td>
<td>23</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>meaningless</td>
</tr>
<tr>
<td>Free</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>20</td>
<td>32</td>
<td>27</td>
<td>constrained</td>
</tr>
<tr>
<td>Calm</td>
<td>4</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>19</td>
<td>29</td>
<td>20</td>
<td>upset</td>
</tr>
<tr>
<td>Unintentional</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>24</td>
<td>17</td>
<td>24</td>
<td>18</td>
<td>intentional</td>
</tr>
<tr>
<td>Negative</td>
<td>24</td>
<td>28</td>
<td>17</td>
<td>9</td>
<td>11</td>
<td>8</td>
<td>3</td>
<td>positive</td>
</tr>
<tr>
<td>Mild</td>
<td>4</td>
<td>9</td>
<td>8</td>
<td>10</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>intense</td>
</tr>
<tr>
<td>Subtle</td>
<td>5</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>15</td>
<td>24</td>
<td>16</td>
<td>obvious</td>
</tr>
<tr>
<td>Accidental</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>19</td>
<td>23</td>
<td>25</td>
<td>18</td>
<td>controlled</td>
</tr>
<tr>
<td>Prohibitive</td>
<td>18</td>
<td>21</td>
<td>20</td>
<td>24</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>permissive</td>
</tr>
<tr>
<td>Hazy</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>9</td>
<td>13</td>
<td>6</td>
<td>clear</td>
</tr>
<tr>
<td>Simple</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>26</td>
<td>16</td>
<td>complex</td>
</tr>
<tr>
<td>Illustration No. 3 (Hoffman - CBS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optimistic</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>pessimistic</td>
</tr>
<tr>
<td>hard</td>
<td>17</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>23</td>
<td>9</td>
<td>4</td>
<td>soft</td>
</tr>
<tr>
<td>incomplete</td>
<td>9</td>
<td>9</td>
<td>11</td>
<td>34</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>complete</td>
</tr>
<tr>
<td>active</td>
<td>9</td>
<td>10</td>
<td>22</td>
<td>14</td>
<td>18</td>
<td>20</td>
<td>7</td>
<td>passive</td>
</tr>
<tr>
<td>lenient</td>
<td>6</td>
<td>12</td>
<td>18</td>
<td>17</td>
<td>11</td>
<td>18</td>
<td>18</td>
<td>severe</td>
</tr>
<tr>
<td>harmonious</td>
<td>3</td>
<td>11</td>
<td>22</td>
<td>30</td>
<td>11</td>
<td>14</td>
<td>9</td>
<td>dissonant</td>
</tr>
<tr>
<td>muted</td>
<td>5</td>
<td>11</td>
<td>24</td>
<td>27</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>blatant</td>
</tr>
<tr>
<td>cruel</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>25</td>
<td>22</td>
<td>10</td>
<td>5</td>
<td>kind</td>
</tr>
<tr>
<td>ordered</td>
<td>16</td>
<td>22</td>
<td>31</td>
<td>15</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>chaotic</td>
</tr>
<tr>
<td>dark</td>
<td>15</td>
<td>8</td>
<td>19</td>
<td>33</td>
<td>15</td>
<td>5</td>
<td>5</td>
<td>light</td>
</tr>
<tr>
<td>pleasurable</td>
<td>3</td>
<td>4</td>
<td>23</td>
<td>31</td>
<td>14</td>
<td>15</td>
<td>10</td>
<td>painful</td>
</tr>
<tr>
<td>rational</td>
<td>12</td>
<td>17</td>
<td>30</td>
<td>13</td>
<td>17</td>
<td>9</td>
<td>2</td>
<td>emotional</td>
</tr>
<tr>
<td>heavy</td>
<td>16</td>
<td>15</td>
<td>23</td>
<td>22</td>
<td>14</td>
<td>7</td>
<td>3</td>
<td>light</td>
</tr>
<tr>
<td>ugly</td>
<td>9</td>
<td>12</td>
<td>19</td>
<td>45</td>
<td>11</td>
<td>3</td>
<td>1</td>
<td>beautiful</td>
</tr>
<tr>
<td>meaningful</td>
<td>7</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>10</td>
<td>5</td>
<td>8</td>
<td>meaningless</td>
</tr>
<tr>
<td>free</td>
<td>1</td>
<td>7</td>
<td>15</td>
<td>22</td>
<td>20</td>
<td>25</td>
<td>10</td>
<td>constrained</td>
</tr>
<tr>
<td>calm</td>
<td>13</td>
<td>23</td>
<td>21</td>
<td>9</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>upset</td>
</tr>
<tr>
<td>unintentional</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>24</td>
