Absolute evaluation of magnetic ordering in correlated f-electron systems
Q. G. Sheng, B. R. Cooper, J. M. Wills, and N. Kioussis

Citation: Journal of Applied Physics 67, 5194 (1990); doi: 10.1063/1.344659
View online: http://dx.doi.org/10.1063/1.344659
View Table of Contents: http://scitation.aip.org/content/aip/journal/jap/67/9?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Neutron scattering studies of the magnetic order in RNi2B2C
J. Appl. Phys. 79, 5857 (1996); 10.1063/1.362150

Universality in the spectra of quantum chaotic systems

Re-entrant magnetic behavior of disordered alloy

Magnetic order of Dy in DyBa2Cu3O7
J. Appl. Phys. 70, 5751 (1991); 10.1063/1.350149

Specific-heat investigation of magnetic ordering in La2−x Sr x CuO4
J. Appl. Phys. 67, 5052 (1990); 10.1063/1.344694
Absolute evaluation of magnetic ordering in correlated f-electron systems

Q. G. Sheng and B. R. Cooper
Department of Physics, West Virginia University, Morgantown, West Virginia 26506

J. M. Wills
Los Alamos National Laboratory, Los Alamos, New Mexico 87545

N. Kioussis
Department of Physics, California State University, Northridge, California 91330

For partially delocalized correlated f-electron systems, the key aspect of the electronic behavior is the hybridization of f electrons with the non-f-band electrons. This gives unusual properties including suppressed crystal-field splitting and highly anisotropic ordered magnetism. To improve the general understanding and to make the theory materially predictive, a technique is being developed to evaluate absolutely the parameters of the correlated electron model Hamiltonian, and then to use these to predict observed phenomenology including details of magnetic ordering such as magnetic structures and transitions between structures. The most difficult quantity to predict is the magnetic ordering temperature, among other reasons because it depends on the hybridization strength in a highly nonlinear way. Previously Wills and Cooper have reported on a technique involving a nonconventional electronic structure calculation based on treating the f electron as a resonant state in a solid-state environment to evaluate the hybridization. As an independent check on the evaluation of hybridization, here a conventional tight binding parametrization scheme was used to evaluate the hybridization. These results are compared both with previous results and with experiment for the magnetic ordering temperature and crystal-field dressing of Ce compounds, and the situation introduced by the relative degrees of nonlinearity for the crystal-field and magnetic ordering response to the hybridization strength are commented on.

Partially delocalized f-electron systems can be well described by the Anderson lattice Hamiltonian:

\[
H = H_0 + H_1,
\]

where

\[
H_0 = \sum_k \epsilon_k n_k + \sum_{\mathbf{m} \mathbf{R}} E_m n_m (\mathbf{R})
+ U \sum_{\mathbf{R}} N(\mathbf{R}) [N(\mathbf{R}) - 1]/2
\]

and

\[
H_1 = \sum_{\mathbf{k} \mathbf{m} \mathbf{R}} [V_{\mathbf{km}}(\mathbf{R}) c_{\mathbf{k}}^\dagger c_{\mathbf{m}}(\mathbf{R}) + \text{h.c.}],
\]

where \(\epsilon_k\) and \(E_m\) are the band and f-state energies, \(U\) the intra-atomic f-f correlation energy, \(\mathbf{R}\) labels the lattice site, and \(V_{\mathbf{km}}\) is the hybridization matrix between the band and the f-state.

To make the theory able to predict the properties of a specific material on an absolute basis, and to improve our understanding, we have been developing techniques to evaluate from first principles the parameters in the Anderson lattice Hamiltonian:

\[
H = \sum_k \epsilon_k n_k + \sum_{\mathbf{m} \mathbf{R}} E_m n_m (\mathbf{R}) + U \sum_{\mathbf{R}} N(\mathbf{R}) (N(\mathbf{R}) - 1)/2
+ \sum_{\mathbf{k} \mathbf{m} \mathbf{R}} V_{\mathbf{km}}(\mathbf{R}) c_{\mathbf{k}}^\dagger c_{\mathbf{m}}(\mathbf{R}) + \text{h.c.}.
\]