<td>30</td>
<td>17</td>
<td>12</td>
<td>intentional</td>
</tr>
<tr>
<td>negative</td>
<td>11</td>
<td>9</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>12</td>
<td>4</td>
<td>positive</td>
</tr>
<tr>
<td>mild</td>
<td>8</td>
<td>15</td>
<td>19</td>
<td>10</td>
<td>14</td>
<td>17</td>
<td>17</td>
<td>intense</td>
</tr>
<tr>
<td>subtle</td>
<td>8</td>
<td>13</td>
<td>22</td>
<td>17</td>
<td>20</td>
<td>13</td>
<td>7</td>
<td>obvious</td>
</tr>
<tr>
<td>accidental</td>
<td>4</td>
<td>2</td>
<td>15</td>
<td>20</td>
<td>23</td>
<td>13</td>
<td>13</td>
<td>controlled</td>
</tr>
<tr>
<td>prohibitive</td>
<td>9</td>
<td>19</td>
<td>22</td>
<td>21</td>
<td>20</td>
<td>7</td>
<td>2</td>
<td>permissive</td>
</tr>
<tr>
<td>hazy</td>
<td>8</td>
<td>13</td>
<td>21</td>
<td>27</td>
<td>17</td>
<td>11</td>
<td>3</td>
<td>clear</td>
</tr>
<tr>
<td>simple</td>
<td>3</td>
<td>11</td>
<td>18</td>
<td>21</td>
<td>17</td>
<td>16</td>
<td>14</td>
<td>complex</td>
</tr>
<tr>
<td>Illustration No. 4 (Hoffman - NBC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optimistic</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>hard</td>
<td>33</td>
<td>30</td>
<td>22</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>-</td>
<td>33</td>
</tr>
<tr>
<td>incomplete</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>34</td>
<td>14</td>
<td>18</td>
<td>18</td>
<td>complete</td>
</tr>
<tr>
<td>active</td>
<td>14</td>
<td>19</td>
<td>19</td>
<td>9</td>
<td>18</td>
<td>14</td>
<td>7</td>
<td>passive</td>
</tr>
<tr>
<td>lenient</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>14</td>
<td>-17</td>
<td>25</td>
<td>36</td>
<td>severe</td>
</tr>
<tr>
<td>harmonious</td>
<td>2</td>
<td>8</td>
<td>11</td>
<td>19</td>
<td>23</td>
<td>20</td>
<td>17</td>
<td>dissonant</td>
</tr>
<tr>
<td>muted</td>
<td>5</td>
<td>1</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>25</td>
<td>15</td>
<td>blatant</td>
</tr>
<tr>
<td>cruel</td>
<td>18</td>
<td>15</td>
<td>26</td>
<td>25</td>
<td>10</td>
<td>4</td>
<td>2</td>
<td>kind</td>
</tr>
<tr>
<td>ordered</td>
<td>26</td>
<td>27</td>
<td>32</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>chaotic</td>
</tr>
<tr>
<td>dark</td>
<td>17</td>
<td>23</td>
<td>26</td>
<td>24</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>light</td>
</tr>
<tr>
<td>pleasurable</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>34</td>
<td>25</td>
<td>24</td>
<td>9</td>
<td>painful</td>
</tr>
<tr>
<td>rational</td>
<td>24</td>
<td>21</td>
<td>25</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>5</td>
<td>emotional</td>
</tr>
<tr>
<td>heavy</td>
<td>25</td>
<td>21</td>
<td>26</td>
<td>21</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>light</td>
</tr>
<tr>
<td>ugly</td>
<td>9</td>
<td>18</td>
<td>25</td>
<td>42</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>beautiful</td>
</tr>
<tr>
<td>meaningful</td>
<td>17</td>
<td>24</td>
<td>25</td>
<td>19</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>meaningless</td>
</tr>
<tr>
<td>free</td>
<td>3</td>
<td>7</td>
<td>3</td>
<td>12</td>
<td>23</td>
<td>33</td>
<td>19</td>
<td>constrained</td>
</tr>
<tr>
<td>calm</td>
<td>13</td>
<td>18</td>
<td>16</td>
<td>10</td>
<td>13</td>
<td>19</td>
<td>11</td>
<td>upset</td>
</tr>
<tr>
<td>unintentional</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>14</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>intentional</td>
</tr>
<tr>
<td>negative</td>
<td>17</td>
<td>30</td>
<td>19</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>10</td>
<td>positive</td>
</tr>
<tr>
<td>mild</td>
<td>-</td>
<td>3</td>
<td>9</td>
<td>9</td>
<td>21</td>
<td>27</td>
<td>31</td>
<td>intense</td>
</tr>
<tr>
<td>subtle</td>
<td>1</td>
<td>10</td>
<td>16</td>
<td>13</td>
<td>16</td>
<td>22</td>
<td>22</td>
<td>obvious</td>
</tr>
<tr>
<td>accidental</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>21</td>
<td>34</td>
<td>30</td>
<td>controlled</td>
</tr>
<tr>
<td>prohibitive</td>
<td>27</td>
<td>26</td>
<td>17</td>
<td>21</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>permissive</td>
</tr>
<tr>
<td>hazy</td>
<td>4</td>
<td>10</td>
<td>8</td>
<td>22</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>clear</td>
</tr>
<tr>
<td>simple</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>13</td>
<td>22</td>
<td>26</td>
<td>20</td>
<td>complex</td>
</tr>
</tbody>
</table>
Illustration No. 5 (Richardson - NBC)

<table>
<thead>
<tr>
<th></th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>optimistic</td>
<td>3</td>
<td>3</td>
<td>10</td>
<td>53</td>
<td>17</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>pessimistic</td>
<td>6</td>
<td>16</td>
<td>24</td>
<td>38</td>
<td>10</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>hard</td>
<td>13</td>
<td>10</td>
<td>24</td>
<td>24</td>
<td>13</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>soft</td>
<td>9</td>
<td>19</td>
<td>26</td>
<td>23</td>
<td>13</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>incomplete</td>
<td>9</td>
<td>8</td>
<td>43</td>
<td>17</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td>1</td>
<td>2</td>
<td>20</td>
<td>37</td>
<td>20</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>active</td>
<td>6</td>
<td>8</td>
<td>23</td>
<td>35</td>
<td>16</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>passive</td>
<td>6</td>
<td>4</td>
<td>13</td>
<td>63</td>
<td>12</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>lenient</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>severe</td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>41</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>harmonious</td>
<td>3</td>
<td>7</td>
<td>48</td>
<td>24</td>
<td>13</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>dissonant</td>
<td>11</td>
<td>29</td>
<td>15</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>muted</td>
<td>9</td>
<td>14</td>
<td>29</td>
<td>35</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>blatant</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>66</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cruel</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>kind</td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>41</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td>11</td>
<td>29</td>
<td>15</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>chaotic</td>
<td>9</td>
<td>14</td>
<td>29</td>
<td>35</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>dark</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>66</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pleasurable</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>rational</td>
<td>7</td>
<td>15</td>
<td>23</td>
<td>41</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>emotional</td>
<td>11</td>
<td>29</td>
<td>15</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>heavy</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>light</td>
<td>9</td>
<td>14</td>
<td>29</td>
<td>35</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>ugly</td>
<td>4</td>
<td>2</td>
<td>19</td>
<td>66</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>beautiful</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meaningful</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>meaningless</td>
<td>11</td>
<td>29</td>
<td>15</td>
<td>27</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>free</td>
<td>7</td>
<td>21</td>
<td>30</td>
<td>18</td>
<td>9</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>constrained</td>