Once \(V_{\mathbf{km}}\) has been evaluated, one can construct the function \(V(\epsilon)\):

\[
|V_M(\epsilon)|^2 = \sum_{\mathbf{k}} V_{\mathbf{k} M}^* \delta(\epsilon - \epsilon_\mathbf{k}) \sum_{\mathbf{k}} \delta(\epsilon - \epsilon_\mathbf{k}).
\]

This quantity characterizes the strength and distribution of the hybridization in energy space. If one then takes the product with the density of states \(N(\epsilon)\), which characterizes the number of states available for hybridization, the quantity \(\Gamma_M(\epsilon) = \int |V_M(\epsilon)|^2 N(\epsilon)\) (or its average over energy) characterizes the width of the localized f-state due to its hybridization with the band states. As we will discuss below, experimental properties caused by hybridization can be evaluated by integrating \(|V(\epsilon)|^2 N(\epsilon)\), or its products, as divided by various energy denominators.

In the work discussed here, we have evaluated the hybridization by using a tight binding parametrization scheme. On the basis of that evaluation, we have calculated the crystal-field dressing by the hybridization, and the two-ion interaction mediated by the hybridization.

Our calculation is for Ce monopnictides, specifically on CeBi. Extrapolation from the heavier rare-earth monopnictides predicts crystal-field splitting that varies from 247 K for CeBi to 390 K for CeP. By contrast, the experimentally observed splitting varies from 8 K for CeBi to 150 K for CeP. An even more striking phenomenon observed in these systems is the strongly anisotropic magnetic ordering, with various phases having peculiar magnetic structures, and a Neel temperature of 25 and 16 K for CeBi and CeSb, respectively.

Both the anomalous crystal-field splitting and anisotropic magnetic structure in Ce monopnictides are believed to be the effect of band-f hybridization. Based on the Schrieffer-Wolff transformation, Wills and Cooper derived the expressions for the crystal-field level shift and the indirect f-f interaction. We will use these expressions in evaluating these experimental properties.

5194 J. Appl. Phys. 67 (9), 1 May 1990 0021-8979/90/095194-03$03.00 © 1990 American Institute of Physics 5194
The procedure for evaluating the hybridization is as follows:

(i) First we perform a warped-muffin-tin linearized muffin-tin orbital (LMTO) band structure calculation for CeBi. The spin-orbit interaction is included perturbatively in the calculation. The potential within each muffin-tin sphere is approximated by a spherical average, while the potential in the interstitial region is expanded in a Fourier series. In Fig. 1, we show the LMTO density of states of CeBi calculated treating the 4f state as core; for comparison we have treated the 4f's as band states. The band states located in the vicinity of the Fermi level, which are therefore most physically relevant, are Ce-5d and Bi-6p bands. The position of the f level is found to be about 0.4 eV below the Fermi level. We also have varied this position, treating it as an adjustable parameter to study the effects.

(ii) Then we perform a Slater-Koster linear combination of atomic orbitals (LCAO) parametrization of the band structure. In this procedure, the p-p, d-d, and p-d interactions are considered with the first and the second neighbor, the f-p and f-d interactions are considered with the first neighbor, and the direct f/f interaction is neglected. We fit those eigenvalues for the region within 200 mRy above and below the Fermi level at 89 k-points of the irreducible Brillouin zone, with a rms deviation of 9.3 mRy. This compares, for example, with an rms deviation of 8.5 mRy in the fitting performed by Monnier, Degiorgi, and Koelling for YbP. In Fig. 2, we show the LCAO density of states from this fitting, and can compare with the LMTO density of states in Fig. 1. While quantitative details differ, the location of the peaked behavior with respect to the Fermi energy and the energy distribution of states giving the character of charge distribution (Bi-p, Ce-d) are quite similar; so that the fit indicated by Fig. 2 is suitable for an alternative evaluation of hybridization. (One should bear in mind that the pertinent matrix elements connect states across the Fermi energy from one another.) The interactions between the f state and the non-f states are \(\langle p|f \rangle = 0.016 \text{ Ry}, \quad \langle p|f \rangle = -0.012 \text{ Ry}, \) \(\langle d|f \rangle = -0.004 \text{ Ry}, \quad \langle df|f \rangle = 0.002 \text{ Ry}, \) and \(\langle df|f \rangle \) is small.