<td>4</td>
<td>19</td>
<td>18</td>
<td>29</td>
<td>13</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>free</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>constrained</td>
<td>7</td>
<td>21</td>
<td>12</td>
<td>44</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>calm</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>18</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>upset</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>unintentional</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>37</td>
<td>19</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>intentional</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>26</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>negative</td>
<td>3</td>
<td>9</td>
<td>26</td>
<td>27</td>
<td>11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>positive</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>18</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>mild</td>
<td>2</td>
<td>3</td>
<td>11</td>
<td>23</td>
<td>24</td>
<td>23</td>
<td>14</td>
</tr>
<tr>
<td>Intense</td>
<td>9</td>
<td>14</td>
<td>29</td>
<td>35</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>subtle</td>
<td>7</td>
<td>21</td>
<td>12</td>
<td>44</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>obvious</td>
<td>12</td>
<td>29</td>
<td>29</td>
<td>20</td>
<td>4</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>accidental</td>
<td>8</td>
<td>12</td>
<td>12</td>
<td>37</td>
<td>19</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>controlled</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>26</td>
<td>26</td>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>prohibitive</td>
<td>3</td>
<td>9</td>
<td>26</td>
<td>27</td>
<td>11</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>permissive</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>32</td>
<td>18</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td>hazy</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>27</td>
<td>12</td>
<td>12</td>
<td>7</td>
</tr>
<tr>
<td>clear</td>
<td>7</td>
<td>21</td>
<td>12</td>
<td>44</td>
<td>13</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>simple</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>27</td>
<td>24</td>
<td>22</td>
<td>12</td>
</tr>
<tr>
<td>complex</td>
<td>9</td>
<td>14</td>
<td>29</td>
<td>35</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Illustration No. 6 (Agnew - NBC)

<table>
<thead>
<tr>
<th>Optimistic</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Pessimistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>31</td>
<td>22</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>12</td>
<td>-</td>
<td>Soft</td>
</tr>
<tr>
<td>Incomplete</td>
<td>11</td>
<td>12</td>
<td>16</td>
<td>31</td>
<td>12</td>
<td>10</td>
<td>8</td>
<td>Complete</td>
</tr>
<tr>
<td>Active</td>
<td>17</td>
<td>15</td>
<td>23</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>3</td>
<td>Passive</td>
</tr>
<tr>
<td>Lenient</td>
<td>-</td>
<td>3</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>26</td>
<td>24</td>
<td>Severe</td>
</tr>
<tr>
<td>Harmonious</td>
<td>-</td>
<td>5</td>
<td>4</td>
<td>15</td>
<td>20</td>
<td>33</td>
<td>23</td>
<td>Dissonant</td>
</tr>
<tr>
<td>Muted</td>
<td>4</td>
<td>11</td>
<td>18</td>
<td>14</td>
<td>8</td>
<td>24</td>
<td>21</td>
<td>Blatant</td>
</tr>
<tr>
<td>Cruel</td>
<td>21</td>
<td>16</td>
<td>28</td>
<td>18</td>
<td>13</td>
<td>4</td>
<td>-</td>
<td>Kind</td>
</tr>
<tr>
<td>Ordered</td>
<td>9</td>
<td>20</td>
<td>20</td>
<td>19</td>
<td>11</td>
<td>13</td>
<td>8</td>
<td>Chaotic</td>
</tr>
<tr>
<td>Dark</td>
<td>23</td>
<td>18</td>
<td>24</td>
<td>23</td>
<td>6</td>
<td>6</td>
<td>-</td>
<td>Light</td>
</tr>
<tr>
<td>Pleasurable</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>19</td>
<td>21</td>
<td>20</td>
<td>26</td>
<td>Painful</td>
</tr>
<tr>
<td>Rational</td>
<td>4</td>
<td>10</td>
<td>18</td>
<td>9</td>
<td>16</td>
<td>23</td>
<td>20</td>
<td>Emotional</td>
</tr>
<tr>
<td>Heavy</td>
<td>32</td>
<td>18</td>
<td>22</td>
<td>14</td>
<td>11</td>
<td>3</td>
<td>-</td>
<td>Light</td>
</tr>
<tr>
<td>Ugly</td>
<td>20</td>
<td>18</td>
<td>15</td>
<td>41</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>Beautiful</td>
</tr>
<tr>
<td>Meaningful</td>
<td>13</td>
<td>16</td>
<td>23</td>
<td>19</td>
<td>14</td>
<td>11</td>
<td>4</td>
<td>Meaningless</td>
</tr>
<tr>
<td>Free</td>
<td>1</td>
<td>-</td>
<td>11</td>
<td>10</td>
<td>16</td>
<td>34</td>
<td>28</td>
<td>Constrained</td>
</tr>
<tr>
<td>Calm</td>
<td>6</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>17</td>
<td>19</td>
<td>25</td>
<td>Upset</td>
</tr>
<tr>
<td>Unintentional</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>22</td>
<td>19</td>
<td>24</td>
<td>16</td>
<td>Intentional</td>
</tr>
<tr>
<td>Negative</td>
<td>27</td>
<td>16</td>
<td>26</td>
<td>11</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>Positive</td>
</tr>
<tr>
<td>Mild</td>
<td>-</td>
<td>5</td>
<td>9</td>
<td>7</td>
<td>18</td>
<td>31</td>
<td>30</td>
<td>Intense</td>
</tr>
<tr>
<td>Subtle</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>18</td>
<td>21</td>
<td>25</td>
<td>Obvious</td>
</tr>
<tr>
<td>Accidental</td>
<td>2</td>
<td>8</td>
<td>9</td>
<td>19</td>
<td>24</td>
<td>25</td>
<td>13</td>
<td>Controlled</td>
</tr>
<tr>
<td>Permissive</td>
<td>19</td>
<td>27</td>
<td>20</td>
<td>11</td>
<td>15</td>
<td>4</td>
<td>4</td>
<td>Permissive</td>
</tr>
<tr>
<td>Hazy</td>
<td>12</td>
<td>22</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>9</td>
<td>8</td>
<td>Clear</td>
</tr>
<tr>
<td>Simple</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>17</td>
<td>19</td>
<td>23</td>
<td>24</td>
<td>Complex</td>
</tr>
<tr>
<td>Illustration No. 7 (Agnew - ABC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>optimistic</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>pessimistic</td>
</tr>
<tr>
<td>hard</td>
<td>18</td>
<td>19</td>
<td>9</td>
<td>8</td>
<td>34</td>
<td>6</td>
<td>6</td>
<td>soft</td>
</tr>
<tr>
<td>incomplete</td>
<td>6</td>
<td>15</td>
<td>22</td>
<td>29</td>
<td>10</td>
<td>5</td>
<td>13</td>
<td>complete</td>
</tr>
<tr>
<td>active</td>
<td>11</td>
<td>13</td>
<td>21</td>
<td>15</td>
<td>17</td>
<td>13</td>
<td>10</td>
<td>passive</td>
</tr>
<tr>
<td>lenient</td>
<td>3</td>
<td>4</td>
<td>28</td>
<td>16</td>
<td>18</td>
<td>17</td>
<td>14</td>
<td>severe</td>
</tr>
<tr>
<td>harmonious</td>
<td>2</td>
<td>2</td>
<td>17</td>
<td>20</td>
<td>22</td>
<td>15</td>
<td>22</td>
<td>dissonant</td>
</tr>
<tr>
<td>muted</td>
<td>7</td>
<td>12</td>
<td>32</td>
<td>15</td>
<td>16</td>
<td>7</td>
<td>11</td>
<td>blatant</td>
</tr>
<tr>
<td>cruel</td>
<td>9</td>
<td>13</td>
<td>13</td>
<td>33</td>
<td>23</td>
<td>5</td>
<td>4</td>
<td>kind</td>
</tr>
<tr>
<td>ordered</td>
<td>7</td>
<td>20</td>
<td>24</td>
<td>17</td>
<td>8</td>
<td>13</td>
<td>11</td>
<td>chaotic</td>
</tr>
<tr>
<td>dark</td>
<td>19</td>
<td>15</td>
<td>23</td>
<td>22</td>
<td>15</td>
<td>4</td>
<td>2</td>
<td>light</td>
</tr>
<tr>
<td>pleasurable</td>
<td>1</td>
<td>2</td>
<td>12</td>
<td>21</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>painful</td>
</tr>
<tr>
<td>rational</td>
<td>4</td>
<td>6</td>
<td>18</td>
<td>12</td>
<td>14</td>
<td>21</td>
<td>25</td>
<td>emotional</td>
</tr>
<tr>
<td>heavy</td>
<td>27</td>
<td>16</td>
<td>22</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>light</td>
</tr>
<tr>
<td>ugly</td>
<td>12</td>
<td>10</td>
<td>22</td>