(iii) The LCAO fitting allows us to separate the electronic states into an assembly of bandlike states and an assembly of corelike states, while at the same time finding the matrix elements between them. At this point in the calculation, we have in hand a band state assembly composed of Ce-d and Bi-p states, the density of states of the bands, and the matrix elements between the band states and f states \(V_{km} \). By projecting \(V_{km} \) into energy space using the tetrahedral scheme, we construct the function \(|V(e)|^2 \) defined in Eq. (2). For \(j = \frac{3}{2} \) and cubic symmetry, \(V_{km} \) has two independent components: \(V_{r} \) and \(V_{c} \), where \(\Gamma_{7} \) and \(\Gamma_{8} \) indicate the symmetry types. In Fig. 3 we show \(|V(e)|^2 \) for \(\Gamma_{7} \) and \(\Gamma_{8} \) states. One can see that \(|V(e)|^2 \) has peaklike behavior with its central region overlapping the position of the f level.

From the areas contained by the two curves, one can estimate that the \(\Gamma_{8} \) state has stronger hybridization than the \(\Gamma_{7} \) state roughly by a factor of 2-3. This will lead to a larger crystal-field shift for \(\Gamma_{8} \) than for \(\Gamma_{7} \).

With the band structure and the hybridization thus obtained, we use expression (4.3) and (4.6) of Ref. 1 to calculate the crystal-field level shifts and the two-ion exchange...
interaction (i.e., range parameters giving the interaction matrix between two neighboring moments), respectively. The intra-atomic correlation \(U \) in these expressions is set to be infinite, and the \(f \) level in these expressions is placed 0.4 eV below the Fermi level.

We find that the \(\Gamma_7 \) and \(\Gamma_8 \) crystal-field levels shift downward by 51 and 109 K, respectively. This reduces the crystal-field splitting by 109 K. The crystal-field splitting suppression indicated experimentally is 239 K.\(^1\) The crystal-field splitting suppression calculated using the resonance width scheme of Wills and Cooper is 217 K. For the range parameter, we find \(E_1 = -0.28 \) K, \(E_2/E_1 = 2.0 \), and \(E_3/E_1 = -0.009 \). Here \(E_1, E_2, \) and \(E_3 \) denote the dominant matrix component of the range parameter \(E(1/2, 1/2) \) of the first, second, and third neighbor, respectively, where 1/2 indicates the quantum number along the interionic axis. Kioussis and Cooper expressed the temperature-dependent magnetic susceptibility in terms of the range parameter.\(^7\) At a certain temperature, the susceptibility has a singularity which implies a self-polarized magnetic ordering. By locating that singularity, we found the \(\text{Néel} \) temperature of CeBi to be 0.65 K. The experimental \(\text{Néel} \) temperature is about 25 times larger than the calculated value. The range parameters found by the resonance width scheme are \(E_1 = 0.84 \) K, \(E_2/E_1 = 3.3 \), and \(E_3/E_1 = 0.08 \), which also would imply a \(\text{Néel} \) temperature much below experiment. Thus our alternative scheme for evaluating hybridization gives results reasonably similar to Wills and Cooper\(^1\) for observable quantities, considering the nonlinear relationship of those quantities to the hybridization. In both cases, the crystal-field dressing calculated is comparable with experiment, but the \(\text{Néel} \) temperatures are much smaller than the experimental value. The calculation of the \(\text{Néel} \) temperature is more difficult than that of the crystal-field suppression because of its highly nonlinear dependence on the hybridization and \(f \)-state energy.

In addition to the hybridization-mediated interaction, there is another source of the two-ion interaction which is omitted from the present calculation, but may possibly have considerable contribution. That is the conventional RKKY interaction, which is additive to the hybridization-mediated interaction, as discussed by Cooper \(\text{et al.}^3 \). If this increased the hybridization by a moderate factor, the \(\text{Néel} \) temperature would be increased corresponding to the fourth power of that hybridization; but the qualitative nature of magnetic behavior would be unchanged since it is determined by the highly anisotropic hybridization-mediated interaction. We are in the process of calculating this effect.

ACKNOWLEDGMENTS

The research at West Virginia University was supported by the National Science Foundation Grant No. DMR88-07523 and at Los Alamos National Laboratory by the U. S. Department of Energy.

\(^6\) The Slater–Koster table for \(f \) electrons is given in K. Takegahara, Y. Aoki, and A. Yanase, J. Phys. C 13, 583 (1980).