<td>44</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>beautiful</td>
</tr>
<tr>
<td>meaningful</td>
<td>16</td>
<td>13</td>
<td>25</td>
<td>26</td>
<td>9</td>
<td>6</td>
<td>5</td>
<td>meaningless</td>
</tr>
<tr>
<td>free</td>
<td>-</td>
<td>3</td>
<td>10</td>
<td>12</td>
<td>20</td>
<td>29</td>
<td>26</td>
<td>constrained</td>
</tr>
<tr>
<td>calm</td>
<td>6</td>
<td>6</td>
<td>15</td>
<td>5</td>
<td>17</td>
<td>21</td>
<td>30</td>
<td>upset</td>
</tr>
<tr>
<td>unintentional</td>
<td>1</td>
<td>6</td>
<td>11</td>
<td>27</td>
<td>23</td>
<td>18</td>
<td>14</td>
<td>intentional</td>
</tr>
<tr>
<td>negative</td>
<td>19</td>
<td>18</td>
<td>28</td>
<td>13</td>
<td>13</td>
<td>8</td>
<td>1</td>
<td>positive</td>
</tr>
<tr>
<td>mild</td>
<td>3</td>
<td>5</td>
<td>19</td>
<td>4</td>
<td>22</td>
<td>18</td>
<td>29</td>
<td>intense</td>
</tr>
<tr>
<td>subtle</td>
<td>4</td>
<td>3</td>
<td>19</td>
<td>16</td>
<td>22</td>
<td>21</td>
<td>15</td>
<td>obvious</td>
</tr>
<tr>
<td>accidental</td>
<td>1</td>
<td>11</td>
<td>17</td>
<td>15</td>
<td>24</td>
<td>17</td>
<td>14</td>
<td>controlled</td>
</tr>
<tr>
<td>prohibitive</td>
<td>11</td>
<td>21</td>
<td>24</td>
<td>24</td>
<td>15</td>
<td>3</td>
<td>2</td>
<td>permissive</td>
</tr>
<tr>
<td>hazy</td>
<td>7</td>
<td>13</td>
<td>22</td>
<td>18</td>
<td>16</td>
<td>6</td>
<td>8</td>
<td>clear</td>
</tr>
<tr>
<td>simple</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>20</td>
<td>22</td>
<td>complex</td>
</tr>
<tr>
<td>Illustration No. 8 (Hoffman - ABC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hard</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incomplete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>active</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lenient</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>harmonious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>muted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cruel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ordered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pleasurable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rational</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heavy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ugly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meaningful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unintentional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mild</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>subtle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>accidental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>prohibitive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hazy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pessimistic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>severe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dissonant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blatant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>chaotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>painful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>emotional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>beautiful</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>meaningless</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>constrained</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intentional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>obvious</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>controlled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>permissive</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Illustration No. 9 (Richardson - ABC)

<table>
<thead>
<tr>
<th>Optimistic</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Pessimistic</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard</td>
<td>5</td>
<td>24</td>
<td>32</td>
<td>16</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>Soft</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incomplete</td>
<td>7</td>
<td>10</td>
<td>16</td>
<td>32</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td>25</td>
<td>33</td>
<td>27</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>Passive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lenient</td>
<td>7</td>
<td>15</td>
<td>17</td>
<td>30</td>
<td>24</td>
<td>7</td>
<td></td>
<td>Severe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonious</td>
<td>4</td>
<td>11</td>
<td>13</td>
<td>27</td>
<td>21</td>
<td>20</td>
<td>4</td>
<td>Dissonant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muted</td>
<td>1</td>
<td>5</td>
<td>15</td>
<td>26</td>
<td>31</td>
<td>18</td>
<td>4</td>
<td>Blatant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cruel</td>
<td>5</td>
<td>5</td>
<td>27</td>
<td>31</td>
<td>19</td>
<td>13</td>
<td></td>
<td>Kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordered</td>
<td>11</td>
<td>29</td>
<td>31</td>
<td>15</td>
<td>6</td>
<td></td>
<td></td>
<td>Chaotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dark</td>
<td>6</td>
<td>15</td>
<td>38</td>
<td>22</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>Light</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleasurable</td>
<td>6</td>
<td>19</td>
<td>28</td>
<td>31</td>
<td>12</td>
<td>4</td>
<td></td>
<td>Painful</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rational</td>
<td>15</td>
<td>13</td>
<td>29</td>
<td>12</td>
<td>16</td>
<td>10</td>
<td>5</td>
<td>Emotional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heavy</td>
<td>4</td>
<td>22</td>
<td>34</td>
<td>21</td>
<td>11</td>
<td>6</td>
<td>2</td>
<td>Light</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ugly</td>
<td>2</td>
<td>8</td>
<td>28</td>
<td>45</td>
<td>14</td>
<td>2</td>
<td>1</td>
<td>Beautiful</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meaningful</td>
<td>11</td>
<td>21</td>
<td>34</td>
<td>21</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>Meaningless</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Free</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>13</td>
<td>28</td>
<td>30</td>
<td>10</td>
<td>Constrained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calm</td>
<td>6</td>
<td>8</td>
<td>23</td>
<td>13</td>
<td>21</td>
<td>23</td>
<td>6</td>
<td>Upset</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unintentional</td>
<td>5</td>
<td>11</td>
<td>18</td>
<td>33</td>
<td>21</td>
<td>12</td>
<td></td>
<td>Intentional</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>4</td>
<td>14</td>
<td>28</td>
<td>15</td>
<td>22</td>
<td>11</td>
<td>6</td>
<td>Positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>1</td>
<td>3</td>
<td>16</td>
<td>9</td>
<td>22</td>
<td>29</td>
<td>20</td>
<td>Intense</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtle</td>
<td>1</td>
<td>8</td>
<td>20</td>
<td>19</td>
<td>22</td>
<td>22</td>
<td>8</td>
<td>Obvious</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accidental</td>
<td>2</td>
<td>3</td>
<td>10</td>
<td>15</td>
<td>28</td>
<td>29</td>
<td>13</td>
<td>Controlled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prohibitive</td>
<td>8</td>
<td>16</td>
<td>28</td>
<td>25</td>
<td>17</td>
<td>6</td>
<td></td>
<td>Permissive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazy</td>
<td>4</td>
<td>8</td>
<td>21</td>
<td>25</td>
<td>16</td>
<td>17</td>
<td>9</td>
<td>Clear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>4</td>
<td>3</td>
<td>12</td>
<td>25</td>
<td>20</td>
<td>22</td>
<td>14</td>
<td>Complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>